ON THE ADJOINT CANONICAL DIVISOR OF A FOLIATION
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AssTrACT. In this paper, we describe the structure of the negative part of a Zariski de-
composition of Ky + K¢ for a relatively minimal foliation (X, #) whenever Ky + K¢ is
pseudoeffective.

1. INTRODUCTION

For any semistable fibration f : X — P! of genus g on a smooth algebraic surface X,

[TTZO05] gives a classical inequality

K} >4g-4
where Ky = ci(wx/p) is the relative canonical divisor. This inequality is essentially from
the key fact that both Ky and Kx + K are nef.

Naturally, we are interested in the analogues of a foliation # on a smooth algebraic
surface X. More precisely, we hope to investigate the canonical divisor K¢ and the adjoint
canonical divisor Ky + K¢ of . More generally, one can define an e-adjoint divisor
€Kx + K¢ (0 < € < 1) which is studied in [SS23] for € <« 1.

In particular, one has K = Ky for a foliation # generated by the above semistable
fibration f : X — P!. In this case, both K# and Ky + K are nef. However, they are not
necessarily nef for other foliations. Therefore we need to consider the Zariski decomposi-
tions of K& and Kx + K¢ respectively whenever they are pseudoeffective.

Miyaoka’s rationality criterion says that ¥ is a foliation by a rational curves if K¢ is not
pseudoeffective (see [Miy87] or [Brul5, Theorem 7.1]). If K¢ is pseudoeffective, it has a
Zariski decomposition
(1.1) Kr ="' P+N
where

(1) N is a Q*-divisor and the intersection matrix of the irreducible components of N
is negative definite;
(2) P is anef Q-divisor and PN = 0 (see [Sak84, Corollary 7.5] or [Fuj79, Theorem
1.12]). P (resp., N) is called positive (resp., negative) part.
Furthermore, if ¥ is relative minimal, then N is a disjoint union of maximal # -chains and
the integral part [N] = 0 (see [McQO0] or [Brul5, Theorem 8.1]).

In this paper, we shall study mainly the adjoint canonical divisor Kx + K¢ of a relatively
minimal foliation . We assume that Kx + K¢ is pseudoeffective and denote a Zariski
decomposition of Ky + K¢ by

Kx+Kys =P+N
where P (resp., N) is the positive (resp., negative) part of K. We hope to answer the
following problem.

! This work is supported by NSFC, Science and Technology Commission of Shanghai Municipality (No.
22D72229014).

2 2020 Mathematics Subject Classification. 14C21, 14D06, 14H10, 32565, 37F75

3 Key words and phrases. foliation, fibration, canonical divisor, Chern number, Zariski decomposition.

1



2 JUN LU AND XIAO-HANG WU

Problem 1.1. What is the structure of the negative part N ?

For this purpose, we will consider a bimeromorphic morphism p : (X, ) — (Xo, Fo)
onto a so-called relatively minimal A-D-E model ¥ of ¥ on a smooth algebraic surface X
(see Definition 3.1). The adjoint canonical divisor Kx, + K, is also pseudoeffective and
has a Zariski decomposition

(12) KX0+K¢0 =Py + Ny
with a positive part Py and a negative part Ny. One can see easily that
(1.3) P=p'Py, N=p'‘Ng+V

where V is a Q*-divisor supported on the exceptional set of p (see (3.1) and Theorem 3.9
for a precise expression). Therefore it’s sufficient to determine the structure of Njy.
Our main result is as follows.

Theorem 1.2. Let (X, F) be a relative minimal foliation. If Kx + K¢ is pseudoeffective,
then F is minimal and the negative part N of the Zariski decomposition of Kx + K¢ can
be expressed as in (1.3) where the support of Ny is a disjoint union of maximal simple F-
chains (see Definition 2.1) and the integral part | Ny] = 0. Furthermore, p* Ny is disjoint
from the exceptional set of p.

Remark 1.3. However, it is possible that V contains some curves which are not F -
invariant.

An interesting question is when Kx + K¢ is pseudoeffective. The following result pro-
vide an partial answer.

Theorem 1.4. Let (X, F) be a relatively minimal foliation with a non-zero pseudoeffective
canonical divisor K¢. Set
1
pX) = S(Kx + Kr)Ky.
We have
h'(Kx + K7) > x(Ox) + p(X).
The equality holds if F is of general type, i.e., P* > 0 (see [Brul5, Ch 8., Sec.1]).
Therefore Ky + K¢ is pseudoeffective if it satisfies one of the following conditions:

(1) kod(X) = 0;

(2) kod(X) = —co and p(X) = q(X),
where q(X) is the irregularity of X.
Corollary 1.5. For any relatively minimal foliation (X, ) of general type with h°(K¢) > 0,

we have
gX) < 1+ p(X).
For any foliation (Y, G) with a minimal model (X, ), we can define some invariants of
G by the adjoint canonical divisor of F:
(1) adjoint numerical Kodaira dimension

s hum

0. ifP"™"0.
WF)=4 1, if P+ ObutP =0,
2. if P =0.

