
II. FOURIER TRANSFORM ON L1(R)

In this chapter we will discuss the Fourier transform of Lebesgue integrable

functions defined on R. To fix the notation, we denote

L1(R) = {f : R→ C |
∫ ∞

−∞
|f(t)|dt < ∞}.

The norm || · ||L1(R) on L1(R) is defined as

||f ||L1(R) =
∫ ∞

−∞
|f(t)|dt.

For convenience, we usually write || · ||1 in stead of || · ||L1(R). It can be checked

that || · ||L1(R) satisfies conditions in Definition 2 of last Chapter, hence it is indeed

a norm.

Similarly to the case of L2([−π, π]), we can define Cauchy Sequence in L1(R)

and Convergence of sequence of functions in L1(R). We will let the reader to

work out the details of these definition. Also similar to L2([−π, π]), every Cauchy

sequence in L1(R) converges to some function in L1(R), though this is a fact beyond

the scope of our course.

Definition 1. For any function f ∈ L1(R), we define

F(f)(ξ) =
∫ ∞

−∞
f(x)e−iξxdx.

For any function f ∈ L1(R), F(f) is a well defined function, since for any ξ ∈ R,

|
∫ ∞

−∞
f(x)e−iξxdx |≤

∫ ∞

−∞
| f(x)e−iξx | dx =

∫ ∞

−∞
| f(x) | dx.

The function F(f) is called the Fourier transform of f . For convenience, we

often write f̂ is stead of F(f).

Theorem 1. Let f, g ∈ L1(R). Then

(a) ̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ).

(b) For any c ∈ C, (̂cf)(ξ) = c ˆ(f)(ξ).
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(c) Let f be the complex conjugate of f , then f̂(ξ) = f̂(−ξ).

(d) For any fixed real number y, let function fy be defined as fy(x) = f(x− y),

then f̂y(ξ) = f̂(ξ)e−iξy.

(e) For any fixed real number λ > 0, let function ϕ be defined as ϕ(x) = λf(λx),

then ϕ̂(ξ) = f̂( ξ
λ ).

Remark The theorem above contains some of the most frequently used properties

of Fourier transform. The proof is routine, we leave the details for the reader. Less

used, is the fact that the Fourier transform of any f ∈ L1(R) is a bounded uniformly

continuous function. To show this fact, we need some big theorem in the theory of

Lebesque integration.

Lebesque Dominant Convergence Theorem. Let f, g ∈ L1(R). Suppose that

the sequence {fn}∞n=1 ⊂ L1(R) satisfies the following two conditions:

(a)|fn(x)| ≤ g(x) for every n ∈ N and almost every x ∈ R.

(b)For almost every x ∈ R, limn→∞ fn(x) = f(x).

Then limn→∞
∫∞
−∞ fn(x)dx =

∫∞
∞ f(x)dx.

Theorem 2. Let f ∈ L1(R). Then

(a) |f̂(ξ)| ≤ ||f ||1 for any ξ ∈ R.

(b) f̂ is uniformly continuous on R.

Proof. (a) We compute

|f̂(ξ)| =|
∫ ∞

−∞
f(x)e−iξxdx |≤

∫ ∞

−∞
| f(x)e−iξx | dx =

∫ ∞

−∞
| f(x) | dx = ||f ||1.

(b) For any real number η, ξ, let us look at |f̂(ξ + η)− f̂(ξ)|, and hope that for

any ε > 0, we can find a δ > 0 independent of ξ, such that for any |η| < δ, and any

ξ, we always have |f̂(ξ + η)− f̂(ξ)| < ε. We compute

|f̂(ξ + η)− f̂(ξ)| =|
∫ ∞

−∞
f(x)e−iξ+ηx − f(x)e−iξxdx |

≤
∫ ∞

−∞
| f(x)e−iξ+ηx − f(x)e−iξx | dx =

∫ ∞

−∞
| f(x) | · | e−ηx − 1 | dx.

Since the right-hand side above is a function with variable η, we only need to show

that limη→0

∫∞
−∞ | f(x) | · | e−ηx−1 | dx = 0. Thus it is enough to show that for any

sequence {ηn}∞n=1 with limn→∞ ηn = 0, limn→∞
∫∞
−∞ | f(x) | · | e−ηnx − 1 | dx = 0.



