Course: Commutative Algebra

Homework 2 (due to next Friday)

- 1. Suppose M is a Noetherian R-module and $\varphi : M \to M$ is an R-module endomorphism of M. Prove that $ker(\varphi^n) \cap Image(\varphi^n) = 0$ for n >> 0 and if φ is surjective then φ is an isomorphism.
- 2. Over finite field \mathbb{F}_2 , let $V = \{(0,0), (1,1)\} \subseteq \mathbb{A}^2$. Find $\mathcal{I}(V)$.
- 3. Let $V = \mathcal{Z}(xy z) \subseteq \mathbb{A}^3$. Prove that V is isomorphic to \mathbb{A}^2 . Is $V = \mathcal{Z}(xy z^2)$ isomorphic to \mathbb{A}^2 ?
- 4. Let $V = \mathcal{Z}(xz y^2, yz x^3, z^2 x^2y) \subseteq \mathbb{A}^3$.
 - Prove that the map $\varphi : \mathbb{A}^1 \to V$ defined by $\varphi(t) = (t^3, t^4, t^5)$ is a surjective morphism.
 - Describe the corresponding k-algebra homomorphism $\tilde{\varphi} : A(V) \to A(\mathbb{A}^1)$ explicitly.
 - Prove that φ is not an isomorphism.