Shifted Power Method for H-eigenvalue of Symmetric Tensors

XXXX XXX

Department of Mathematics
East China Normal University, Shanghai, China

> SIAM: x xx Conference 20xx xxx, June 20xx

Outline

(1) Tensor and Eigenvalue
(2) NQZ Algorithm for largest Eigenvalue
(3) HOPM Algorithm for Z-eigenvalue

4 Shifted Power Method for H-eigenvalue

Tensor

The real-valued tensor of order m and dimension n is defined as follows

$$
\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right), \quad a_{i_{1} \cdots i_{m}} \in \mathbb{R}, \quad 1 \leq i_{1}, \cdots, i_{m} \leq n
$$

- Symmetric Tensor: \mathcal{A} is called symmetric if its entries do not change under any permutation of its m indices.
- Nonnegative Tensor: $\mathcal{A}=$ is called nonnegative if $a_{i_{1} \cdots i_{m}} \geq 0$.
- Irreducible Tensor [CPZ '08]: \mathcal{A} is called reducible if there exists a nonempty proper index subset $I \subset\{1,2, \ldots, n\}$ such that

$$
a_{i_{1} \cdots i_{m}}=0 \quad \text { for all } i_{1} \in I \quad \text { and } i_{2}, \ldots, i_{m} \notin I .
$$

If \mathcal{A} is not reducible, then we call \mathcal{A} irreducible.

Tensor-vector product

Let r be an integer such that $0 \leq r \leq m-1$.

The $(m-r)$-times product of a symmetric tensor \mathcal{A} with a vector x is denoted by $\mathcal{A} x^{m-r}$ and defined as

$$
\left(\mathcal{A} x^{m-r}\right)_{i_{1} \cdots i_{r}}:=\sum_{i_{r+1}, \cdots, i_{m}} a_{i_{1} \cdots i_{m}} x_{i_{r+1}} \cdots x_{i_{m}}
$$

for all $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$.

In particular, $\mathcal{A} x^{m}$ is a scalar and $\mathcal{A} x^{m-1}$ is a vector

Eigenvalue and H -eigenvalue

Definition (Eigenvalue, [Qi '05, Lim '05])

Let \mathcal{A} be a tensor of order m and dimension n. Then $\lambda \in \mathbb{C}$ is an eigenvalue of \mathcal{A} if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

where $x^{[m-1]}=\left[x_{1}^{m-1}, \cdots, x_{n}^{m-1}\right]^{T}$. The vector x is the corresponding eigenvector.

H -eigenvalue

If, in addition, both λ and x are real, then they are called the H -eigenvalue and H -eigenvector, respectively.
(1) Tensor and Eigenvalue
(2) NQZ Algorithm for largest Eigenvalue
(3) HOPM Algorithm for Z-eigenvalue
(4) Shifted Power Method for H-eigenvalue

NQZ algorithm

NQZ algorithm [NQZ '09] : an iterative method for finding the largest eigenvalue of irreducible nonnegative tensors.

1: Choose a positive vector $x^{(0)}$ and compute $y^{(0)}=\mathcal{A}\left(x^{(0)}\right)^{m-1}$
2: for $k=1,2, \ldots$, until convergence do
3: $\quad x^{(k)}=\frac{\left(y^{(k-1)}\right)^{\left[\frac{1}{m-1}\right]}}{\left\|\left(y^{(k-1)}\right)^{\left[\frac{1}{m-1}\right]}\right\|}$
4: $\quad y^{(k)}=\mathcal{A}\left(x^{(k)}\right)^{m-1}$
5: $\quad \lambda_{k}^{-}=\min _{x_{i}^{(k)}>0} \frac{y_{i}^{(k)}}{\left(x_{i}^{(k)}\right)^{m-1}}$
6: $\quad \lambda_{k}^{+}=\max _{x_{i}^{(k)}>0} \frac{y_{i}^{(k)}}{\left(x_{i}^{(k)}\right)^{m-1}}$
7: end for

Convergence of NQZ

Let \mathcal{A} be an irreducible nonnegative tensor of order m and dimension n. Then

$$
\lambda_{k}^{-} \leq \lambda_{k+1}^{-} \quad \text { and } \quad \lim _{k \rightarrow \infty} \lambda_{k}^{-}=\lambda^{-}
$$

and

$$
\lambda_{k}^{+} \geq \lambda_{k+1}^{+} \quad \text { and } \quad \lim _{k \rightarrow \infty} \lambda_{k}^{+}=\lambda^{+}
$$

Moreover,

$$
\lambda^{-} \leq \rho(\mathcal{A}) \leq \lambda^{+}
$$

where $\rho(\mathcal{A})$ is the spectral radius of \mathcal{A}.
In general, the convergence of NQZ for irreducible nonnegative tensors is not guaranteed.
(1) Tensor and Eigenvalue
(2) NQZ Algorithm for largest Eigenvalue
(3) HOPM Algorithm for Z-eigenvalue
(4) Shifted Power Method for H-eigenvalue