II. FOURIER TRANSFORM ON L1(R) 3

Now Lebesque Dominant Convergence Theorem comes into play, since for any

such {ηn}∞n=1, clearly limn→∞ | f(x) | · | e−ηnx − 1 |= 0 for any x ∈ R. Also

| f(x) | · | e−ηnx−1 |≤ 2 | f(x) | and certainly 2 | f(x) |∈ L1(R) since f(x) ∈ L1(R).

It then follows that limn→∞
∫∞
−∞ | f(x) | · | e−ηnx − 1 | dx = 0. ¤

Next we introduce the concept of convolution of two functions f, g ∈ ÃL1(R),

we need Fubini’s Theorem. The following is a not quite correct version of this

theorem. But is will do for our course.

Fubini’s Theorem. Suppose
∫∞
−∞{

∫∞
−∞ | f(x, y) | dx}dy < ∞. Then for almost

every fixed x ∈ R, f(x, y) ∈ L1(R) as a function in y; For almost every fixed y ∈ R,

f(x, y) ∈ L1(R) as a function in x. Furthermore,
∫ ∞

−∞
{
∫ ∞

−∞
f(x, y)dx}dy =

∫ ∞

−∞
{
∫ ∞

−∞
f(x, y)dy}dx.

Remark Suppose f, g ∈ L1(R), then for every fixed y, f(x− y)g(y) is the product

of the function f(x−y) ∈ L1(R) with a constant g(y), thus for fixed y, f(x−y)g(y) ∈
L1(R) (as a function in x). So

∫∞
−∞ | f(x− y)g(y) | dx is well defined for each fixed

y, namely it is a function of y. Now let us integrate:

∫ ∞

−∞
{
∫ ∞

−∞
| f(x− y)g(y) | dx}dy =

∫ ∞

−∞
| g(y) | {

∫ ∞

−∞
| f(x− y) | dx}dy

=
∫ ∞

−∞
| g(y) | {

∫ ∞

−∞
| f(x) | dx}dy =

∫ ∞

−∞
| g(y) | ||f ||1dy = ||f ||1||g||1 < ∞.

Now according to Fubini’s theorem, for almost every x, f(x − y)g(y) ∈ L1(R)

as a function of y, hence
∫∞
−∞ f(x − y)g(y)dy is well defined. We denote h(x) =∫∞

−∞ f(x− y)g(y)dy, and we will try to prove that h ∈ L1(R). Indeed,
∫ ∞

−∞
| h(x) | dx =

∫ ∞

−∞
|
∫ ∞

−∞
f(x−y)g(y)dy | dx ≤

∫ ∞

−∞
{
∫ ∞

−∞
| f(x−y)g(y) | dy}dx

=
∫ ∞

−∞
{
∫ ∞

−∞
| f(x− y)g(y) | dx}dy = ||f ||1||g||1 < ∞.

The second to the last equal sign above is a consequence of Fubini’s theorem.

Usually we use f ∗ g to denote the function h above.

Definition 2. Let f, g ∈ L1(R). Then f ∗g(x) =
∫∞
−∞ f(x−y)g(y)dy is well defined

and f ∗ g ∈ L1(R). We call f ∗ g the convolution of f and g.

We list a few basic properties of convolution.
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Theorem 3. Let f, g ∈ L1(R). Then

(a) f ∗ g = g ∗ f .

(b) f̂ ∗ g(ξ) = f̂(ξ) · ĝ(ξ).

The proof of this theorem is routine with the aid of Fubini’s theorem. We leave

it to the reader. Next we introduce the Inverse Fourier transform.

Definition 3. Let f ∈ L1(R) be a function such that f̂ ∈ L1(R). Then Inverse

Fourier transform of f̂ is defined as

F−1(f̂)(x) =
1
2π

∫ ∞

−∞
f̂(ξ)eixξdξ.

Our main goal in this chapter is to prove the fact that under certain conditions,

we can take Inverse Fourier transform of f̂ to get back to function f , but Not

Always! First, let us introduce a special class of functions in L1(R).

Definition 4. The function e−x2
is called the Gaussian function. For any α > 0,

denote

Gα(x) =
1

2
√

πα
e−

x2
4α .

We call the collection of Gα’s the Gaussian family.

Remark Using the fact that
∫∞
−∞G(x) =

√
π, it can be checked that each func-

tion in the Gaussian family is in L1(R). In order to find the Fourier transform

of these functions, we rely on the following facts which can be obtained through

computations not too lengthy, and it is left to the reader.

