第四讲 线性方程组迭代解法

- 4.1 定常迭代法
- 4.2 收敛性分析
- 4.3 经典迭代法的收敛性
- 4.4 共轭梯度法

https://math.ecnu.edu.cn/~jypan/Teaching/SC

4-4 共轭梯度法

4.4 共轭梯度法

- 4.4.1 最速下降法
- 4.4.2 共轭梯度法

https://math.ecnu.edu.cn/~jypan/Teaching/SC

(预处理) 共轭梯度法是当前求解 大规模(稀疏)对称正定 方程组的首选方法

线性方程组与二次规划问题

定理 4.13 设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 则 x_* 是 Ax = b 的解当且仅当 x_* 是最小化问题

$$\min_{x \in \mathbb{R}^n}$$

$$\Phi(x) \triangleq \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x$$

的解, 即 $\Phi(x)$ 的最小值点.

(板书)

线性方程组与二次规划问题

定理 4.13 设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 则 x_* 是 Ax = b 的解当且仅当 x_* 是最小化问题

$$\min_{x \in \mathbb{R}^n}$$

$$\Phi(x) \triangleq \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x$$

的解, 即 $\Phi(x)$ 的最小值点.

(板书)

证明概要. <mark>必要性</mark>. 设 x_* 是 Ax = b 的解, 即 $Ax_* = b$, 并注意到 A 对称正定, 则

$$\Phi(x) - \Phi(x_*) = \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x - \frac{1}{2} x_*^{\mathsf{T}} A x_* + b^{\mathsf{T}} x_*$$
$$= \frac{1}{2} x^{\mathsf{T}} A x - x_*^{\mathsf{T}} A x - \frac{1}{2} x_*^{\mathsf{T}} A x_* + x_*^{\mathsf{T}} A x_*$$
$$= \frac{1}{2} (x - x_*)^{\mathsf{T}} A (x - x_*) \ge 0,$$

等号当且仅当 $x - x_* = 0$ 时成立. 因此 x_* 是 $\Phi(x)$ 的唯一最小值点.

证明概要. $\overline{\text{充分性}}$. 设 x_* 是 $\Phi(x)$ 的最小值点,则

$$\Phi(x) - \Phi(x_*) = \frac{1}{2} (x - x_*)^{\mathsf{T}} A(x - x_*) + x^{\mathsf{T}} A x_* - x_*^{\mathsf{T}} A x_* - b^{\mathsf{T}} x + b^{\mathsf{T}} x_*$$
$$= \frac{1}{2} (x - x_*)^{\mathsf{T}} A(x - x_*) - (x - x_*)^{\mathsf{T}} (b - A x_*).$$

记 $r \triangleq b - Ax_*$, 如果 $r \neq 0$, 则取 $x = x_* + \alpha r$, 其中 $\alpha > 0$, 于是

$$\Phi(x) - \Phi(x_*) = \frac{\alpha^2}{2} r^{\mathsf{T}} A r - \alpha ||r||_2.$$

当 α 足够小时, 上式右端小于 0, 这与 x_* 是 $\Phi(x)$ 的最小值点矛盾. 所以 r=0, 即 $Ax_*=b$.

证明概要. $\overline{$ **ਨ** $分性 }$. 设 x_* 是 $\Phi(x)$ 的最小值点,则

$$\Phi(x) - \Phi(x_*) = \frac{1}{2} (x - x_*)^{\mathsf{T}} A(x - x_*) + x^{\mathsf{T}} A x_* - x_*^{\mathsf{T}} A x_* - b^{\mathsf{T}} x + b^{\mathsf{T}} x_*$$
$$= \frac{1}{2} (x - x_*)^{\mathsf{T}} A(x - x_*) - (x - x_*)^{\mathsf{T}} (b - A x_*).$$

记 $r \triangleq b - Ax_*$, 如果 $r \neq 0$, 则取 $x = x_* + \alpha r$, 其中 $\alpha > 0$, 于是

$$\Phi(x) - \Phi(x_*) = \frac{\alpha^2}{2} r^{\mathsf{T}} A r - \alpha ||r||_2.$$

当 α 足够小时, 上式右端小于 0, 这与 x_* 是 $\Phi(x)$ 的最小值点矛盾. 所以 r=0, 即 $Ax_*=b$.