In order to be complete, we also set ¥(F ) = —oo if Kx + K¢ is not pseudoeffective;
(2) adjoint Kodaira dimension
log h°(X, n(Kx + K7)) )

s

k =1
) tn_ljgp logn

.. _ —2
(3) adjoint the first Chern numer c%(?r) =P
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Remark 1.6. [Tan23] defines a biholomorphic invariant C%(T) for any foliation ¥ and
proves that c%(‘}') = P? for the positive part P in (1.1) whenever F is relatively minimal.

As an application, one can investigate an algebraic foliation generated by a semistable
fibration.

Corollary 1.7. Let f : X — B be a non-trivial semistable fibration of genus g > 2 over a
smooth algebraic curve B of genus b and ¥ be the foliation induced by f. Then Kx + K¢
is nef and v(F) = 1. We have

(1.4) h(Kx + Kg) = x7 + K7 +3(g = D)(b - 1)
and
(1.5) GF)=4(K}+4g-1D(b-1)20

where Ky = c\(wxyp) is the relative canonical divisor of f and

Xy = deg fuwxp = x(Ox) — (g — D(b - 1)
is a positive invariant (cf. [AKOO, pp.6] or [BHPVO04, Ch. III, Theorem 18.2 ]).

In particular, if B = P!, the non-negativity of E%(?—’) is equivalent to the well-known
inequality K2 > 4(g—1) in [TTZ05, Theorem 2.1]. They describe such fibrations satisfying
E%(?’) = 0 which can be rephrased in the language of foliation theory as follows.

Corollary 1.8. Let (X, T, f) be as in Corollary 1.7. Then W(F) = 1 iff B = P! and X is
the minimal resolution of the singularities of a double covering surface n : Z — P' x C
ramified over a curve of numerical type 2F | +(2g+2—4g(C))F,, and fibration f is induced
by the first projection pry : P' x C — P! where F; is a fiber of the i-th projection of P' x C.

We will give an example for an algebraic foliation ¥ with #(#) = 0 in Sec. 5.
There are some open problem on the adjoint canonical divisor Ky + K#.

Problem 1.9. When is Kx + K¢ pseudoeffective for a minimal foliation F ?
Problem 1.10. Is there a foliation F satisfying ¥(F) # k(F)?
Problem 1.11. What is the relation between c?(?—') and Z‘f(?")?

Problem 1.12. How to give a classification of all foliations with adjoint numerical Kodaira
dimensions < 1?

Problem 1.13. Given a foliation ¥ generated by a non-semistable fibration f : X — P'.
Is there an inequality similar to the classical inequality in [TTZ05, Theorem 2.1] by the
non-negativity of C%(T) and E%(T)?

Problem 1.14. When does a minimal foliation has a unique relatively minimal A-D-E
model up to a biholomorphic morphism?

2. PRELIMINARIES

2.1. F-invariant curves and singularities of a foliation 7. We recall some definitions
and basic facts about foliations on a surface (see [Brul5] or [CF18, Sec. 2] for more
details).

Let X be a smooth algebraic surface with a tangent bundle 7Ty. A foliation ¥ on X is
given by a short exact sequence

0—Ty —>Tx —I;,Ns — 0

where T# and N are line bundles and 7, is an ideal sheaf supported on a finite set.
Ky := ¢1(T}) is called the canonical divisor of ¥

A curve C C X is said to be ¥ -invariant if the inclusion T#|c — Tx|c factors through
T¢ where T¢ is the tangent bundle of C.
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An F -chain O is a Hirzebruch-Jung string ® = I'j + - -- 4+ I'; consisting of F -invariant
curves [';’s satisfying that
(1) all singularities of ¥ on ® are reduced and non-degenerated;
(2) there is only one singularity of ¥, says p;(€ I'), on ® — {py,..., p;-1} where
pi=Linli G=1,...,1-1);
(3) I’y has only one singularity p;.
For convenience, I'; is said to be the first component of ®. More details can be found in
[Brul5, Ch.8, Sec.2].

Definition 2.1. A simple F -chain is an ¥ -chain consisting of F -invariant (=2)-curves.
We say a simple F -chain is maximal if it can not be contained other simple F -chains.

However, it’s possible that a maximal simple ¥ -chain is contained in an ¥ -chain.

An F-invariant (—1)-curve C is said to be ¥ -exceptional if the contraction of C to a
point p produces a new foliation which has at p a regular point or a reduced singular point.

F is said to be reduced if all singularities of # are reduced. Furthermore, a reduced
foliation is called relatively minimal if it has no 7 -exceptional curve. Each foliation has
a relatively minimal model (see [Brul5, Proposition 5.1]). A relatively minimal foliation
(X, F) is said to be minimal if any bimeromorphic map f : (X, ¥) --> (¥, G) sending F to
a relatively minimal foliation G is in fact a biholomorphic map.

