
1

矩阵向量乘积并行算法

潘建瑜

华东师范大学

（基于 OpenMP / 共享内存）

迭代法  预处理  高性能计算

http://math.ecnu.edu.cn/~jypan

目录页

Contents

1

2

矩阵向量乘积串行算法

矩阵向量乘积并行算法

—— 自动并行

华东师范大学 数学科学学院
School of Mathematical Sciences, ECNU

—— 手工并行：按行划分数据、按列划分数据

—— 两种不同计算顺序

http://math.ecnu.edu.cn/~jypan

串行算法

1 矩阵向量乘积串行算法

—— 两种不同计算顺序

y Ax= (), m n nA x×∈ ∈ 

for i=1 to m // i-j 循环，行存储友好

for j=1 to n
y(i)=y(i)+A(i,j)*x(j)

end for
end for

for j=1 to n // j-i 循环，列存储友好

for i=1 to m
y(i)=y(i)+A(i,j)*x(j)

end for
end for

http://math.ecnu.edu.cn/~jypan

并行算法
—— 自动并行：循环结构共享

2 矩阵向量乘积 OMP 并行算法

自动并行：for 循环结构共享

double A[m][n], x[n], y[m];
... ...

#pragma omp parallel for shared(A,x,y2) private(j)
for(i = 0; i < m; i++)
{

y2[i] = 0.0;
for(j = 0; j < n; j++)

y2[i] += A[i][j] * x[j];
}

OMP_MatVec_for.c

http://math.ecnu.edu.cn/~jypan

并行算法
—— 手工并行：按 行 划分数据

2 矩阵向量乘积 OMP 并行算法

手工划分：按 行 划分数据

每个线程计算 Ai x 。

0 0

1 1

1 1p p

A A x
A A x

Ax x

A A x− −

   
   
   = =
   
   
      

 

注：划分时需考虑负载平衡和缓存行对齐。

手工划分：按 行 划分数据

#pragma omp parallel shared(A,x,y2) private(i,j,tid,nthreads)
{

tid = omp_get_thread_num();
nthreads = omp_get_num_threads();
for(i=tid; i<m; i+=nthreads)
{

y2[i] = 0.0;
for(j=0; j<n; j++)

y2[i] += A[i][j] * x[j];
}

}
OMP_MatVec_row.c

注：这里用的是卷帘方式划分数据，建议用分块方式。

http://math.ecnu.edu.cn/~jypan

并行算法
—— 手工并行：按 列 划分数据

2 矩阵向量乘积 OMP 并行算法

手工划分：按 列 划分数据

将矩阵 A 按列划分，并对 x 也做相应的划分，即

0

1
0 1 1 0 0 1 1 1 1

1

, , , q p p

p

x
x

Ax A A A A x A x A x

x

− − −

−

 
 
  = = + + +   
 
  

 



每个线程计算 Ai xi ，然后求和。

12

矩阵矩阵乘积并行算法

迭代法  预处理  高性能计算

（基于 OpenMP / 共享内存）

http://math.ecnu.edu.cn/~jypan

目录页

Contents

1

2

矩阵乘积串行算法

矩阵乘积并行算法

—— 自动并行

华东师范大学 数学科学学院
School of Mathematical Sciences, ECNU

—— 手工并行：按行、按列、二维

—— 六种不同计算顺序

http://math.ecnu.edu.cn/~jypan

串行算法

1 矩阵乘积串行算法

—— 六种不同计算顺序

C AB=

=

𝑚𝑚 × 𝑛𝑛 𝑚𝑚 × 𝑙𝑙

𝑙𝑙 × 𝑛𝑛
𝐶𝐶 𝐴𝐴

𝐵𝐵

六种不同顺序的循环：
IKJ、KIJ、IJK、JIK、KJI、JKI，

详见课程主页“矩阵乘积的快速算法”

for(i=0; i<M; i++) // IJK
for(j=0; j<N; j++)
for(k=0; k<L; k++)
C[i][j]=C[i][j] + A[i][k]*B[k][j];

http://math.ecnu.edu.cn/~jypan

并行算法

2 矩阵乘积 OMP 并行算法

—— 自动并行：循环结构共享

自动并行：for 循环结构共享

#pragma omp parallel for shared(A,B,C)
for(i=0; i<M; i++)

for(j=0; j<N; j++)
{

C[i][j]=0;
for(k=0; k<L; k++)

