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What is Numerical Analysis?

• Webster’s New Collegiate Dictionary (1973):
”The study of quantitative approximations to
the solutions of mathematical problems including
consideration of the errors and bounds to the errors
involved.”

• The American Heritage Dictionary (1992):
”The study of approximate solutions to
mathematical problems, taking into account the
extent of possible errors.”
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Numerical Linear Algebra

Numerical Linear Algebra (NLA) is a small but active
area of research: a couple of hundred active, committed
persons. But the community involves many scientists.
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How It All Started

Numerical analysis motivated the development of the
earliest computers.

• Ballistics

• Solution of PDE’s

• Data Analysis

Early pioneers included:

J. von Neumann
A. M. Turing

In the beginning...

von Neumann & Goldstine (1947):
“Numerical Inversion of Matrices of High Order”
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Top Ten Algorithms in Science

(Dongarra and Sullivan, 2000)

1. Metropolis Algorithm (Monte Carlo method)
2. Simplex Method for Linear Programming
3. Krylov Subspace Iteration Methods
4. The Decompositional Approach to

Matrix Computations
5. The Fortran Optimizing Compiler
6. QR Algorithm for Computing Eigenvalues
7. Quicksort Algorithm for Sorting
8. Fast Fourier Transform
9. Integer Relation Detection Algorithm

10. Fast Multipole Method

• Red: Algorithms within the exclusive domain of
NLA research.

• Blue: Algorithms strongly (though not exclusively)
connected to NLA research.
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Three important components in solving

NLA problems

• Development and analysis of numerical algorithms

• Perturbation theory

• Software
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A Fundamental Problem

Problem: Suppose

Ax = b + r,

where A is an m×n matrix, and b is a given vector.

Goal: Determine r such that

‖r‖ = min .
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Important Parameters

• The relationship between m and n:

– overdetermined vs. ‘square’ vs. underdetermined
– Uniqueness of solution

• The rank of the matrix A (difficult to handle if a
small perturbation in A will change rank)

• Choice of norm

• Structure of A:

– Sparsity
– Specialized matrices such as Hankel or Toeplitz

• Origin of problem: ideally, can make use of this
in developing an algorithm.
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Some Perturbation Theory

Given
Ax = b,

and the perturbed system

(A + ∆A)y = b + δ,

it can be shown that if

‖∆A‖

‖A‖
≤ ε,

‖delta‖

‖b‖
≤ ε,

then
‖x − y‖

‖x‖
≤

2ε

1 − ρ
· κ(A),

where

ρ = ‖∆A‖ · ‖A−1‖ = ‖∆A‖ · κ(A)/‖A‖ < 1,

and
κ(A) = ‖A‖ · ‖A−1‖.
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The Condition Number

The quantity

κ(A) = ‖A‖ · ‖A−1‖

is called the condition number of A (or the condition
number of the linear system).

Note:

• even if ε is small, a large κ can be destructive

• a special relationship between A and b may
further determine the conditioning of the problem

A detailed theory of condition numbers:
John Rice, 1966.
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Stability and Well-Posedness:

Algorithm vs. Problem

• Fundamentally important to distinguish between
the conditioning of the problem and the stability
of the algorithm.

• Even if an algorithm is stable, not all problems
can be solved using it.

• Making the problem well-posed → responsibility
of modeller.
Making the algorithm stable → responsibility of
numerical analyst.

• A good algorithm is one for which a small change
in the input of a well-posed problem causes a small
change in the output.
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Solving Linear Systems

1. Gaussian Elimination/ the Cholesky decomposition

2. Iterative solution
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A Little Bit About Gaussian Elimination

Not off to a good start...:
The famous statistician Hotelling derived bounds so
pessimistic that he recommended not to use it for
large problems.

But there’s a happy end:

• Goldstine and von Neumann’s analysis of the
Cholesky method for fixed point arithmetic.

• Wilkinson’s complete round-off error analysis of
Gaussian Elimination in 1961.

Those developments were turning points for GE
and it has become one of the most commonly used
algorithms.
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Round-Off Errors: Quiet but Deadly

Round-off errors are quietly accumulated in every
computation, and should not be overlooked!

There is an error inherent in any computer’s most
basic arithmetic operations:

fl(x + y) = x(1 + ε) + y(1 + ε) = x̄ + ȳ.

Gaussian Elimination with pivoting is equivalent to
performing the decomposition

ΠA = L · U.

Π is a permutation matrix, L and U are lower and
upper triangular. This algorithm guarantees that

max
i≥j

|ℓi,j| = 1

and
max
j≥i

|ui,j| ≤ 2n−1.
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Wilkinson’s Backward Error Analysis

By Wilkinson, GE with pivoting is equivalent to
solving

(A + E)y = b,

where
‖E‖∞ ≤ 8n3G‖A‖∞u + O(u2)

and
|ui,j| ≤ G.

u is the machine roundoff unit.