求解 Ax = b \iff 计算 $\Phi(x)$ 的最小值点

求解最小化问题的线搜索方法

线搜索方法

求解最小化问题 $\min_{x \in \mathbb{R}^n} \Phi(x)$ 的一类常用方法是 线搜索方法:

给定初始值 $x^{(0)}$, 确定一个使得 $\Phi(x)$ 变小的方向 $p_1 \in \mathbb{R}^n$, 即 下降方向, 满足 $||p_1|| = 1$, 然后计算步长 $\alpha_1 \in \mathbb{R}_+$, 使得 $\Phi(x)$ 沿该下降方向达到最小, 即

$$x^{(1)} = x^{(0)} + \alpha_1 p_1, \quad \sharp \Psi \quad \alpha_1 = \operatorname*{argmin}_{\alpha > 0} \Phi(x^{(0)} + \alpha p_1)$$

怎么计算步长

由于 A 对称正定, 直接计算可得

$$\Phi(x^{(0)} + \alpha p_1) = \frac{1}{2} (x^{(0)} + \alpha p_1)^{\mathsf{T}} A (x^{(0)} + \alpha p_1) - b^{\mathsf{T}} (x^{(0)} + \alpha p_1)
= \frac{1}{2} \alpha^2 p_1^{\mathsf{T}} A p_1 + \alpha p_1^{\mathsf{T}} A x^{(0)} + \frac{1}{2} (x^{(0)})^{\mathsf{T}} A x^{(0)} - b^{\mathsf{T}} x^{(0)} - \alpha b^{\mathsf{T}} p_1
= \frac{1}{2} \alpha^2 p_1^{\mathsf{T}} A p_1 - \alpha p_1^{\mathsf{T}} r_0 + \Phi(x^{(0)}),$$

其中 $r_0 = b - Ax^{(0)}$.

怎么计算步长

由于 A 对称正定, 直接计算可得

$$\Phi(x^{(0)} + \alpha p_1) = \frac{1}{2} (x^{(0)} + \alpha p_1)^{\mathsf{T}} A (x^{(0)} + \alpha p_1) - b^{\mathsf{T}} (x^{(0)} + \alpha p_1)
= \frac{1}{2} \alpha^2 p_1^{\mathsf{T}} A p_1 + \alpha p_1^{\mathsf{T}} A x^{(0)} + \frac{1}{2} (x^{(0)})^{\mathsf{T}} A x^{(0)} - b^{\mathsf{T}} x^{(0)} - \alpha b^{\mathsf{T}} p_1
= \frac{1}{2} \alpha^2 p_1^{\mathsf{T}} A p_1 - \alpha p_1^{\mathsf{T}} r_0 + \Phi(x^{(0)}),$$

其中 $r_0 = b - Ax^{(0)}$.

 $^{\bullet}$ 这是关于 α 的一元二次函数, 且二次项系数为正, 所以

$$\alpha_1 = \operatorname*{argmin}_{\alpha > 0} \Phi \left(x^{(0)} + \alpha p_1 \right) = \frac{p_1^\mathsf{T} r_0}{p_1^\mathsf{T} A p_1}.$$

4-4-1 最速下降法

根据多元函数的 Taylor 展开公式, 我们有

$$\Phi(x) = \Phi(x^{(0)}) + (x - x^{(0)})^{\mathsf{T}} \nabla \Phi(x^{(0)}) + o(\|x - x^{(0)}\|).$$

4-4-1 最速下降法

根据多元函数的 Taylor 展开公式, 我们有

$$\Phi(x) = \Phi(x^{(0)}) + (x - x^{(0)})^{\mathsf{T}} \nabla \Phi(x^{(0)}) + o(\|x - x^{(0)}\|).$$

记 p 为 $x - x^{(0)}$ 所在的方向,即 $p = \frac{x - x^{(0)}}{\|x - x^{(0)}\|}$,则

$$(x - x^{(0)})^{\mathsf{T}} \nabla \Phi(x^{(0)}) = ||x - x^{(0)}|| \cdot p^{\mathsf{T}} \nabla \Phi(x^{(0)}).$$

4-4-1 最速下降法

根据多元函数的 Taylor 展开公式, 我们有

$$\Phi(x) = \Phi(x^{(0)}) + (x - x^{(0)})^{\mathsf{T}} \nabla \Phi(x^{(0)}) + o(\|x - x^{(0)}\|).$$

记 p 为 $x - x^{(0)}$ 所在的方向,即 $p = \frac{x - x^{(0)}}{\|x - x^{(0)}\|}$,则

$$(x - x^{(0)})^{\mathsf{T}} \nabla \Phi(x^{(0)}) = ||x - x^{(0)}|| \cdot p^{\mathsf{T}} \nabla \Phi(x^{(0)}).$$

岁 因此, 只要满足 $p^{\mathsf{T}} \nabla \Phi(x^{(0)}) < 0$, 则 p 就是 下降方向.

