6.线性表可用顺序表和单链表作为存储结构。试问：

（1） 两种存储表示各有哪些主要优缺点？

（2） 如果有n个表同时并存，且处理过程中个表的长度会动态发生变化，表的总数也可能自动变化，在此情况下应选用哪种存储表示？为什么？

（3） 若表的总数基本稳定，且很少进行插入和删除，但要求以最快速度存取表中元素，这时应采用哪种存储表示？为什么？
答：（1）顺序表的优点：以数据元素在计算机内的物理位置相邻来表示它在表中的逻辑相邻关系，可随机存储任一元素，元素的存储位置可用公式表示。

 缺点：插入和删除的运算量大，效率较低，必须先分配存储空间，造成空间利用率低。

链表的优点：单链表中每个元素的存储空间是在需要时才申请，其逻辑关系靠指针来表示，空间效率高，当数据元素占的内存较大时，插入和删除的效率高。

 缺点：它不能随机存取数据元素。

（2）应选用单链表，因为顺序表必须预先分配存储空间，而此表的总数和长度都会变化，不易确定存储空间的大小。

（3）应选用顺序表，因为表的总数基本稳定，且删除和插入操作少，顺序表可随机存储。

7.设ha和hb分别是两个带表头结点的升序单链表的表头指针。试设计一个算法将这两个链表合并成为一个降序单链表。要求结果链表仍使用原来两个链表的结点空间而不另开辟其他存储空间，表中允许出现重复数据。
答：算法思路：先将两个单链表用二路归并按升序合并，再将合并后的单链表逆置。

参考源程序：
Void InverseMerge(Chain &A, Chain &B)
{ //结果放在A中
ChainNoae *pa, *pb, *p, *q;

pa=A.fist->next;

pb=B.fist->next;

A.first->next=0;

B.first->next=0;

while(pa != 0 && pb != 0)

{

 if(pa->data <= pb->data)

 {

 q = pa;

 pa = pa->next;

 }

 else

 {

 q = pb;

 pb = pb->next;

 }

 q->next = A.first->next;

 A.first->next = q;

}

if(pa != 0) p = pa;

else p = pb;

while(p != 0)

{
 q = p;

 p = p->next;

 q->next = A.first->next;

 A.first->next = q;

}

}
8.设有一个线性表
[image: image1.wmf]12

(,,,)

n

Laaa

=

L

，试分别在顺序表和单链表两种存储表示方式下，各设计一个将线性表
[image: image2.wmf]L

逆置的算法，要求不重新开辟存储空间。所谓逆置是指将线性表中的元素次序颠倒过来，即成为
[image: image3.wmf]11

(,,,)

nn

Laaa

-

¢

=

L

。
解：（1）线性表：只要交换
[image: image4.wmf]i

a

和
[image: image5.wmf]1

ni

a

-+

的值。参考程序：

void Reverse(SqList &L)

{ int i=1, j=L.Length();

 ElemType a;

While(i<j){a=L.elem[i]; L.elem[i]=L.elem[j]; L.elem[j]=a; i++; j--;}

}

(2) 单链表: 将第一个元素的指针指向0，逐个将
[image: image6.wmf]i

a

指向
[image: image7.wmf]1

i

a

-

，最后将
[image: image8.wmf]L

指向
[image: image9.wmf]n

a

，参考程序：

void Reverse(Chain<T> &L)//带头结点的线性单链表逆置

{ while(! (L.first->link)->link) return;
ChainNode<T> *p, *q, *r;

 p = L.first->link;
 q = p->link; p->link = 0;

 while(q->link){r = q->link; q->link = p; p = q; q = r; }

 q->link = p; L.first->link = q;

}
9. 设有一个栈，元素的进栈次序依次为A, B, C, D, E. 试问能否得到下面的出栈序列？若能请写出操作序列，若不能请说明原因。

(1) C, E, A, B, D (2) C, B, A, D, E (3) D, C, A, B, E (4) A, C, B, E, D
(5) A, B, C, D, E (6) E, A, B, C, D
答：(1), (3), (6) 不能。
(1)：E 出栈后，其余三个的次序只能是：D, B, A

(3): D 出栈后，A, B, C 的次序只能是：C, B, A

(6): E 出栈后，A, B, C, D 的次序只能是：D, C, B, A

(2): 入栈A, B, C, 出栈C, B, A, 入栈D, 出栈D, 入栈E, 出栈E,

(4): 入栈A, 出栈A, 入栈B, C, 出栈C, B, 入栈D, E, 出栈E, D,

(5): 入栈A, 出栈A, 入栈B, 出栈B, 入栈C, 出栈C, 入栈D, 出栈D, 入栈E, 出栈E.
10. 何谓队列的上溢现象？解决它有哪些方法？分别简述其工作原理。
答：在入队列算法中，队尾指针达到数组的上界，称为队列的（假性）上溢现象。

 可以采用两种方法解决这个问题。

（1）循环队列：认为队列是一个首尾相接的圆环，当队尾指针已指向数组的上界，并且此时数组的第一个位置是空的，如果要再进行入队操作，就将队尾指针回到数组的下界，就可以完成入队列操作。

（2）顺序移动数据元素的方法：在每一次出队列操作后，都将剩下的整个队列向队头方向移动一个位置，或者在入队列而发生假上溢情况时，将整个队列向队头方向移动，然后再进行入队列操作。
_1225211690.unknown

_1225212594.unknown

_1225212696.unknown

_1225212695.unknown

_1225211712.unknown

_1225211269.unknown

_1225211503.unknown

_1225211075.unknown

