Shifted Power Method for H-eigenvalue of Symmetric Tensors

XXXX XXX

Department of Mathematics East China Normal University, Shanghai, China

> SIAM: xxx Conference 20xx xxx, June 20xx

Outline

1 Tensor and Eigenvalue

NQZ Algorithm for largest Eigenvalue

3 HOPM Algorithm for Z-eigenvalue

Tensor

The real-valued tensor of order m and dimension n is defined as follows

$$\mathcal{A} = (a_{i_1 \cdots i_m}), \quad a_{i_1 \cdots i_m} \in \mathbb{R}, \quad 1 \le i_1, \cdots, i_m \le n.$$

- Symmetric Tensor: A is called symmetric if its entries do not change under any permutation of its m indices.
- Nonnegative Tensor: $\mathcal{A} =$ is called nonnegative if $a_{i_1 \cdots i_m} \ge 0$.
- Irreducible Tensor [CPZ '08]: A is called reducible if there exists a nonempty proper index subset I ⊂ {1, 2, ..., n} such that

$$a_{i_1\cdots i_m} = 0$$
 for all $i_1 \in I$ and $i_2, \ldots, i_m \notin I$.

If \mathcal{A} is not reducible, then we call \mathcal{A} irreducible.

Tensor-vector product

Let r be an integer such that $0 \le r \le m - 1$.

The (m-r)-times product of a symmetric tensor $\mathcal A$ with a vector x is denoted by $\mathcal A x^{m-r}$ and defined as

$$(\mathcal{A}x^{m-r})_{i_1\cdots i_r} := \sum_{i_{r+1},\ldots,i_m} a_{i_1\cdots i_m} x_{i_{r+1}}\cdots x_{i_m}$$

for all $i_1, ..., i_r \in \{1, ..., n\}$.

In particular, $\mathcal{A}x^m$ is a scalar and $\mathcal{A}x^{m-1}$ is a vector

Eigenvalue and H-eigenvalue

Definition (Eigenvalue, [Qi '05, Lim '05])

Let \mathcal{A} be a tensor of order m and dimension n. Then $\lambda \in \mathbb{C}$ is an eigenvalue of \mathcal{A} if there exists a nonzero vector $x \in \mathbb{C}^n$ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]},$$

where $x^{[m-1]} = [x_1^{m-1}, \cdots, x_n^{m-1}]^T$. The vector x is the corresponding eigenvector.

H-eigenvalue

If, in addition, both λ and x are real, then they are called the H-eigenvalue and H-eigenvector, respectively.

Tensor and Eigenvalue

NQZ Algorithm for largest Eigenvalue

3 HOPM Algorithm for Z-eigenvalue

NQZ algorithm

NQZ algorithm [NQZ '09] : an iterative method for finding the largest eigenvalue of irreducible nonnegative tensors.

1: Choose a positive vector $x^{(0)}$ and compute $y^{(0)} = \mathcal{A}(x^{(0)})^{m-1}$ 2: for $k = 1, 2, \ldots$, until convergence do 2. If $n = 1, 2, ..., \text{ durit conversion of } x^{(k)} = \frac{(y^{(k-1)})^{\left\lfloor \frac{1}{m-1} \right\rfloor}}{\left\| (y^{(k-1)})^{\left\lfloor \frac{1}{m-1} \right\rfloor} \right\|}$ 4. $y^{(k)} = \mathcal{A}(x^{(k)})^{m-1}$ 5. $\lambda_k^- = \min_{x_i^{(k)} > 0} \frac{y_i^{(k)}}{(x_i^{(k)})^{m-1}}$ 6. $\lambda_k^+ = \max_{x_i^{(k)} > 0} \frac{y_i^{(k)}}{(x_i^{(k)})^{m-1}}$ 7: end for

Convergence of NQZ

Let \mathcal{A} be an irreducible nonnegative tensor of order m and dimension n. Then

$$\lambda_k^- \leq \lambda_{k+1}^- \quad \text{and} \quad \lim_{k \to \infty} \lambda_k^- = \lambda^-$$

and

$$\lambda_k^+ \geq \lambda_{k+1}^+$$
 and $\lim_{k o \infty} \lambda_k^+ = \lambda^+$

Moreover,

$$\lambda^{-} \leq \rho(\mathcal{A}) \leq \lambda^{+}$$

where $\rho(\mathcal{A})$ is the spectral radius of \mathcal{A} .

In general, the convergence of NQZ for irreducible nonnegative tensors is not guaranteed.