最速下降法

最速下降方向与最速下降法

下降速度最快的方向 $\to p^\mathsf{T} \nabla \Phi(x^{(0)})$ 最小.

学 由 Cauchy-Schwarz 不等式可知

$$|p^{\mathsf{T}} \nabla \Phi(x^{(0)})| \le ||p|| \cdot ||\nabla \Phi(x^{(0)})||,$$

等号当且仅当 p 与 $\nabla\Phi(x^{(0)})$ 共线时成立.

因此当
$$p = -\frac{\nabla \Phi(x^{(0)})}{\|\nabla \Phi(x^{(0)})\|}$$
 时, $p^\mathsf{T} \nabla \Phi(x^{(0)})$ 达到最小.

我们称该下降方向为最速下降方向,相应的线搜索方法为最速下降法.

由于最速下降方向就是 $\Phi(x)$ 在当前迭代点处的负梯度方向, 因此也称为负梯度方向法.

最速下降法的迭代格式

* 最速下降法的一般格式可表示为

$$x^{(k)} = x^{(k-1)} + \alpha_k p_k, \quad k = 1, 2, \dots,$$

其中
$$p_k = -\nabla \Phi(x^{(k-1)}) = b - Ax^{(k-1)} = r_{k-1}, \quad \alpha_k = \frac{p_k^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k} = \frac{r_{k-1}^\mathsf{T} r_{k-1}}{r_{k-1}^\mathsf{T} A r_{k-1}}$$

最速下降法的迭代格式

*最速下降法的一般格式可表示为

$$x^{(k)} = x^{(k-1)} + \alpha_k p_k, \quad k = 1, 2, \dots,$$

其中
$$p_k = -\nabla \Phi(x^{(k-1)}) = b - Ax^{(k-1)} = r_{k-1}, \quad \alpha_k = \frac{p_k^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k} = \frac{r_{k-1}^\mathsf{T} r_{k-1}}{r_{k-1}^\mathsf{T} A r_{k-1}}$$

实际计算时, 我们无需对下降方向 pk 进行单位化

最速下降法

算法 最速下降法 (Steepest Descent Algorithm)

- 1: 给定初值 $x^{(0)}$, 令 k=1
- 2: while not converge do
- 3: 计算负梯度方向 (残量) $r_{k-1} = b Ax^{(k-1)}$ 和步长 $\alpha_k = (r_{k-1}^\mathsf{T} r_{k-1})/(r_{k-1}^\mathsf{T} A r_{k-1})$
- 4: 计算 $x^{(k)} = x^{(k-1)} + \alpha_k p_k$, 其中 $p_k = r_{k-1}$
- 5: $\diamondsuit k = k + 1$
- 6: end while

最速下降法的收敛性

定理 4.14 设 $A \in \mathbb{R}^{n \times n}$ 对称正定,则对任意初值 $x^{(0)}$,最速下降法都收敛,且

$$\frac{\left\|x^{(k+1)} - x_*\right\|_A}{\left\|x^{(k)} - x_*\right\|_A} \le \frac{\kappa - 1}{\kappa + 1},$$

其中 κ 为 A 的谱条件数, 范数 $||x||_A \triangleq \sqrt{x^T A x}$.

(留作课外自习, 可以参见矩阵计算或最优化方法的相关教材)

最速下降法举例

例 4.8 用最速下降法求解 Ax = b, 其中 $A = \begin{bmatrix} 15 & 2 \\ 2 & 15 \end{bmatrix}$, $b = \begin{bmatrix} 17 \\ 17 \end{bmatrix}$, 初值 $x^{(0)} = \begin{bmatrix} -0.5 \\ 0 \end{bmatrix}$.

k	x	relres
1	[0.94896898, 1.06454864]	3.54e-02
2	[0.99757851, 0.99838567]	1.61e-03
3	[0.99991762, 1.00010420]	5.71 e-05
4	[0.99999609, 0.99999739]	2.61e-06
5	[0.99999987, 1.00000017]	9.21 e-08

