Course: Commutative Algebra

Homework 4 (due to next Friday, 3/16/2012)

All rings are assumed commutative with identity.

- 1. Show that $V = \mathcal{Z}(x^2 y^2 z)$ is the smallest algebraic set in \mathbb{R}^3 containing the points $S = \{(st, s, t^2) | s, t \in \mathbb{R}\}$. Show that S is not Zariski closed in V. Do the same over \mathbb{C} , but show that in this case S = V is closed.
- 2. Prove that if Q_1 and Q_2 are both *P*-primary then so is $Q_1 \cap Q_2$.
- 3. Prove that if Q_1 and Q_2 are both *M*-primary, where *M* is a maximal ideal, then so are $Q_1 + Q_2$ and Q_1Q_2 .
- 4. Suppose $\varphi : R \to S$ is a surjective ring homomorphism. Prove that an ideal Q in R containing the kernel of φ is primary if and only if $\varphi(Q)$ is primary in S.
- 5. Suppose $\varphi : R \to S$ is a ring homomorphism.
 - Suppose I is an ideal of R containing $ker\varphi$ with minimal primary decomposition $I = Q_1 \bigcap \cdots \bigcap Q_m$ with $\operatorname{rad} Q_i = P_i$. If φ is a surjective homomorphism prove that $\varphi(I) = \varphi(Q_1) \bigcap \cdots \bigcap \varphi(Q_m)$, where $\operatorname{rad} \varphi(Q_i) = \varphi(P_i)$, is a minimal primary decomposition of $\varphi(I)$.
 - Suppose *I* is an ideal of *S* with minimal primary decomposition $I = Q_1 \bigcap \cdots \bigcap Q_m$ with $\operatorname{rad}Q_i = P_i$. Prove that $\varphi^{-1}(I) = \varphi^{-1}(Q_1) \bigcap \cdots \bigcap \varphi^{-1}(Q_m)$, where $\operatorname{rad}\varphi^{-1}(Q_i) = \varphi^{-1}(P_i)$, is a primary decomposition of $\varphi^{-1}(I)$, and is minimal if φ is surjective.

P.S. For the example (6) which was talked in the class today, the condition on the ring R should be P. I. D not U. F. D. Then the following proof is correct. Thank Jiawei Hu for pointing out the mistake.

If R is U. F. D we also can show that any $\langle a \rangle$ -primary ideal Q can be written as $\langle a \rangle^n$ for a irreducible and $n = 1, 2, \cdots$:

Proof : If $xy \in \langle a \rangle^n$ then we can write $xy = ra^n$ for some $r \in R$. If $x \notin \langle a \rangle^n$ then y = as for some $s \in R$ by noticing that $xy = ra^n$. So $y^n \in \langle a \rangle^n$, i.e., $\langle a \rangle^n$ is primary. Since $\langle a \rangle$ is the minimal prime ideal containing $\langle a \rangle^n$, rad $\langle a \rangle^n = \langle a \rangle$.

Conversely, suppose Q is a $\langle a \rangle$ -primary ideal, and let n be the largest integer with $Q \subseteq \langle a \rangle^n$. If $q \in Q, q \notin \langle a \rangle^{n+1}$ then $q = ra^n$ for some $r \in R$ and $r \notin \langle a \rangle$. If $a^n \notin Q$, since $q = ra^n \in Q$, $r \in radQ = \langle a \rangle$, a contradiction. So $Q = \langle a \rangle^n$.