C[i][j]=C[i][j] + A[i][k]*B[k][j];
}

OMP_matmul_for.c

http://math.ecnu.edu.cn/~jypan

并行算法
—— 手工并行：行、列、二维

2 矩阵乘积 OMP 并行算法

手工并行：数据（任务）划分

假定：M, L, N 均能能 p 整除，其中 p 为线程个数。（行和列的块数可以不一样）

任务分配：由用户分配计算任务
（即每个线程负责计算 C 的哪些部分）

C：按行分块、按列分块、二维分块

手工并行

手工并行：按 行 分配任务

0

1

1p

A
A

A

A −

 
 
 =
 
 
  



0

1

1p

A B
A B

C AB

A B−

 
 
 = =
 
 
  



记

 第 i 号线程负责计算 Ci ，其中 Ci = AiB

按行分配任务

按 行 分配任务举例

例：按行分配任务，并行计算矩阵乘积，其中

1,
1

n n
ij ijA a a

i j
× = ∈ =  + −



, 1n n
ij ijB b b i j× = ∈ = + − 



OMP_MatMul_rc.c（取 n=1024, p=4）

手工并行：按 列 分配任务

 第 i 号线程负责计算 Ci ，其中 Ci = ABi

按列分配任务

0 1 1, , , pC AB AB AB − =  

0 1 1, , , pB B B B − =  

手工并行：二维 划分任务

0 1 1, , , qB B B B − =  

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

q

q

p p p q

A B A B A B

A B A B A B
C

A B A B A B

−

−

− − − −

 
 
 =  
 
  





   



0

1

1

,

p

A
A

A

A −

 
 
 =
 
 
  



 线程总数为 nthreads = p×q，其中 p 和 q 为两个正整数

 第 (i, j) 号线程负责计算 Cij ，其中 Cij = AiBj

二维方式（行列）分配任务

24

矩阵向量乘积并行算法
（基于 MPI / 分布式并行计算）

迭代法  预处理  高性能计算

http://math.ecnu.edu.cn/~jypan

并行算法

注：Pi 表示第 i 个处理器或第 i 个进程

矩阵向量乘积 MPI 并行算法

—— 按 行 划分数据

并行算法：按行划分

将矩阵 A 按行划分成行块子矩阵

0 0

1 1

1 1p p

A A x
A A x

Ax x

A A x− −

   
   
   = =
   
   
      

 

 矩阵：按行划分，存储在各个处理器中

 向量 𝒙𝒙：每个处理器都存储 𝒙𝒙

 向量 𝒚𝒚：每个处理器计算一部分，在 0 号

进程中合并，并广播给其他进程

数据存储方案

 将 Ai 存放在处理器 Pi 中，每个处理器计算 Ai x

 最后调用 MPI_Gather 或 MPI_Gatherv 即可

举例

例：按 行 划分，用 p 个进程并行计算矩阵向量乘积，其中

, n n
ijA a × = ∈ 


1 ,

1ija
i j

=
+ −

[1, 2, ,] T nx n= ∈



取 n=1024, p=4, 矩阵划分：按顺序连续划分，即：

0 号进程存储 A[0:255, :]，

1 号进程存储 A[256:511, :]，依次类推。

MPI_matvec.c MPI_matvec_v.c

思考：x 也分块存储在不同处理器中

数据存储方案：矩阵 A 按行分块，x 也做相应的分块

0

1

1p

A
A

Ax x

A −

 
 
 =
 
 
  



 A 保持不变，𝒙𝒙 在各个处理器中轮转（向上）

计算方案

0,0 0,1 0, 1 0

1,0 1,1 1, 1 1

11,0 1,1 1, 1

p

p

pp p p p

A A A x
A A A x

xA A A

−

−

−− − − −

   
   
   =    
   
     









处理器 P0

处理器 P1

处理器 Pp-1

http://math.ecnu.edu.cn/~jypan

并行算法

注：Pi 表示第 i 个处理器或第 i 个进程

矩阵向量乘积 MPI 并行算法

—— 按 列 划分数据

并行算法：按列划分

将矩阵 A 按列划分，并对 x 也做相应的划分

0

1
0 1 1 0 0 1 1 1 1

1

, , , q p p

p

x
x

Ax A A A A x A x A x

x

− − −

−

 
 
  = = + + +   
 
  

 