"relres" 表示相对残量

relres =
$$\frac{\|b - Ax^{(k)}\|_2}{\|b - Ax^{(0)}\|_2}$$

(Iter_steepest_descent_01.m)

最速下降法的局部最优性

*中由步长的选取方法可知,最速下降法的迭代解具有下面的最优性

$$x^{(k)} = \operatorname*{argmin}_{x \in x^{(k-1)} + \operatorname{span}\{p_k\}} \Phi(x)$$

最速下降法的局部最优性

*山步长的选取方法可知,最速下降法的迭代解具有下面的最优性

$$x^{(k)} = \underset{x \in x^{(k-1)} + \operatorname{span}\{p_k\}}{\operatorname{argmin}} \Phi(x)$$

由于舍弃了 Taylor 展开式中的高阶项, 因此最速下降方向是局部最优的

4-4-2 | 共轭梯度法

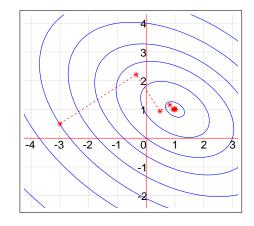
最速下降法的不足

最速下降法每次选取下降方向时只考虑局部最优, 无法保证下降方向 p_1, p_2, \ldots 线性无关, 这意味着迭代过程可能会出现 "之"字型, 即同一个下降方向可能会多次出现, 这就会导致收敛速度变得非常缓慢.

最速下降法的不足

例 4.9 用最速下降法求解
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, 初值 $x^{(0)} = \begin{bmatrix} -3 \\ 0.5 \end{bmatrix}$.

\overline{k}	x	relres
1	[-0.3498, 2.2148]	2.70e-01
2	[0.4784, 0.9348]	1.30 e - 01
3	[0.8240, 1.1584]	3.52 e-02
4	$\left[0.9320, 0.9915\right]$	1.70 e-02
÷	÷	÷
14	[1.0000, 1.0000]	6.41e-07



(Iter_steepest_descent_02.m)

A-共轭

为了改善最速下降法的收敛性质, 需要对下降方向进行改进, 由此, 共轭方向法应运而生.

定义 4.7 设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 若非零向量 $x, y \in \mathbb{R}^n$ 满足

$$y^{\mathsf{T}}Ax = 0,$$

则称 x 和 y 是 A-共轭的, 也称 A-正交的.

为什么 A-共轭

为什么选取 A-共轭的向量作为下降方向

设 p_1, p_2, \ldots, p_n 相互 A-共轭, 则 p_1, p_2, \ldots, p_n 线性无关, 因此构成 \mathbb{R}^n 的一组基. 对任意给定的初值 $x^{(0)}$, 我们可以设

$$x_* - x^{(0)} = \alpha_1 p_1 + \alpha_2 p_2 + \dots + \alpha_n p_n. \tag{4.1}$$

两边分别左乘 $p_k^{\mathsf{T}}A$, 可得

$$\alpha_k = \frac{p_k^{\mathsf{T}} A (x_* - x^{(0)})}{p_k^{\mathsf{T}} A p_k} = \frac{p_k^{\mathsf{T}} (b - A x^{(0)})}{p_k^{\mathsf{T}} A p_k}, \quad k = 1, 2, \dots, n.$$

这意味着可以通过下降方向 p_1, p_2, \ldots, p_n 和右端项 b, 以及 $x^{(0)}$ 将方程组的解表示出来.

为什么 A-共轭

为什么选取 A-共轭的向量作为下降方向

设 p_1, p_2, \ldots, p_n 相互 A-共轭,则 p_1, p_2, \ldots, p_n 线性无关,因此构成 \mathbb{R}^n 的一组基. 对任意给定的初值 $x^{(0)}$, 我们可以设

$$x_* - x^{(0)} = \alpha_1 p_1 + \alpha_2 p_2 + \dots + \alpha_n p_n. \tag{4.1}$$

两边分别左乘 $p_k^\mathsf{T} A$, 可得

$$\alpha_k = \frac{p_k^{\mathsf{T}} A (x_* - x^{(0)})}{p_k^{\mathsf{T}} A p_k} = \frac{p_k^{\mathsf{T}} (b - A x^{(0)})}{p_k^{\mathsf{T}} A p_k}, \quad k = 1, 2, \dots, n.$$

这意味着可以通过下降方向 p_1, p_2, \ldots, p_n 和右端项 b, 以及 $x^{(0)}$ 将方程组的解表示出来.

