Course: Commutative Algebra

Homework 1

Let R be the ring of all continuous functions from [0, 1] to \mathbb{R} and for each $c \in [0, 1]$, let $M_c = \{f \in R | f(c) = 0\}.$

- 1. Prove that M_c is a maximal ideal of R.
- 2. Prove that if M is any maximal ideal of R, then there is a real number $c \in [0, 1]$ such that $M = M_c$.
- 3. Show that if $b \neq c$, where $b, c \in [0, 1]$ then $M_b \neq M_c$
- 4. Is $M_c = \langle x c \rangle$ or M_c finitely generated?