Backward Error Analysis: shows how the original
data matrix has been perturbed in the presence of
round-off errors.

Importance: the error can be bounded.
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The Simplex Algorithm

Wilkinson’s work enabled development of algorithms
for many classes of problems.

Consider Linear Programing problem: Given

Ax = b

where A is m × n, with m < n, determine x such
that x ≥ 0 and cTx = min.

Basic algorithm (due to Dantzig): the basis
A(k) = [ai1, ai2, . . . , ain] is replaced by

A(k+1) = [ai1, . . . , aip−1, aiq, aip+1, . . . , ain],

so that A(k+1) differs from A(k) by one column.

The approximants x(k) and x(k+1) satisfy

A(k)x(k) = b; A(k+1)x(k+1) = b.
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Simplex (cont.)

Given Π(k)A(k) = L(k)U (k), we seek a method for
computing

Π(k+1)A(k+1) = L(k+1)U (k+1),

within O(m2) operations.

Bartels & G. :
A stable algorithm for applying the method.

Classical algorithm is based on Gauss-Jordan
elimination, which is stable for limited classes of
matrices. Here we encounter the classical problem
of sparsity vs. stability.
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Linear Algebra and Optimization

NLA plays an important role in optimization:

• Strong connection between a formulation of a
linear system, and a minimization formulation.
(Example: CG, which we will talk about soon.)

• Even in nonlinear optimization, the majority of
computing time is spent on solving the linear
systems involved!
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Example: Quadratic Programming

Equality-constrained quadratic programs:

Minimize 1
2x

TAx − xT c subject to Bx = d.

Lagrange Multipliers formulation: define

φ(x, y) =
1

2
xTAx − xT c + λT (Bx − d)

and compute its stationary points:

∇φ = 0.

Ku =

(

A BT

B 0

) (

x
λ

)

=

(

c
d

)
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Updating and Downdating

Shows up in a variety of applications. Examples:

• Data fitting

• Kalman filters

• Signal processing
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Least Squares

Determine x such that

‖b − Ax‖2 = min .

Popular method: The QR factorization.
(Better than forming the Normal Equations!)

How to generate an orthogonal matrix Q? — Use
the modified Gram-Schmidt method, Householder
Transformations or Givens Rotations.

Frequently a row or a column of A are added or
deleted: important and delicate theory.
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The Singular Value Decomposition

(SVD)

Let A be an m × n matrix. The singular value
decomposition is

A = UΣV T ,

where
UTU = Im; V TV = In;

and

Σ =





















σ1 0 · · · 0
0 σ2

. . . ...
... 0 . . . 0
... . . . σn
... 0
... ...
0 0





















.
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SVD (cont.)

• The singular values are typically ordered
monotonically:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

• The non-zero singular values of A are the square
roots of the non-zero eigenvalues of ATA:

σi(A) =
(

λi(A
TA)

)1/2
.
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The SVD is very useful in many

important applications

In addition to its enormous importance in NLA
algorithms, the SVD is useful in areas of applications
of importance to the whole scientific community, and
has influenced many people’s lives!

• Vision and motion analysis

• Signal processing

• Search engines and data mining
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Examples of Use of the SVD

1. Truncated SVD as an optimal low rank
approximation

2. The least squares problem

3. Determining the rank of a matrix
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Example: low rank approximation

Let A be an m×n matrix of rank r. The matrix Ak

such that
‖A − Ak‖2 = min

is simply the matrix given by

Ak = UΣkV
T ,

where

Σ =

























σ1 0 · · · · · · 0
0 . . . . . . . . . ...
... . . . σk

. . . ...
... . . . . . . . . . 0
... . . . . . . 0
... . . . 0
... . . . ...
0 0

























.
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Computing the SVD

Many ways...
A popular method (G. & Kahan, 1965):
Bi-diagonalization.

Find X such that XTX = Im ; Y such that Y TY =
In and

B =

















α1 β1 · · · 0
0 . . . . . . ...
... . . . . . . 0
... . . . 0
... βn−1
... αn

















,

such that
XTAY = (B 0)T .

By using a variant of the QR method, the matrix B
is diagonalized.
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Cyclic Reduction

Consider the system

(

I F
FT I

)(

u
v

)

=

(

g
h

)

.

The matrix of the system is said to have Property A.

Easy to eliminate u:

(I − FTF )v = h − FTg.

The matrix I−FTF can be reordered in some cases,
to have the same structure as above: can repeat this
procedure again and again, eliminating half of the
remaining unknowns at each step.

Resulting algorithm similar in a sense to FFT —
O(N2 log N) operations to solve the system.
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Example: Poisson’s equation (1D)

Consider the ordinary differential equation on [0,1]:

−u′′(x) = f(x) ,

u(0) = a, u(1) = b.

Discretizing using centered schemes on a uniform
mesh, the matrix associated with the linear system
is:

A =

















2 −1
−1 2 −1
. . . . . . . . . . . .