如果采用一组正交基作为下降方向,也可以得到类似结论,但 α_i 的表达式中包含 x_* .

http://math.ecnu.edu.cn/~jypan

共轭方向法

考虑到算法的实用性, 当 n 很大时, 通常不需计算所有的 α_k , 而只要计算前面部分, 得到一个满足精度要求的近似解即可. 因此, 我们把 $x_* = x^{(0)} + \alpha_1 p_1 + \cdots$ 看作是一个迭代过程:

$$x^{(k)} = x^{(k-1)} + \alpha_k p_k, \quad k = 1, 2, \dots$$

共轭方向法

考虑到算法的实用性, 当 n 很大时, 通常不需计算所有的 α_k , 而只要计算前面部分, 得到一个满足精度要求的近似解即可. 因此, 我们把 $x_* = x^{(0)} + \alpha_1 p_1 + \cdots$ 看作是一个迭代过程:

$$x^{(k)} = x^{(k-1)} + \alpha_k p_k, \quad k = 1, 2, \dots$$

共轭方向法

以相互 A-共轭的向量作为下降方向的线搜索方法就称为 共轭方向法.

共轭方向法

考虑到算法的实用性, 当 n 很大时, 通常不需计算所有的 α_k , 而只要计算前面部分, 得到一个满足精度要求的近似解即可. 因此, 我们把 $x_* = x^{(0)} + \alpha_1 p_1 + \cdots$ 看作是一个迭代过程:

$$x^{(k)} = x^{(k-1)} + \alpha_k p_k, \quad k = 1, 2, \dots$$

共轭方向法

以相互 A-共轭的向量作为下降方向的线搜索方法就称为 共轭方向法.

② 改写 α_k 的计算公式: 由于 $x^{(k-1)} - x^{(0)} = \alpha_1 p_1 + \alpha_2 p_2 + \dots + \alpha_{k-1} p_{k-1}$, 所以 $p_k^\mathsf{T} A(x^{(k-1)} - x^{(0)}) = 0$, 即 $p_k^\mathsf{T} Ax^{(0)} = p_k^\mathsf{T} Ax^{(k-1)}$, 因此

$$\alpha_k = \frac{p_k^\mathsf{T} \big(b - Ax^{(0)}\big)}{p_k^\mathsf{T} A p_k} = \frac{p_k^\mathsf{T} \big(b - Ax^{(k-1)}\big)}{p_k^\mathsf{T} A p_k} = \frac{p_k^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k}.$$

共轭方向法的全局最优性

相比于最速下降法的局部最优性:

$$x^{(k)} = \underset{x \in x^{(k-1)} + \operatorname{span}\{p_k\}}{\operatorname{argmin}} \Phi(x)$$

共轭方向法具有全局最优性.

定理 4.15 设 $x^{(k)}$ 是由共轭方向法得到的迭代解,则

$$x^{(k)} = \operatorname*{argmin}_{x \in x^{(0)} + \operatorname{span}\{p_1, p_2, \dots, p_k\}} \Phi(x).$$

(留作课外自习, 可以参见最优化方法的相关教材)

有限步终止

显然,由(4.1)可知,在不考虑舍入误差的情况下,共轭方向法具有有限步终止性质.

定理 4.16 设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 如果不考虑舍入误差, 则共轭方向法至多经过 n 次迭代后, 近似解 $x^{(k)}$ 就是精确解 x_* .

△ 在共轭方向法中, 虽然我们仍然称 p_k 为下降方向或搜索方向, 但我们不要求 p_k 是单位向量, 即不需要进行单位化, 因为这对算法的构造和实施没有任何影响.

怎么构造共轭搜索方向?

如何构造相互 A-共轭的下降方向

- 首先需要指出的是,这样的向量组并不唯一. 事实上,与 Gram-Schmidt 正交化过程类似,任何一组线性无关的向量组都可以构造 出一组相互 A-共轭的向量组.
- ▶ 目前最成功的是共轭梯度 (Conjugate Gradient) 下降方向. 它是在最速下降方向的基础上,通过递推方法来构造的,可以看作是将最速下降方向 进行 A-共轭化,或者是对最速下降方向的改进.