Consider a blowing-up o : ()?, % ,E) = (X, F, p) centered at a singularity p of ¥ with
an exceptional curve E C Xanda pulling-back foliation F. Let a(p) be the vanishing order
of F at p. One has

@.1) Kz=0"Ks +(1-I(p)E
where I(p) is the order of F at p defined by

I(p) = a(p), if E is ¥ -invariant,
p)= a(p) + 1, otherwise.

See [Brul5, Ch. 2, Sec. 3] for more details.
Let U be a neighborhood in X with a local coordinate (x, y) and

0 0
2.2) v = a(x, y)a + b(x, y)a—y (a,b € C{x,y})

be a local generator of # at a singularity p = (0, 0). Let B be an ¥ -invariant branch passing
through p. We take a minimal Puiseux’s parametrization of B at p:

(2.3) ¢:D—> B, - (g0),0(0)
where ¢y, ¢, € C{t} and D is a disk centered at 0 € C. The multiplicity u,(¥, B) of ¥ at B
is defined by the order of ¢*(B) at t = 0. More precisely, one has

vo(alex(1), @y(1)) = volex(1) + 1 if (1) # 0,
2.4 F,B) = ) .
@h B { Yo(blxlt), @(1)) = volgy(0) + 1 if @y(1) # 0,
where a, b are as in (2.2) and vy(h) is the order of the zero t = 0 of h € C{t} (see [Car94]).
1p(F, B) > 0 the equality holds iff p is not a singularity of .

Remark 2.2. For a smooth point p of B, u,(¥,B) = Z(F, B, p) where Z(¥, B, p) is the
Gomez-Mont-Seade-Verjovsky index (cf. [Brul5, Bru97, GSV91]). If B is a smooth irre-
ducible F -invariant curve, we denote the sum of u,(¥, B)’s for all p € B by Z(F, B).

Leto:X —> Xbea blowing-up centered at p € B with an exceptional curve E and B
be the strict transform of B with the only one point p := E N B. From [Car94], one has

(2.5) 1p(F, B) = up(F, B) + mp(B)U(p) — 1)
where m,(B) is the multiplicity of B at p and F is the pulling-back foliation of 7.
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Lemma 2.3. u,(F, B) = 1 iff either p has a nonzero eigenvalue or p is a saddle-node with
a strong separatrix B.

In particular, in this case, if m,(B) > 2, then p is a dicritical singularity with a local
generator v = x(% + /lya% for A € Q* by choosing a proper coordinate.

Proof. Firstly, we consider the case for m,(B) = 1. By choosing a suitable coordinate, we
can take the minimal parametrization (2.3) as ¢(t) = (¢,0). Thus the local generator (2.2)
of ¥ can be taken as

v = (X"w(x) + yu(x,y)) % + yv(x, y)(%, u,v € C{x,y}, we C{x}, w(0) #0.

By (2.4), we get u,(F, B) = m. In particular, u,(#.B) = 1 iff either the eigenvalue of p is
nonzero or p is a saddle-node with a strong separatrix B.

So it’s enough to consider the case for m,(B) > 2 from the above discussion.

(<) Since m,(B) > 2, p is a singularity of ¥ with a local generator v = x% + /ly(%
for A € Q* by choosing a proper coordinate (see [Brul5, pp. 7-8]). Thus (2.4) gives
/1[7(7_~’ B)=1.

(=) If l(p) = 2, then (2.5) implies that [(p) = 2 and m,(B) = 1, a contradiction. So
l(p) = 1. If the eigenvalue of p is nonzero, the proof is finished. If p is a saddle-node, then
B is a strong separatrix by [Brul5, pp. 31] and so m,(B) = 1, a contradiction.

In what follows, we assume p is a nilpotent singularity. By choosing a suitable coordi-
nate, the local generator of # can be written as

0 0
V= O ) g+ v o

where u, v are holomorphic functions which vanish at (0,0) up to order 2. Consider the
minimal parametrization (2.3) of B at p. In this case, ¢.¢, # 0. From (2.4), one has

Vo(ey(®) + ulex(1), y(0)) = volex(1)),  vo(W(ex(D), 9y (0))) = voley (D).
Hence
Voley(1) = volex(0),  2vo(ex(1)) < voley(D).
It implies that vo(px (1)) = vo(e,(t)) = 0, a contradiction.
This proof is completed. O

Due to Camacho-Lins Neto-Sad’s formula in nondicritical case ([CLS84, Theorem 1]),
we have a modified version which can be rephrased as follows.

