Course: Commutative Algebra

Homework 11 (due to next Friday, 5/11/2012)

R is a commutative ring with identity.

- 1. Let $R = \mathbb{Z}_{(2)}$ be the localization of \mathbb{Z} at the prime ideal (2). Prove that $\operatorname{Jac} R = (2)$ is the ideal generated by 2. If $M = \mathbb{Q}$, prove that M/2M is a finitely generated R-module but that M is not finitely generated over R.
- 2. If R is a Noetherian ring, prove that the Zariski topology on SpecR is discrete (i.e., every subset is Zariski open and Zariski closed) if and only if R is Artinian.
- 3. Suppose *I* is the ideal $(x_1, x_2^2, x_3^3, \cdots)$ in the polynomial ring $k[x_1, x_2, \cdots]$ where k is a field and let *R* be the quotient ring $k[x_1, x_2, \cdots]/I$. Prove that the image of the ideal (x_1, x_2, \cdots) in *R* is the unique prime ideal in *R* but is not finitely generated. Deduce that *R* is a local ring of Krull dimension 0 but is not Artinian.
- 4. * If R is a local ring then every finitely generated projective R-module is a free R-module.