① 给定 $x^{(0)}$, 取 $\Phi(x)$ 在 $x^{(0)}$ 处的负梯度方向:

$$p_1 = -\nabla \Phi(x^{(0)}) = r_0 = b - Ax^{(0)}$$

① 给定 $x^{(0)}$, 取 $\Phi(x)$ 在 $x^{(0)}$ 处的负梯度方向: $p_1 = -\nabla \Phi(x^{(0)}) = r_0 = b - Ax^{(0)}$

$$p_1 = -\nabla \Phi(x^{(0)}) = r_0 = b - Ax^{(0)}$$

② 以
$$p_1$$
 为下降方向, 计算近似解 $x^{(1)}$: $x^{(1)} = x^{(0)} + \alpha_1 p_1$, 其中 $\alpha_1 = \frac{p_1^\mathsf{T} r_0}{p_1^\mathsf{T} A p_1}$

① 给定 $x^{(0)}$, 取 $\Phi(x)$ 在 $x^{(0)}$ 处的负梯度方向:

$$p_1 = -\nabla \Phi(x^{(0)}) = r_0 = b - Ax^{(0)}$$

② 以
$$p_1$$
 为下降方向, 计算近似解 $x^{(1)}$: $x^{(1)} = x^{(0)} + \alpha_1 p_1$, 其中 $\alpha_1 = \frac{p_1^\mathsf{T} r_0}{p_1^\mathsf{T} A p_1}$

③ 计算 $\Phi(x)$ 在 $x^{(1)}$ 处的负梯度方向: $-\nabla\Phi(x^{(1)}) = r_1 = b - Ax^{(1)} = r_0 - \alpha_1 A p_1$,

将其与
$$p_1$$
 进行 A -共轭化,得到下降方向 p_2 :
$$p_2 = r_1 + \beta_1 p_1, \text{ 其中 } \beta_1 = -\frac{r_1^\mathsf{T} A p_1}{p_1^\mathsf{T} A p_1}$$

① 给定 $x^{(0)}$, 取 $\Phi(x)$ 在 $x^{(0)}$ 处的负梯度方向:

$$p_1 = -\nabla \Phi(x^{(0)}) = r_0 = b - Ax^{(0)}$$

② 以
$$p_1$$
 为下降方向, 计算近似解 $x^{(1)}$: $x^{(1)} = x^{(0)} + \alpha_1 p_1$, 其中 $\alpha_1 = \frac{p_1^\mathsf{T} r_0}{p_1^\mathsf{T} A p_1}$

3 计算 $\Phi(x)$ 在 $x^{(1)}$ 处的负梯度方向: $-\nabla\Phi(x^{(1)}) = r_1 = b - Ax^{(1)} = r_0 - \alpha_1 A p_1$,

将其与
$$p_1$$
 进行 A -共轭化,得到下降方向 p_2 :
$$p_2 = r_1 + \beta_1 p_1, \text{ 其中 } \beta_1 = -\frac{r_1^\mathsf{T} A p_1}{p_1^\mathsf{T} A p_1}$$

▶ 以此类推, 我们就可以得到相互 A-共轭的下降方向 $p_1, p_2, \ldots, p_k, \ldots$ 该过程同时也把近似解 $x^{(k)}$ 和残量 r_k 计算出来了.

怎么简化计算量?

管 在计算 p_{k+1} 时, 需要将 r_k 与所有 p_1, p_2, \ldots, p_k 进行 A-共轭化, 计算成本很大.

怎么简化计算量?

在计算 p_{k+1} 时, 需要将 r_k 与所有 p_1, p_2, \ldots, p_k 进行 A-共轭化, 计算成本很大.

事实上, 由于 A 对称正定, 我们只需将 r_k 与 p_k 进行 A-共轭化即可, 即

$$p_{k+1} = r_k + \beta_k p_k$$
, 其中 $\beta_k = -\frac{r_k^1 A p_k}{p_k^T A p_k}$.

这样不仅可以简化计算, 同时可以证明 p_{k+1} 与 $p_1, p_2, \ldots, p_{k-1}$ 都 A-共轭.