Lemma 2.4 (Camacho-Lins Neto-Sad’s formula). Consider a sequence of blowing ups
o [ o
X, =5 (X1, pr1) = - (X1, p1) — (Xo, po) = (X, p)

where o1 is a blowing-up centered at a point p; € X; and (X,, %) is the pulling-back
foliation of (X,F). Let E; (resp., &;) in X, be the strict (resp., total) transform of the
r

exceptional curve of ;. Write &, = ), n;E,.
i=1

If each E; is F -invariant, then the order l(p) of the singularity p satisfies
2.6) L+1p) = > mi(ug(F En) - (&)
i=1 geE;
where u,(E1) is the Milnor’s number of the support of &, at g, namely,

_ | 1, ifqisacorner,
Hq(E1) _{ 0, else.

Proof. 1t’s similar to the proof of [CLLS84, Theorem 1]. O
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Recall the notation in Remark 2.2. We set

UFE) = ) 1y(FE.
qEE;
The formula (2.6) is equivalent to

r

@.7) L+1(p) = ) mi(Z(F, E) — k)

i=1

where k; is the number of irreducible components of &; meeting transversely with E;.

2.2. Cerveau-Lins Neto’s formula. Due to Cerveau-Lins Neto formula for a foliation on
P? (see [CLNO1, pp. 885]), we have a generalized result as follows.

Lemma 2.5 (Cerveau-Lins Neto formula). For any irreducible F -invariant curve C, we
have

2-28C)+KrC= > Y pp(F, B)
peC BeC(p)

where C(p) is the set of analytic branches of C passing through p and g(C) is the geometric
genus of C.

Proof. Leto : X —> Xbea blowing-up centered at p € C with an exceptional curve E. Let
C(p) =1{By,..., B} and B; be the strict transform of B; with the only one point p; := ENB;.
By (2.5),

1p(F, BY) = 1 (F, B) + midl(p) = 1)
where m; is the multiplicity of B; at p and F is the pulling-back foliation of 7.
—~ -k
Let C be the strict transform of C. By (2.1) and 0*C = C + (), m;)E, we get
i=1

k

KyC=KzC + [Z mi] (U(p) - 1).

i=1
So
D F B -KrC= Y pup(F B) - KC
peC BeC(p) peC BeC(p)

Therefore, it’s enough to consider the case that ¥ is reduced and C is smooth. In this
case, C(p) = {C} and u,(F,C) = Z(¥,C, p) for each singularity p of ¥. From [Brul$,
Ch. 2, Proposition 3],

2-28(C)+KrC = » ZF.C.p)= Y. py(F.C).
peC peC

This proof is finished. O

As the applications of Cerveau-Lins Neto formula, one can obtain the following conse-
quences which are essentially due to [McQO08, Lemma II. 3.2, Proposition I1I.1.2, Theorem
IV.1.1].

Corollary 2.6. For any irreducible F -invariant curve C, we have K&C > —2. The equality
holds iff

(1) C=Pland C* = 0;

(2) there is no singularity of ¥ on C;

(3) K is not pseudo-effective and hence F is a foliation by rational curves.
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Proof. From Lemma 2.5, K#C > 2g(C) -2 > 2. If KgC = -2, then g(C) = 0 and
1p(F, B) = 0 for each p € C and B € C(p). So C contains no singularity of ¥ and hence
C is smooth. Thus C = P'. By Camacho-Sad formula ( [CS82, Suw98]), C?> = 0 and so
C is nef. Thus K#C < 0 implies that K¢ is not pseudo-effective. From [Miy87], ¥ is a
foliation induced by a family of rational curves.

Conversely, for an irreducible # -invariant curve satisfying the above conditions (1) and
(2), one can get K#C = -2 by Cerveau-Lins Neto formula. O

Corollary 2.7. Assume that K¢ is pseudo-effective. We have K#C > —1 for any irre-
ducible F -invariant curve C. The equality holds iff one of the following cases occurs.

(1) C is the first component of an F -chain ;
(2) C is an F -exceptional curve with only one singularity.

Proof. By Corollary 2.6, K#C > —1. Assume that KzC = —1. From Lemma 2.5, g(C) =0
and C has only one singularity p of  with u,(#, B) = 1 where B is a unique branch of C
passing through p. Since Ky is pseudo-effective, C? < 0.

If C is smooth at p, then C = P! by g(C) = 0. From Camacho-Sad formula, one can see
that p is a reduced singularity with an eigenvalue 1 = C?> < 0. Namely, C occurs in one of
the above cases.

It’s enough to claim that C is smooth at p. If not, the local generator of ¥ at p can be
takenas v = x(;lx +/ly(,ﬁy (1 € Q%) by Lemma 2.3. Consider the resolution of p as in [Brul5,

pp- 7-8], denoted by 7 : ()?, 9?) — (X, F). Let C be the strict transform of C under #.
One can see that C has no singularity of #. So K=C = -2 by Cerveau-Lins Neto formula.

