Course: Commutative Algebra

Homework 10 (due to next Friday, 5/4/2012)

R is a commutative ring with identity.

- 1. Suppose U is a Zariski open subset of SpecR. Show that $\mathcal{O}(U)$ is a ring with identity and if U' is an open subset of U then the natural restrict map from $\mathcal{O}(U)$ to $\mathcal{O}(U')$ is a homomorphism of rings.
- 2. Suppose φ : Spec $\mathbb{Z}[x] \to \operatorname{Spec}\mathbb{Z}$ to be the natural map. Prove that the elements in the fiber over (p) of φ are homeomorphic with the elements in $\operatorname{Spec}(\mathbb{Z}[x] \otimes_{\mathbb{Z}} \mathbb{F}_p)$.
- 3. Prove that $X = \operatorname{Spec} R$ is irreducible if and only if $X_f \cap X_g \neq \emptyset$ for any two nonempty principal open sets X_f and X_g . Deduce that X is irreducible if and only if the nilradical of R is a prime ideal.
- 4. Suppose D is a multiplicatively closed subset of R. Show that the localization homomorphism $R \to D^{-1}R$ induces a homeomorphism from $\operatorname{Spec}(D^{-1}R)$ to the collection of prime ideals P of R with $P \cap D = \emptyset$.