共轭搜索方向的性质

定理 4.17 设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 共轭梯度法迭代 m 步后 (m < n), 对任意 k $(k \le m)$ 有

- (1) $r_k^\mathsf{T} r_i = 0$, $i = 0, 1, 2, \dots, k-1$;
- (2) $r_k^{\mathsf{T}} p_i = 0, \quad i = 1, 2, \dots, k;$
- (3) $p_{k+1}^{\mathsf{T}} A p_i = 0, \quad i = 1, 2, \dots, k;$
- (4) $\operatorname{span}\{r_0, r_1, \dots, r_k\} = \operatorname{span}\{p_1, p_2, \dots, p_{k+1}\} = \operatorname{span}\{r_0, Ar_0, \dots, A^k r_0\}.$

(留作课外自习, 可以参见矩阵计算或最优化方法的相关教材)

共轭梯度法迭代格式

于是共轭梯度法可描述为

$$\begin{cases} x^{(k)} = x^{(k-1)} + \alpha_k p_k, & \text{ \sharp $\rlap{$\psi$}$} \quad \alpha_k = \frac{p_k^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k}, \\ \\ r_k = b - A x^{(k)} = r_{k-1} - \alpha_k A p_k, \\ \\ p_{k+1} = r_k + \beta_k p_k, & \text{ \sharp $\rlap{$\psi$}$} \quad \beta_k = -\frac{r_k^\mathsf{T} A p_k}{p_k^\mathsf{T} A p_k}, \end{cases} \qquad k = 1, 2, \dots,$$

$$k=1,2,\ldots$$

共轭梯度法迭代格式

于是共轭梯度法可描述为

$$\begin{cases} x^{(k)} = x^{(k-1)} + \alpha_k p_k, & \text{ \sharp $\rlap{$!$}$ } & \alpha_k = \frac{p_k^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k}, \\ \\ r_k = b - A x^{(k)} = r_{k-1} - \alpha_k A p_k, \\ \\ p_{k+1} = r_k + \beta_k p_k, & \text{ \sharp } & \beta_k = -\frac{r_k^\mathsf{T} A p_k}{p_k^\mathsf{T} A p_k}, \end{cases} \qquad k = 1, 2, \dots,$$

$$k=1,2,\ldots,$$

 \checkmark 进一步简化计算: 利用 r_k 的正交性和 p_k 的 A-共轭性, 可得

推论 4.18 共轭梯度法中的 α_k 和 β_k 可以通过下面的公式计算

$$\alpha_k = \frac{r_{k-1}^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k}, \quad \beta_k = \frac{r_k^\mathsf{T} r_k}{r_{k-1}^\mathsf{T} r_{k-1}}.$$

共轭梯度法的算法描述

算法 共轭梯度法 (Conjugate Gradient Algorithm)

- 1: 给定初值 x⁽⁰⁾
- 2: 计算 $r_0 = b Ax^{(0)}$, 并令 $p_1 = r_0$, k = 1
- 3: while not converge do

4: 计算
$$x^{(k)} = x^{(k-1)} + \alpha_k p_k$$
, 其中 $\alpha_k = \frac{r_{k-1}^\mathsf{T} r_{k-1}}{p_k^\mathsf{T} A p_k}$

- 5: 计算 $r_k = r_{k-1} \alpha_k A p_k$
- 6: 计算 $p_{k+1} = r_k + \beta_k p_k$, 其中 $\beta_k = \frac{r_k^{\mathsf{I}} r_k}{r_{k-1}^{\mathsf{T}} r_{k-1}}$
- 7: end while

共轭梯度法的收敛性

定理 4.19 设 $A \in \mathbb{R}^{n \times n}$ 对称正定,则对任意初值 $x^{(0)}$,共轭梯度法都收敛,且

$$\frac{\left\|x^{(k)} - x_*\right\|_A}{\left\|x^{(0)} - x_*\right\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k,$$

其中 κ 为 A 的谱条件数, 范数 $||x||_A \triangleq \sqrt{x^T A x}$.

(留作课外自习, 可以参见矩阵计算的相关教材)

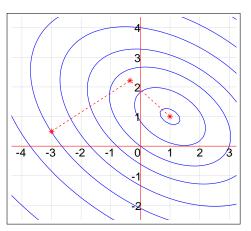
 $^{\bullet}$ 由此可知, 共轭梯度法每次迭代的误差下降率为 $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$.

共轭梯度法举例(一)

例 4.10 用共轭梯度法求解 Ax = b, 其中 $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, 初值 $x^{(0)} = \begin{bmatrix} -3 \\ 0.5 \end{bmatrix}$.

relres	x	k
2148] 2.70e-01	[-0.3498, 2.2148]	1
[0000] 4.39e-17	[1.0000, 1.0000]	2
4.39	[1.0000, 1.0000]	2

(Iter_CG_01.m)



共轭梯度法举例(二)