Corollary 2.6 implies that C? = 0. So C? > 0, a contradiction.
Conversely, any ¥ -invariant curve C in case (1) or (2) satisfies KpC = -1 from
Cerveau-Lins Neto formula. ]

3. A-D-E SINGULARITIES OF FOLIATIONS

3.1. Relatively minimal A-D-E model of a foliation. Let p be a singularity of ¥ in a
neighborhood U. From [Sei68] or [Brul5, Theorem 1.1], one has a minimal resolution of
the singularity p:

(Un Fr) =5 (U1, Frots pro) == - (U1, Fiu p1) —> (Uo, Fo, po) := (U, F, p)

where 041 is a blowing-up of a neighborhood U; at the non-reduced singularity p; of 7;
with order [;, Fi,1 = o7, % is the pulling-back of the foliation ¥; and (U,, ;) has at worst
reduced singularities (i = 0,...,r — 1).

Definition 3.1. For a given positive integer k, p is said to be a k-simple singularity of ¥
ifl; < kfori=0,1...,r—1. For convenience, a 2-simple singularity is also called an
A-D-E singularity of F.

We say F is an A-D-E foliation if each singularity of ¥ is an A-D-E singularity. (X, F)
is said to be a relatively minimal A-D-E foliation if it’s an A-D-E foliation and any bimero-
morphic morphism (X, ) — (Y, G) onto an A-D-E foliation (Y, G) is in fact a biholomor-
phism.

Example 3.2. A 1-simple singularity p occurs in one of the following cases:

(1) pis a reduced singularity;
(2) p has a Poincaré-Dulac form xdy — (ny + x")dx by choosing a suitable local coor-
dinate.

We will classify all A-D-E singularities of a foliation in Sec. 3.2. Here are some classi-
cal examples.
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Example 3.3. Take v = g—f% - %% in (2.2) for a given function f € C{x,y}. The branch
B defined by f = 0 is ¥ -invariant. In this case, p is an A-D-E singularity of ¥ iff it is a

simple singularity of the curve B (see [BHPVO04, Ch. II, Sec. 8]).

Example 3.4. If p is a reduced singularity or a singularity whose eigenvalues are positive
rational numbers, then it is an A-D-E singularity (see [Brul5, pp. 7-8]).
Lemma 3.5. Let (X, F) be a reduced foliation.

(1) There is a bimeromorphic morphism p : (X, F) — (Xo, Fo) onto a relatively min-
imal A-D-E foliation (Xo, Fo). Therefore each foliation has a relatively minimal

A-D-E model.
(2) Kx+Kg = p*(Kx, + Kz,) +V for some Q*-divisor V supported on the exceptional
set of p.

(3) Kx + Ky is pseudoeffective iff Kx, + K¢, is pseudoeffective.
(4) For any (—1)-curve E C X, one has K¢, E > 2.

Proof. (1) It’s obvious that (X, F) is an A-D-E foliation from Example 3.2. If it is not
a relatively minimal A-D-E foliation, then we can find a (—1)-curve whose contraction
produces a new A-D-E foliation. One can iterate the contraction procedure and must stop
it after finite steps because the rank of the Néron-Severi group of the surface is strictly
monotonic decreasing. Thus we get a relatively minimal A-D-E foliation (X, F() with a
bimeromorphic morphism p : (X, ) — (Xo, Fo)-

(2) By the above discussion, p factorizes through some blowing-ups :

X, F) i= (X Fr) =5 (X1, Frot) =5 - (X1, F1) — (Xo, Fo)-

Let E; C X; be the exceptional curve of the blowing-up o7; centred at a point p;_; € X;_;
and &; be the total transform of E; in X (i = 1,...,r). By (2.1), one gets Ky + K¢ =
p*(Kx, + Kg,) + V where

3.1) V=) 2= lp) &
i=1

Note that each p;_; is an A-D-E singularity and hence /(p;_1) < 2. So V is a Q*-divisor.
(3) (=) Assume that Kx + K¢ is pseudoeffective. For any ample divisor Hy in Xp,
p*Hy is nef. So one has

(KXU + K%)HO =(Kx + K';L‘),D*H() > 0.

(&) Assume that Ky, + K, is pseudoeffective. Consider the Zariski decomposition

(1.2) of Kx, + K#,. Thus we have
Kx + K¢ = p*(Po) + (p*N() + V).
For any ample divisor H C X, one can see that
(Kx +K¢)H > p*Py-H >0

from p* Py is nef.

(4) Let E c X, be a (—1)-curve. Consider a contraction o : (Xo, %o, E) — (Y, G, p)
sending E to a point p = o(E). It produces a new foliation G with a singularity p with

order /. The minimality of the A-D-E foliation ¥, implies that / > 3. By (2.1), one has
KTOE =[-1>2. O

Remark 3.6. However the relatively minimal A-D-E model of a foliation is not necessarily
unique. For example, we consider a Riccati foliation ¥, on X = P' x P!, defined by
x% + /ly(% (A € Cand A # 0), with respect to a ruling map

pri ‘Pl x P! > P!, (x,y) > y.