 将 Ai 和 xi 存放在 Pi 中，每个处理器计算 Ai xi

 最后调用 MPI_Reduce 或 MPI_Allreduce 即可。

31

矩阵矩阵乘积并行算法
（基于 MPI / 分布式并行计算）

迭代法  预处理  高性能计算

http://math.ecnu.edu.cn/~jypan

目录页

Contents

矩阵乘积 MPI 并行算法

—— 行列划分、行行划分、列列划分、列行划分

华东师范大学 数学科学学院
School of Mathematical Sciences, ECNU

—— Cannon 算法、Fox 算法

一些记号和设定

 假设有 p 个处理器/进程/结点，每个结点运行一个进程

 Pj 表示第 j 个结点，Pmyid 表示当前结点或进程

 send(x; j) 表示在 Pmyid 中把数据 x 发送给 Pj

 recv(x; j) 表示 Pmyid 从 Pj 接收数据块 x

 i mod p 表示 i 对 p 做模运算

并行算法 C A B= ×

由用户分配 数据 与 计算任务

对 A、B 进行分块

行列划分、行行划分、列列划分、列行划分

† 为了描述方便，假定 m, l, n 均能能 p 整除，其中 p 为 进程 个数。

并行计算

http://math.ecnu.edu.cn/~jypan

并行算法

矩阵向量乘积 MPI 并行算法

—— 行列 划分

并行算法：行列划分

行列划分
0 0 0 1 0 10

1 1 0 1 1 1 1
0 1 1

1 1 0 1 1 1 1

p

p
p ij

p p p p p

A B A B A BA
A A B A B A B

AB B B B C

A A B A B A B

−

−
−

− − − − −

  
  
      = = =     
  
     





  

 存储方案：Ai, Bi 和 Cij (j = 0, 1, ..., p-1) 存放在第 i 个处理器中，按循环方式交换数据 Bi

 Pi 负责计算 Cij (j = 0, 1, ..., p-1)

 由于使用 p 个处理器，每次每个处理器只计算一个 Cij，故计算出整个 C 需要 p 次完成

 Cij 的计算是按对角线进行的

数据存储与计算方案

0 号进程 1 号进程 2 号进程

A00 A01 A02

A10 A11 A12

A20 A21 A22

B00 B01 B02

B10 B11 B12

B20 B21 B22

C00 C01 C02

C10 C11 C12

C20 C21 C22

= ×

A00 A01 A02 B00

B10

B20C00 C01 C02

A10 A11 A12 B01

B11

B21C10 C11 C12

A20 A21 A22 B02

B12

B22C20 C21 C22

数据存储视图 数据存储视图 数据存储视图

第 1 步：计算

00 00 00 01 10 02 20C A B A B A B= + +

0

号
进
程

11 10 01 11 11 12 21C A B A B A B= + +

1

号
进
程

22 20 02 21 12 22 22C A B A B A B= + +

2

号
进
程

A00 A01 A02 B00

B10

B20C00 C01 C02

A10 A11 A12 B01

B11

B21C10 C11 C12

A20 A21 A22 B02

B12

B22C20 C21 C22

第 2 步：数据传递

0 号进程

B00

B10

B20

B01

B11

B21

B02

B12

B22

1 号进程 2 号进程

B01

B11

B21

B02

B12

B22

B00

B10

B20

原视图

新视图

原视图

新视图 新视图

原视图

第 3 步：计算

0

号
进
程

1

号
进
程

2

号
进
程

A00 A01 A02 B01

B11

B21C00 C01 C02

A10 A11 A12 B02

B12

B22C10 C11 C12

A20 A21 A22 B00

B10

B20C20 C21 C22

101 00 001 1 20211C A A B AB B= + +

212 10 102 1 21221C A A B AB B= + +

020 20 200 1 22201C A A B AB B= + +

第 4 步：数据传递

0 号进程 1 号进程 2 号进程

B02

B12

B22

B00

B10

B20

B01

B11

B21

B01

B11

B21

B02

B12

B22

B00

B10

B20
原视图 原视图 原视图

新视图 新视图 新视图

第 5 步：计算

0

号
进
程

1

号
进
程

2

号
进
程

A00 A01 A02 B02

B12

B22C00 C01 C02

A10 A11 A12 B00

B10

B20C10 C11 C12

A20 A21 A22 B01

B11

B21C20 C21 C22

202 00 002 1 20221C A A B AB B= + +

010 10 100 1 21201C A A B AB B= + +

121 20 201 1 22211C A A B AB B= + +

并行算法：行列划分

for i=0 to p-1
j=(i+myid) mod p
Cj=A*B
src = (myid+1) mod p
dest = (myid-1+p) mod p
if (i!=p-1)

send(B,dest)
recv(B,src)

