Course: Commutative Algebra

Homework 3 (due to next Friday, 3/9/2012)

All rings are assumed commutative with identity.

- 1. Let I and J be ideals in the ring R. Prove the following statements:
 - $\operatorname{rad}(IJ) = \operatorname{rad}(I \cap J) = \operatorname{rad}(I \cap J)$
 - rad(radI) = radI
 - $\operatorname{rad} I + \operatorname{rad} J \subseteq \operatorname{rad}(I + J), \operatorname{rad}(I + J) = \operatorname{rad}(\operatorname{rad} I + \operatorname{rad} J)$
- 2. If N is the nilradical of R, prove that SpecR and SpecR/N are homeomorphic with respect to Zariski topology.
- 3. Suppose R and S are rings and $\varphi : R \to S$ is a ring homomorphism. If I is an ideal of R show that $\varphi(\operatorname{rad} I) \subseteq \operatorname{rad}(\varphi(I))$. If in addition φ is surjective and I contains the kernel of φ show that $\varphi(\operatorname{rad} I) = \operatorname{rad}(\varphi(I))$.
- 4. Give an example of an injective k-algebra homomorphism $\tilde{\varphi} : A(W) \to A(V)$ whose associated morphism $\varphi : V \to W$ is not surjective.