Fa is a relatively minimal A-D-E foliation.
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We have a bimeromorphic map o : (X, F,-1) --> (X, F)) sending (x,y) to (x, xy) for each
A#0,1.

Corollary 3.7. Given a bimeromorphic map o : (Y,G) --> (Xo, Fo) from a relatively mini-
mal A-D-E foliation (Y, G). Kx, + K¢, is pseudoeffective iff Ky + Kg is pseudoeffective.

Proof. We may find a reduced foliation (Y, Go) associated with two bimeromorphic mor-
phisms p : (Yp, Go) = (Xo,Fo) and 7 : (Yy,Go) — (¥, G) satistying p = 7. By Lemma
3.5, Kx, + K¢, (resp., Ky + Kg) is pseudoeffective iff Ky, + Kg, is pseudoeffective. O

Lemma 3.8. Let (X, 7)) be a relatively minimal foliation. If Kx + K¢ is pseudoeffective,
then F is minimal.

Proof. Suppose that ¥ be not minimal. We will get a contradiction.
From [Brul5, Theorem 5.1], ¥ is biholomorphic to one of the following foliations:

(1) rational fibrations;
(2) nontrivial Riccati foliations;
(3) the very special foliation.

In case (1), we have (Kx + K#)F = —4 for a general fiber F of the rational fibration
generating . Hence Kx + K¢ is not pseudoeffective, a contradiction.

In case (2), we have (Kx + K#)F = -2 for a general fiber F of the rational fibration
adapted to the Riccati foliation . We get a contradiction again.

In case (3), from [Per05, Sec. 5], (X, ) has a relatively minimal A-D-E model (P2, %)
induced by a homogeneous one-form on P?

Q= Z(-Y?* - XZ + 2XY)dX + 3XZ(Y - X)dY + X(XZ - 2Y* + XY)dZ,
One has Kz + Ky, = —2L for a general line L in P2, a contradiction. O

3.2. Classification of A-D-E singularities of foliations. For convenience, we assume that
(X, ) is relatively minimal. Let (X, o) be the relatively minimal A-D-E model of (X, ¥)
with a bimeromorphic morphism p : (X, 7) — (Xo, %o)-
The morphism p can factorize through a bimeromorphic morphism p’ : (X,¥) —

(X’,F7) onto a foliation (X', ) satisfying

(1) each singularity of (X', ") has an eigenvalue, namely, it is either a reduced sin-

gularity or a singularity whose eigenvalues are positive rational numbers;
2) o: (X', F") = (Xo, Fo) consists of blowing-ups and satisfies p = op’;

X, F)

(S
P
X', F") —Z= (Xo, Fo)

(3) for any (—1)-curve E C X’ in the exceptional set of o, the contraction of E to
a point p produces a new foliation (¥, G) which has at p a singularity without
eigenvalue.

Let po be an A-D-E singularity of F( without eigenvalue in a neighbourhood Uj. From
the above discussion, o gives a partial resolution of pg:

X', F) 5 Uyt Frts prot) 25 -+ (U, Fr p1) — (Uo, For po)

where 0,1 is a blowing-up of a neighborhood U; at the A-D-E singularity p; of F; without
eigenvalue, i1 = o7, F; is the pulling-back of the foliation F;.

Let E; be the exceptional curve of o; and &; be the total transform of E; in X’. For
convenience, we also denote the strict transform of E; in X’ by E;. One can see that each

E; Cc X’ is ¥ -invariant. If not, p;_; is a singularity with an eigenvalue 1, a contradiction.
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Theorem 3.9. The singularity py is an A-D-E one without eigenvalue iff each irreducible
components of & is an F -invariant rational curve and one of the following cases occurs
(we denote a (=2)-curve by o and the other curve by e):

(Ay) & = E| + Ey + 2E5 (r = 3) where E; (resp., E;, E3) is a (=3)-curve (resp.,
(=2)-curve, (=1)-curve) with Z(F', Ey) = 1 (resp., Z(F ', E>) = 1, Z(F’, E3) = 3).

oe—0—O

Ey E; E

(A1) &1 =E 1+ +E,+Ep1 (r=n+12>2)where E| +---+ E, is a maximal simple
F'-chain with Z(F',E;) = 1 and E,., is a (=1)-curve with Z(F ', E,.+1) = 3.

o—"0o— :++ —O0—O0——o0
El E2 En—l En En+l

(Ay) &1 =E\+---+E, +E, (1 +2E,» (r=n+22>4)where E; +---+ E,_| (resp.,
E..1) is a maximal simple ¥'-chain with Z(F’,E1) = 1 (resp., Z(F ', E,41) = 1)
and E,, (resp., E,.2) is a (=3)-curve (resp., (=1)-curve) with Z(F', E,) = 2 (resp.,
Z(F', Ent2) = 3).

o—O0— -+ —O0—e—e—0
El E2 En—l En En+2 En+l

(Dy) & = Ey (r=1)where E| is a (—1)-curve with Z(F', E1) = 3.

