Course: Commutative Algebra

Homework 9 (due to next Friday, 4/27/2012)

All rings are assumed commutative with identity.

- 1. Let k be an algebraically closed field and let $V = \mathcal{Z}(xz yw) \subseteq \mathbb{A}^4$ and $f = \bar{x}/\bar{y}$. Prove that there is no single expression $f = a/b \in K(V)$ with $b(v) \neq 0$ for every v where f is regular.
- 2. Define the support of an R-module M by

$$\operatorname{Supp} M = \{ P \in \operatorname{Spec} R | M_P \neq 0 \}.$$

Prove the following results:

- (a) M = 0 if and only if $Supp M = \emptyset$.
- (b) If

$$0 \to L \to M \to N \to 0$$

is an exact sequence of R-modules then the localization M_P is nonzero if and only if L_P or N_P is nonzero and deduce that $\operatorname{Supp} M = \operatorname{Supp} L \cup \operatorname{Supp} N$.

(c) Suppose $P \subseteq Q$ are prime ideals in R. Then the localization of the R-module M_Q at P is the localization M_P , i.e., $(M_Q)_P = M_P$. If $P \in \operatorname{Supp} M$ then $Q \in \operatorname{Supp} M$.