. . . . . . . . . . . .
−1 2 −1

−1 2

















.
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red/black re-ordering

R B R

4

B R B R B

1 5 2 6 3 7 8

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 94

After scaling by 1/2, the linear system can be written
as:

(

I F
FT I

)(

u(r)

u(b)

)

=

(

s(r)

s(b)

)

.

And now, do it again...
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Iterative Methods

For large sparse linear systems, Gaussian Elimination
may not be a good algorithm, due to the fill-in.

Iterative methods are based on computing a
sequence of approximations x(k), starting with an
initial guess x(0), and ideally converging ‘sufficiently
close’ to the solution after a ‘reasonable’ number of
iterations.
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Iterative Solution

Consider the linear system Ax = b. The splitting

A = M − N ; Mx = Nx + b

leads to the ‘fundamental’ iterative scheme:

(∗) Mx
k+1 = Nx

k + b.

Define the error and the iteration matrix:

e
k = x − x

k; K = M
−1

N.

We obtain e
k → 0 as k → ∞, if ρ(K) < 1.

We assume it is “easy” to solve (∗), which is
equivalent to

(∗∗)

{

Mz
k = r

k ≡ b− Ax
k ≡ Ae

k

x
k+1 = x

k + z
k .
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Examples of Splittings

1. Domain Decomposition:

I

 II

A =









A1 B1
. . . ...

Ar Br

BT
1 . . . BT

r Q









M =

0

B

B

B

@

A1
. . .

Ar
Q

1

C

C

C

A

, N = −

0

B

B

B

@

B1
...

Br

BT
1 . . . BT

r 0

1

C

C

C

A
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Examples of Splittings (cont.)

2. Non-symmetric problems:

A =
A + AT

2
+

A − AT

2
= M − N

Concus & G.: The Conjugate gradient and
Chebyshev methods will converge, provided that for
any real vector u we have

u
TMu > 0.
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The (over 50 years old!) Conjugate

Gradient

The celebrated Conjugate Gradient algorithm
(Hestenes & Stiefel [1952]) is an optimal approximation
in the following sense: At the nth iteration,

x(n) − x(0) ∈ Kn(A)

= span{r(0), Ar(0), A2r(0), · · · , An−1r(0)}

such that

‖x − x(n)‖A = ‖b − Ax(n)‖A−1 = ‖r(n)‖A−1

= min
u∈Kn(A)

‖x − u‖A

The idea is based on picking directions p(k) such that

p(i)T Ap(j) = 0 for i 6= j.
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CG (cont.)

The iterations are computed by

x(k+1) = x(k) + αkp
(k).

The residual satisfies

r(k+1) = r(k) − αkAp(k).

The CG method is optimal in that the error is
minimized over the Krylov subspace in the energy
norm ‖e‖A ≡ eTAe. The sequence of errors satisfies

‖en‖A ≤ ‖en−1‖A.

The beauty of the method is that p(k) can be
chosen so that the iterate x(k+1) really minimizes
the error over the whole Krylov subspace, not only
over span(x(k), p(k)).
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CG as an Optimization Algorithm

The p(k) can be thought of as search directions in a
nonlinear optimization problem!

The problem is:

minimize φ(x) = 1
2x

TAx − xT b

Equating the gradient of φ to zero takes us
(obviously) to the beloved combination of characters

Ax = b.

The direction p(k) and the step length αk can be
determined mathematically by the formulation of
the problem.
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Software

A large number of software packages are available,
and their quality gets better and better.

Where should you start your journey? —
An invaluable source is Netlib, a numerical software
distribution system.

• LAPACK

• MATLAB

• PETSc

• Trilinos

and many more...
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Hot Areas of Research

• Model reduction problems

• Polynomial eigenvalue problems

• PDE solvers in 3D

• Parallel processing

What goes around comes around...:
In some cases old methods that have been ‘dead’ for
a long time have been resurrected, since they are
good for parallel environments. (Simple example:
the Jacobi algorithm in parallel environments; Power
method used by Google.
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Future

Scientific Computing is driven by technology:

1. New devices and environments.

2. New problems that will require new techniques.
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Personalities
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The wonderful people who were the ’founding
fathers’ of the field:

1. J. H. Wilkinson

2. A. S. Householder

3. G. E. Forsythe

4. H. Rutishauser

and many others...
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Stanford 50
The Past

Faculty Visitors
G. Forsythe G. Dalquist
G. H. Golub P. Henrici
G. Dantzig A. S. Householder
J. Oliger J. H. Wilkinson
R. Schreiber
A. Stuart
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Stanford 50

• Over 80 Ph.D. students

3 members National Academy of Science
5 members National Academy of Engineering
1 member London Royal Society
Many members Foreign honorary societies

(Canada, Australia)

• SIAM

Three Presidents and over 50% of the board of
trustees in 2006

• Past Developments

Fast Poisson Solvers
SVD
Mathworks
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