end if
end for

 本算法中，Cj = Cmyid, j , A = Amyid , B 在处理

器中每次循环向前移动一个处理器，即每

次交换一个子矩阵数据块，共交换 p-1 次。

举例

例：按 行列 划分，用 p 个进程并行计算矩阵矩阵乘积，其中

, n n
ijA a × = ∈ 

 1 ,
1ija

i j
=

+ −

取 n=1024, p=4, 矩阵划分：按顺序连续划分，并假定 n 能被 p 整除。

MPI_matmul.c

, n n
ijB b × = ∈ 

 1ijb i j= + −

http://math.ecnu.edu.cn/~jypan

并行算法

矩阵向量乘积 MPI 并行算法

—— 行行 划分

 存储方案：Ai ，Bi 和 Ci 存放在第 i 个处理器中，Pi 负责计算 Ci

 实际计算时需要对 Ai 做进一步划分（按列，与 B 的行分块相对应）

 每次每个处理器计算其中一个乘积，然后对 Bi 进行数据交换，整个过程需 p 次完成

并行算法：行行划分

行行划分

数据存储与计算方案

0

1

1p

A
A

A

A −

 
 
 =
 
 
  



，

0

1

1

,

p

B
B

B

B −

 
 
 =
 
 
  



0

1

1p

C
C

C

C −

 
 
 =
 
 
  



,0 ,1 , 1, , ,i i i i pA A A A − =   ,0 0 ,1 1 , 1 1i i i i p pC A B A B A B− −= + + +

并行算法：行行划分

for i=0 to p-1
j = (i+myid) mod p
C = C + Aj*B
src = (myid+1) mod p
dest = (myid-1+p) mod p
if (i!=p-1)

send(B,dest)
recv(B,src)

end if
end for

 本算法中，C = Cmyid , Aj = Amyid,j , B 在处

理器中每次循环向前移动一个处理器

 本算法中的数据交换量和计算量均与行

列划分相同，不同的只是计算 C 的方式。

http://math.ecnu.edu.cn/~jypan

并行算法

矩阵向量乘积 MPI 并行算法

—— 列列 划分

并行算法：列列划分

列列划分

0 1 1, , , ,pB B B B − =   0 1 1, , , pC C C C − =  0 1 1, , , ,pA A A A − =  

 存储方案：Ai ，Bi 和 Ci 存放在第 i 个处理器中，Pi 负责计算 Ci

 实际计算时需要对 Bj 做进一步划分（按列，与 A 的列分块相对应）

数据存储与计算方案

0,

1,

1,

j

j
j

p j

B

B
B

B −

 
 
 =  
 
  



0 0, 1 1, 1 1,j j j p p jC A B A B A B− −= + + +

 与行行划分类似，但进行数据传递的是 Ai

并行算法：列列划分

for i=0 to p-1
k = (i+myid) mod p
C = C + A*Bk
src = (myid+1) mod p
dest = (myid-1+p) mod p
if (i!=p-1)

send(A,dest)
recv(A,src)

end if
end for

 本算法中，C = Cmyid , Bk = Bk,myid , A 在

处理器中每次循环向前移动一个处理器

 本算法计算量与前面相同，当 m≠n 时，

通信量有所不同，在具体应用时可以根

据实际情况选择合适的算法。

http://math.ecnu.edu.cn/~jypan

并行算法

矩阵向量乘积 MPI 并行算法

—— 列行 划分

并行算法：列行划分

列行划分

0 1 1, , , pA A A A − =   ，

0

1

1

,

p

B
B

B

B −

 
 
 =
 
 
  



0 0 1 1 1 1p pC A B A B A B− −= + + +

 存储方案：Ai ，Bi 和 Ci 存放在第 i 个处理器中，Pi 负责计算 Ci

 实际计算时需要对 Bj 做进一步划分（按列，与 A 的列分块相对应）

0 0, 1 1, 1 1,i i i p p iC A B A B A B− −= + + +

 每次计算后更新 C，需要指出的是，进行数据传递的是 C

,0 ,1 , 1, , ,i i i i pB B B B − =  

数据存储与计算方案

http://math.ecnu.edu.cn/~jypan

并行算法

矩阵向量乘积 MPI 并行算法

—— Cannon 算法与 Fox 算法

并行算法：Cannon 算法

为了讨论方便，我们做以下假定

 矩阵 A，B，C 维数相等且都可以写成 𝑚𝑚 × 𝑚𝑚 分块矩阵：

ij ij ijm m m m m m
A A B B C C

× × ×
     = = =     ， ，

其中 Aij，Bij，Cij 都是 𝑛𝑛 × 𝑛𝑛 的。

 使用 𝒎𝒎𝟐𝟐 个处理器来计算，分别标号为 Pij

并行算法：Cannon 算法

 定义分块置换矩阵 Q ：

0 0 0
0 0 0

0 0 0
0 0 0

I
I

Q
I

I

 
 