Lemma 1. For any a > 0,

∫ ∞

−∞
e−ax2

e−iξxdx =
√

π

a
e−

ξ2

4a .

Lemma 2. For any α > 0, let Gα be defined above. Then
∫∞
−∞Gα(x)dx = 1,

Ĝα(ξ) = e−αξ2
.

Relying on these two lemmas and some more trivial facts about Gaussian family,

we reach the following two important technical results. We will only prove the first

of two propositions below since the second one involves only simple computation.

Proposition 1. Let f ∈ L1(R). f(x) is continuous at x = t. Then

lim
α→0+

(f ∗Gα)(t) = f(t).
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Proof. We want to show that for any ε > 0, there is a δ > 0, such that for any

0 < α < δ, we always have | (f ∗Gα)(t)− f(t) |< ε.

Since
∫∞
−∞Gα(x)dx = 1, we see that for any α > 0, | (f ∗Gα)(t)− f(t) |

=|
∫ ∞

−∞
f(t− x)Gα(x)dx−

∫ ∞

−∞
f(t)Gα(x)dx |=|

∫ ∞

−∞
(f(t− x)− f(t))Gα(x)dx | .

Because f(x) is continuous at x = t, so for this ε > 0, there exists η > 0, such

that for all |x| < η, we have |f(t− x)− f(t)| < 1
3ε. Thus, for any α > 0,

| (f∗Gα)(t)−f(t) |≤
∫ η

−η

| f(t−x)−f(t) | Gα(x)dx+
∫

|x|>η

| f(t−x)−f(t) | Gα(x)dx

≤
∫ η

−η

| f(t−x)−f(t) | Gα(x)dx+
∫

|x|>η

| f(t−x) | Gα(x)dx+
∫

|x|>η

| f(t) | Gα(x)dx

≤ 1
3
ε + max

|x|>η
Gα(x)

∫

|x|>η

| f(t− x) | dx+ | f(t) |
∫

|x|>η

Gα(x)dx

≤ 1
3
ε + Gα(η)||f ||1+ | f(t) |

∫

|x|> η√
α

G1(x)dx.

With η fixed, now it should be easy to choose a desirable δ. We will let the

reader to finish the proof. ¤

Proposition 2. Let f, g ∈ L1(R). Then

∫ ∞

−∞
f(x)ĝ(x)dx =

∫ ∞

−∞
f̂(x)g(x)dx.

We need one more technical lemma before the major theorem of the chapter.

The proof of following lemma, like that of above proposition, is only computations

and we leave it for the reader.

Lemma 3. For fixed t ∈ R and α > 0, define gt,α(y) = 1
2π eiyte−αy2

, then

ĝt,α(x) = Gα(t− x).

Finally, the main theorem of this chapter.

Theorem 4. Let f ∈ L1(R) be a function such that f̂ ∈ L1(R). If f(x) is contin-

uous at x = t. Then

f(t) = (F−1f̂)(t).
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Proof. Note that by Proposition 1, f(t) = limα→0+(f ∗Gα)(t). So we only need to

show

(F−1f̂)(t) = lim
α→0+

(f ∗Gα)(t).

Now by Theorem 3, Lemma 3, Proposition 2, and the definition of the function

gx,α, in that order we have

(f ∗Gα)(t) =
∫ ∞

−∞
f(x)Gα(t− x)dx =

∫ ∞

−∞
f(x)ĝt,α(x)dx

=
∫ ∞

−∞
f̂(x)gt,α(x)dx =

1
2π

∫ ∞

−∞
f̂(x)eixte−αx2

dx.

So the reach our goal, it is enough to show that for any sequence {αn}∞n=1 of

positive numbers with limn→∞ αn = 0,

lim
n→∞

1
2π

∫ ∞

−∞
f̂(x)eixte−αnx2

dx =
1
2π

∫ ∞

−∞
f̂(x)eixtdx.

Now Lebesque Dominant Convergence Theorem comes to rescue. Indeed, since

for almost all x,

lim
n→∞

f̂(x)eixte−αnx2
= f̂(x)eixt.

Also for almost all x, | f̂(x)eixte−αnx2 |≤| f̂(x) | and | f̂(x) |∈ L1(R), the

conclusion follows. ¤


