主要研究兴趣:小波分析。想对小波有所了解的同学,请查看我为本科小波课程制作的页面
(I have been working on some wavelet problems. If you read Chinese, you can check out the web page I prepared
for undergradute students who are interested in taking the introductory wavelet course. )
请点击MathSciNet的搜索结果查看顾青历年论文.
(The list of my publications according to MathSciNet.)
Gu, Qing; Han, Deguang Wavelet frames for (not necessarily reducing) affine subspaces II: the structure of affine subspaces. J. Funct. Anal. 260 (2011), no. 6, 1615–1636.
Gu, Qing; Han, Deguang Wavelet frames for (not necessarily reducing) affine subspaces. Appl. Comput. Harmon. Anal. 27 (2009), no. 1, 47–54.
Gu, Qing; Han, Deguang When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24 (2008), no. 3, 290–309.
Gu, Qing; Han, Deguang Super-wavelets and decomposable wavelet frames. J. Fourier Anal. Appl. 11(2005), no. 6, 683–696.
Gu, Qing; Han, Deguang Frames, modular functions for shift-invariant subspaces and FMRA wavelet frames. Proc. Amer. Math. Soc. 133 (2005), no. 3, 815–825.
Dai, Xingde; Diao, Yuanan; Gu, Qing Frame wavelets with frame set support in the frequency domain. Illinois J. Math. 48 (2004), no. 2, 539–558.
Gu, Q.; Dai, X.; Diao, Y. On super-wavelets. Current trends in operator theory and its applications,153–165, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004.
Dai, X; Diao,
Y.; Gu,
Q.; Han,
D. The
Dai, X.; Diao, Y.; Gu, Q.; Han, D. The existence of subspace wavelet sets. Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001). J. Comput. Appl. Math. 155 (2003), no. 1, 83–90.
Dai, X.; Diao, Y.; Gu, Q.; Han, D. Frame wavelet sets in R^d. Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001). J. Comput. Appl. Math. 155 (2003), no. 1, 69–82.
Gu, Qing; Han, Deguang Functional Gabor frame multipliers. J. Geom. Anal. 13 (2003), no. 3, 467–478.
Dai, X.; Diao, Y.; Gu, Q.; Han, D. Wavelets with frame multiresolution analysis. J. Fourier Anal. Appl.9 (2003), no. 1, 39–48.
Dai, X.; Diao, Y.; Gu, Q.; Han, D. Frame wavelets in subspaces of L^2(R^d). Proc. Amer. Math. Soc. 130(2002), no. 11, 3259–3267 (electronic).
Gu, Qing; Han, Deguang Phases for dyadic orthonormal wavelets. J. Math. Phys. 43 (2002), no. 5,2690–2706.
Dai, Xingde; Diao, Yuanan; Gu, Qing Subspaces with normalized tight frame wavelets in R. Proc. Amer. Math. Soc. 130 (2002), no. 6, 1661–1667.
Dai, X.; Diao, Y.; Gu, Q. Frame wavelet sets in R. Proc. Amer. Math. Soc. 129 (2001), no. 7, 2045–2055 (electronic).
Gu, Qing; Han, Deguang On multiresolution analysis (MRA) wavelets in R^n. J. Fourier Anal. Appl. 6(2000), no. 4, 437–447.
Gu, Qing On
Interpolation
families of wavelet sets. Proc.
Amer. Math. Soc. 128 (2000), no.
10, 2973–2979.
©
版权所有 华东师范大学数学系 |