E;

(Ds) & = Ey + Ey + 2E5 (r = 3) where E; (resp., E», E3) is a (=3)-curve (resp.,
(=2)-curve, (—1)-curve) with Z(F', E1) = 2 (resp., Z(F ', E») = 1, Z(F ', E3) = 3).

oe—0—O

E. E; E

(Dopy2) E=E +---+E,_ | +E,(r=n2>2)where E; is a (=2)-curve with Z(¥', E;) = 2
(i=1,....,n—1)and E, is a (—1)-curve with Z(¥”', E,) = 3.

o—0— - —0—®
E, E E, 1 E,

(Dyps3) Ey=E +---+E,+E,.1 +2E,» (r=n+2 > 4) where E; is a (—2)-curve with
ZF',E)=2(i=1,...,n—1) and E, (resp., Ey11, Eyy2) is a (=3)-curve (resp.,
(=2)-curve, (—=1)-curve) with Z(¥',E,) = 2 (resp., Z(F ', Epr1) = 1, Z(F ', Epy2) =
3).

o—O0— -+ —O0—0o—0—0
Ei E E.1 E, E,» E,

(Eg) & = E1 + Ey + 2E3 + 3E4 (r = 4) where E; + E3 is a maximal simple F'-chain
with Z(F',E;) = 1 and E| (resp., E4) is a (—4)-curve (resp., (—1)-curve) with
Z(F',Ey) =1 (resp., Z(F',E4) = 3).
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O——O0——eo——eo

E, Ei; E4 E

(E7) & = E| + Ey + 2E5 (r = 3) where E; (resp., Ey, E3) is a (=3)-curve (resp.,
(=2)-curve, (=1)-curve) with Z(F', Ey) = 1 (resp., Z(F ', E3) = 2, Z(F', E3) = 3).

O——eo——e

E, E3 E

(Eg) & = E| + Ey + 2E3 + 3E4 (r = 4) where E; is a (=3)-curves with Z(¥',E;) = 1
(i =1,2), and E5 (resp., E4) is a (=2)-curve (resp., (—1)-curve) with Z(¥', E3) = 2
(resp., Z(F',E4) = 3).

o—O—0——0

E, E; E, E

Proof. (&) It’s from Lemma 2.4.
(=) Consider the blowing-up o1 : (U1, F1,p1) — Uy, Fo, po)- By (2.7), one has
Z(F1,E1) = 1 + I(py) < 3. Therefore one the following cases occurs.

(1) There are exactly three singularities of 77 on Ej.

(2) There are two singularities of 7, says g and py, satisfying u,(#1,E;) = 1 and
Hp, (F1,Er) = 2.

(3) There are a unique singularity p; of ¥ with u,,, (F1, E1) < 3.

It’s easy to see that py is of type D4 in case (1).

In case (2), g has an eigenvalue by Lemma 2.3. We apply induction on the number r of
the blowing-ups and assume that p; is of type A-D-E. If p; has an eigenvalue, then p; is a
saddle-node with a weak separatrix E| ans so pg is D4 again. If p; of type Ay, then the
exceptional set of pg in X’ is as follows.

o—O0— -+ —O0—O0—eo—e
E2 E3 En En+1 En+2 El

By (2.7) again, one has
3>21+Upo) =+ D)Z(Ew)-2)+ZF',E)-1)>n+2.

Son = 1. Thus py is of type Ds . Similarly, py may also be of type D,;; if p; is of type D,,.
However, p; cannot be one of other types. If not, one can find that £; C X; is not smooth,
a contradiction.

By a similar discussion, in case (3), one can find that py may be of type A, (n > 2), Eg,
E; and Eg. m}

4. THE PROVES OF OUR THEOREMS AND COROLLARIES

Let (X, %) be a a relatively minimal foliation and (X, () be the relatively minimal
A-D-E model of (X, ¥) with a bimeromorphic morphism p : (X, ) — (Xo, o). One has

Kx + Ky = p"(Kx, + Kz)) +V

where V is a Q*-divisor supported on the exceptional set of p.
In what follows, we assume that both K¢, and Ky, + K, are pseudo-effective. Consider
the Zariski decomposition of Ky, + K¢, as in (1.2).
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Lemma 4.1. For an irreducible curve C in Xy, we have NoC < 0 iff C is a (—2)-curve as
the first component of some Fy-chain.