 
 =
 
 
  





  





► 矩阵 A 左乘 Q，即 QA ：

将 A 的所有行（分块意义下）向 上 移一位

► 矩阵 A 右乘 Q，即 AQ ：

将 A 的所有列（分块意义下）向 右 移一位

并行算法：Cannon 算法

 定义分块对角矩阵

()

()

(
1

)

0

,

l

l
A

l
m

D
D

D −

 
 =  
  



()
, mod

l
i i l miD A +=其中

00
(0)

11

22

,A

A
D A

A

 
 =  
  

01
(1)

12

20

,A

A
D A

A

 
 =  
  

02
(2)

10

21

A

A
D A

A

 
 =  
  

以 3 × 3 分块矩阵为例：

0,1, , 1l m= −

1
()

0

m
l

l

l
AA D Q

−

=

= ∑

并行算法：Cannon 算法

 计算矩阵 C

(0) (0) (1) (1) (1) (1)
1

()

0

m
l

A
l

m m
AA A

lQC B D B DAB B BD D
−

=

− −+= = = + +∑ 

)(() 1l l lB Q B QB −= =其中

根据上面的关系式，我们可以通过依次计算 C 表达式中的右端项来计算矩阵乘积

► 把处理器编号从一维映射到二维，即 Pmyid = Pij

► 将数据 Aij，Bij，Cij 存放在 Pij 中

数据存储与计算方案

Cannon 算法：以 𝑚𝑚 × 𝑚𝑚 为例，9 个进程

 A、B 的起始存放位置

A00 A01 A02

A10 A11 A12

A20 A21 A22

B00 B01 B02

B10 B11 B12

B20 B21 B22

 第一轮：计算 (0) (0)
AD B

A00 A00 A00

A11 A11 A11

A22 A22 A22

B00 B01 B02

B10 B11 B12

B20 B21 B22

横向广播

 第二轮：计算 (1) (1)
AD B

横向广播

B10 B11 B12

B20 B21 B22

B00 B01 B02

A01 A01 A01

A12 A12 A12

A20 A20 A20

纵向移位

 第三轮：计算 (2) (2)
AD B

横向广播 纵向移位

B20 B21 B22

B00 B01 B02

B10 B11 B12

A02 A02 A02

A10 A10 A10

A21 A21 A21

处理器 Pij 上的计算过程

几点注记

† 该算法具有很好的负载平衡

† 数据传递特点：在同一行中广播 A（因此需要存放两个子矩阵），在同列中

滚动 B（也可以是滚动 A + 广播 B）

† 与前面介绍的四种并行算法相比，计算量一样，但当进程个数大于4时，

Cannon 算法的通信量较少。

Cannon 算法：第二种数据传递方式

A00 A01 A02

A11 A12 A10

A22 A20 A21

B00 B11 B22

B10 B21 B02

B20 B01 B12

Cannon 算法也可以通过水平方向（向左）滚动 A，垂直方向（向上）滚动 B 来实现

 初始位置：A 的第 i 行向 左移 动 i-1 格，B 的第 j 列向上移动 j-1 格

 每计算完一轮后，沿水平方向向左滚动 A，同时沿垂直方向向上滚动 B

 好处：不需要 tmpA

Cannon 算法：第二种数据传递方式
► 初始的数据存储方式：

A 按行移动，第一行不变，第二行向左移一格，第三行向左移两格，依此类推；
B 则按列移动，第一列不变，第二列向上移一格，第三列向上移两格，依此类推。

► Cij 仍然存放在 Pij 中
► 在计算过程中，A 不断向左滚动，B 不断向上滚动

数据存储方案

初始状态 第一轮数据移动 第二轮数据移动

Cannon 算法：第二种数据传递方式

A00 A01 A02

A11 A12 A10

A22 A20 A21

B00 B11 B22

B10 B21 B02

B20 B01 B12

A01 A02 A00

A12 A10 A11

A20 A21 A22

B10 B21 B02

B20 B01 B12

B00 B11 B22

A02 A00 A01

A10 A11 A12

A21 A22 A20

B20 B01 B12

B00 B11 B22

B10 B21 B02

1

2

3

Fox 算法

► 与 Cannon 算法的区别：数据移动方式不同

 Fox 算法是计算大规模矩阵乘积的另外一种常用并行算法

http://math.ecnu.edu.cn/~jypan

谢 谢
THANK YOU

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	幻灯片编号 61
	幻灯片编号 62
	幻灯片编号 63
	幻灯片编号 64
	幻灯片编号 65