Tensor and Eigenvalue

2 NQZ Algorithm for largest Eigenvalue

3 HOPM Algorithm for Z-eigenvalue

HOPM algorithm

HOPM [LMV '00] : Higher-Order Power Method

1: Choose a vector $x^{(0)} \in \mathbb{R}^n$ with $\|x^{(0)}\| = 1$

2: Compute
$$\lambda_0 = \mathcal{A}(x^{(0)})^m$$

3: for $k=1,2,\ldots$, until convergence do

4:
$$y^{(k)} = \mathcal{A}(x^{(k-1)})^{m-1}$$

5:
$$x^{(k)} = y^{(k)} / \|y^{(k)}\|$$

6:
$$\lambda_k = \mathcal{A}(x^{(k)})^m$$

7: end for

- HOPM is proposed for the low-rank tensor approximation and predates the definition of tensor eigenvalue problem
- The initial vector is not required to be positive
- HOPM can be used to compute Z-eigenvalue of symmetric tensors

SS-HOPM algorithm

SS-HOPM [KM '11] : Shifted Symmetric Higher-Order Power Method

1: Choose a vector $x^{(0)} \in \mathbb{R}^n$ with $\|x^{(0)}\| = 1$ and a shift α

2: Compute
$$\lambda_0 = \mathcal{A}(x^{(0)})^m$$

3: for $k=1,2,\ldots$, until convergence do

4: if
$$\alpha \ge 0$$
 then

5:
$$y^{(k)} = \mathcal{A}(x^{(k-1)})^{m-1} + \alpha x^{(k-1)}$$

6: **else**

7:
$$y^{(k)} = - \left(\mathcal{A}(x^{(k-1)})^{m-1} + \alpha x^{(k-1)} \right)$$

8: end if

9:
$$x^{(k)} = y^{(k)} / \|y^{(k)}\|$$

10:
$$\lambda_k = \mathcal{A}(x^{(k)})^m$$

11: end for

Tensor and Eigenvalue

2 NQZ Algorithm for largest Eigenvalue

3 HOPM Algorithm for Z-eigenvalue

Power method for H-eigenvalue (S-HOPM-H)

 $\lambda \in \mathbb{R}$ is an H-eigenvalue if there exists a nonzero vector $x \in \mathbb{R}^n$ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]}$$

Symmetric High Order Power Method for H-eigenvalue (S-HOPM-H)

1: Given a symmetric even-order tensor
$$\mathcal{A}$$

2: choose $x^{(0)} \in \mathbb{R}^n$ with $||x^{(0)}||_m = 1$ and compute $\lambda_0 = \mathcal{A}(x^{(0)})^m$
3: for $k = 1, 2, ...,$ until convergence do
4: $y^{(k)} = \mathcal{A}(x^{(k-1)})^{m-1}$
5: $z^{(k)} = (y^{(k)})^{\lfloor \frac{1}{m-1} \rfloor}$
6: $x^{(k)} = z^{(k)}/||z^{(k)}||_m$
7: $\lambda_k = \mathcal{A}(x^{(k)})^m$
9: and for

Example 1

Example ([KR '02])

Let ${\mathcal A}$ be a symmetric tensor of order 4 and dimension 3, whose entries are defined by

$a_{1111} = 0.2883,$	$a_{1112} = -0.0031,$	$a_{1113} = 0.1973,$	$a_{1122} = -0.2485,$
$a_{1123} = -0.2939,$	$a_{1133} = 0.3847,$	$a_{1222} = 0.2972,$	$a_{1223} = 0.1862,$
$a_{1233} = 0.0919,$	$a_{1333} = -0.3619,$	$a_{2222} = 0.1241,$	$a_{2223} = -0.3420,$
$a_{2233} = 0.2127,$	$a_{2333} = 0.2727,$	$a_{3333} = -0.3054.$	

• There are totally 27 different eigenvalues, among which 11 are real

Example

Table: All H-eigenpairs generated by Mathematica

λ		x^T	
2.3129	[0.7875	0.6483	-0.8138]
1.9316	[0.8749	-0.6536	0.6936]
0.9780	[0.1474	-0.9540	0.6432]
0.8944	[0.5223	0.8048	0.8434]
0.7228	[0.8526	0.4939	0.8012]
0.4108	[0.2035	-0.5145	-0.9816]
0.2528	[1.0000	0.1020	-0.0868]
0.2499	[0.4178	0.9917	0.2184]
-0.0887	[0.9158	0.7376	0.1559]
-0.6665	[0.2291	-0.2579	0.9982]
-2.6841	[0.7793	-0.8675	-0.5044]

Thank you!