HOPM algorithm

HOPM [LMV '00] : Higher-Order Power Method

1: Choose a vector $x^{(0)} \in \mathbb{R}^{n}$ with $\left\|x^{(0)}\right\|=1$
2: Compute $\lambda_{0}=\mathcal{A}\left(x^{(0)}\right)^{m}$
3: for $k=1,2, \ldots$, until convergence do
4: $\quad y^{(k)}=\mathcal{A}\left(x^{(k-1)}\right)^{m-1}$
5: $\quad x^{(k)}=y^{(k)} /\left\|y^{(k)}\right\|$
6: $\quad \lambda_{k}=\mathcal{A}\left(x^{(k)}\right)^{m}$

7: end for

- HOPM is proposed for the low-rank tensor approximation and predates the definition of tensor eigenvalue problem
- The initial vector is not required to be positive
- HOPM can be used to compute Z-eigenvalue of symmetric tensors

SS-HOPM algorithm

SS-HOPM [KM '11] : Shifted Symmetric Higher-Order Power Method
1: Choose a vector $x^{(0)} \in \mathbb{R}^{n}$ with $\left\|x^{(0)}\right\|=1$ and a shift α
2: Compute $\lambda_{0}=\mathcal{A}\left(x^{(0)}\right)^{m}$
3: for $k=1,2, \ldots$, until convergence do
4: \quad if $\alpha \geq 0$ then
5: $\quad y^{(k)}=\mathcal{A}\left(x^{(k-1)}\right)^{m-1}+\boldsymbol{\alpha} \boldsymbol{x}^{(k-1)}$
6: else
7: $\quad y^{(k)}=-\left(\mathcal{A}\left(x^{(k-1)}\right)^{m-1}+\boldsymbol{\alpha} \boldsymbol{x}^{(k-1)}\right)$
8: \quad end if
9: $\quad x^{(k)}=y^{(k)} /\left\|y^{(k)}\right\|$
10: $\quad \lambda_{k}=\mathcal{A}\left(x^{(k)}\right)^{m}$
11: end for
(1) Tensor and Eigenvalue
(2) NQZ Algorithm for largest Eigenvalue
(3) HOPM Algorithm for Z-eigenvalue
(4) Shifted Power Method for H-eigenvalue

Power method for H-eigenvalue (S-HOPM-H)

$\lambda \in \mathbb{R}$ is an H -eigenvalue if there exists a nonzero vector $x \in \mathbb{R}^{n}$ such that

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

Symmetric High Order Power Method for H-eigenvalue (S-HOPM-H)
1: Given a symmetric even-order tensor \mathcal{A}
2: choose $x^{(0)} \in \mathbb{R}^{n}$ with $\left\|x^{(0)}\right\|_{m}=1$ and compute $\lambda_{0}=\mathcal{A}\left(x^{(0)}\right)^{m}$
3: for $k=1,2, \ldots$, until convergence do
4: $\quad y^{(k)}=\mathcal{A}\left(x^{(k-1)}\right)^{m-1}$
5: $\quad z^{(k)}=\left(y^{(k)}\right)^{\left[\frac{1}{m-1}\right]}$
6: $\quad x^{(k)}=z^{(k)} /\left\|z^{(k)}\right\|_{m}$
7: $\quad \lambda_{k}=\mathcal{A}\left(x^{(k)}\right)^{m}$
8: end for

Example 1

Example ([KR '02])

Let \mathcal{A} be a symmetric tensor of order 4 and dimension 3, whose entries are defined by

$$
\begin{array}{llll}
a_{1111}=0.2883, & a_{1112}=-0.0031, & a_{1113}=0.1973, & a_{1122}=-0.2485 \\
a_{1123}=-0.2939, & a_{1133}=0.3847, & a_{1222}=0.2972, & a_{1223}=0.1862 \\
a_{1233}=0.0919, & a_{1333}=-0.3619, & a_{2222}=0.1241, & a_{2223}=-0.3420 \\
a_{2233}=0.2127, & a_{2333}=0.2727, & a_{3333}=-0.3054 &
\end{array}
$$

- There are totally 27 different eigenvalues, among which 11 are real

Example

Table: All H-eigenpairs generated by Mathematica

λ	x^{T}		
2.3129	$[0.7875$	0.6483	$-0.8138]$
1.9316	$[0.8749$	-0.6536	$0.6936]$
0.9780	$[0.1474$	-0.9540	$0.6432]$
0.8944	$[0.5223$	0.8048	$0.8434]$
0.7228	$[0.8526$	0.4939	$0.8012]$
0.4108	$[0.2035$	-0.5145	$-0.9816]$
0.2528	$[1.0000$	0.1020	$-0.0868]$
0.2499	$[0.4178$	0.9917	$0.2184]$
-0.0887	$[0.9158$	0.7376	$0.1559]$
-0.6665	$[0.2291$	-0.2579	$0.9982]$
-2.6841	$[0.7793$	-0.8675	$-0.5044]$

Thank you!