Proof. (=) Since NyC < 0 and Ny > 0, C is a component of Ny with C? < 0. If C is not
Fo-invariant, then

NoC = (Kx, + K5, )C = 2(p(C) -1 - Cz) + tang(Fo, C) > tang(Fo,C) = 0,

a contradiction. Therefore C is Fy-invariant.

Since (Kx, + K#,)C < 0, one has

-1 < KzC < —1-Kx,C = -2p,(C) + 1+ C>.
Thus |
0<pC) <1+ zC2.

It implies that C is a (=2)-curve or (—1)-curve. If C is a (—1)-curve, then K¢ C > 2 by
Lemma 3.5, a contradiction. Thus C is a (=2)-curve and hence K#,C = —1. By Corollary
2.7, C is the first component of an F(-chain.

(&) Since Kx,C = 0 and K¢,C = -1,

NoC < PyC + NoC = (Kx, + K5,)C = —1.
Up to now, we complete this proof. O

Lemma 4.2. These maximal simple F-chains are disjoint. Furthermore, they are con-
tained in the support of Ny. In particular, There are finite maximal A-chains.

Proof. The first part is from separatrix Theorem.

Let ® =T + --- 4+ I; be a maximal simple Fy-chain with the first component I'; and
iy =1@G=1,...,1-1). By Lemma 4.1, I'; is in Ny. Suppose that I'; be not in Ny for
some k. Without loss of generality, we assume I';_; is in Ny. So NoI['x > 0. However one
has

0> K& Ty = (Kx, + K& )Tk = Nol'y > 0,

a contradiction. ]
Let T be the sum of all curves in Ny which are not Fy-invariant. Consider a maximal

I
simple F-chain ® = } I'; as above. Let r be the minimal number such that I',,; meets

i=1

with T (if C and T are disjoint, then we take r = /). We define

- Y(r+ 1=, ifr>0,
i=1

M(®) =
0, if r=0.

It’s easy to see that
-1, ifi=1,
4.1 M@ON; =4 L, ifi=r+1,

0, ifi#l,r+1
whenever r > 0. Thus one has

0, ifi#r+1,

(42) (NO‘M(G’))F":{ )

Note that the above equalities hold also in the case that r = 0.
For any irreducible Fy-invariant C outside of ®, either Co® = 0 or Cy meets trans-
versely with the last component I'; of ®. Hence

1 .
_ e if r =1and CyI'; > 0,
3 M®)Co = { 0, otherwise.

In particular, M(®)Cy < %
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Let ©y,...,0, be all maximal simple ¥-chainx. Take
No = Np — Z M(®)).
i=1
Lemma 4.3. N, > 0.
Proof. Write

5
No=D+ Z Z
i=1
where the support of Z; is contained in ®; (i = 1,...,s) and the support of D contains no
irreducible component in ®;’s. Since Ny > 0, wehave D >0and Z; >0 (i =1,..., ).

It’s enough to prove Z; > M(0®;). Take ® = ©; and adopt all notations as above. If r = 0,
then M(®) = 0 and hence Z; > M(®). We assume that r > 0. By (4.2), one has
Zi-M@O) < (Ng—MO)I'<0
for each irreducible component I" of ®. It implies that Z; — M(®;) > 0. O

Lemma 4.4. We have (No + T)C > 0 if C occurs in one of the following cases:

(1) Cis acomponent of T.
(2) C is an irreducible component of a maximal simple Fy-chain.

Proof. (1) Let C be a component of 7. One has
(No +T)C = (Ny + C)C = (Ny + C)C = Kx,C + K5, C + C* = tang(Fo, C) + K, C.

Suppose that (ﬁo + T)C < 0. Note C is in Ny. So C? < 0. If Kx,C < 0,then Cisa
(=1)-curve and so Kx,C = —1. Hence the above inequality implies that tang(¥o,C) = 0.
Thus K7 C = 1. However K¢ C > 2 by Lemma 3.5, a contradiction.

(2) Without loss of generality, we assume C is a component of @; =I'; +--- 4+ T, says
C =T,. Let r be the minimal subscript such that I',,; meets with 7. By (4.2), one has

NOD _ 01, lfli r+ 1,
——, ifi=r+1.

Note that 7T',,; > 1 and TT; > 0 (i # r + 1). Thus one has (No +T)C > 0. m]
Lemma 4.5. Ny + T = 0.

Proof. By Lemma 4.4 and the negativity of Ny + T, we can find an Fy-invariant curve Cy
in Ny such that Cy is outside of ®;’s and

(4.4) (No+T)Co <0

whenever Ny + T # 0.
Let k be the number of the intersections of ®;’s and Cy. Let /& be the number of else
singularities of ¥ on Cy. By (4.3), one gets

— J k
“4.5) (Ng+T)Cy=Ng+T)Cy — Z M(®,)Cy > KXOCO + K-}”OCO +TCy— 5
i=1
From Cerveau-Lins Neto formula, we have
(4.6) Kx,Co + Kz, Co = =Co + 2(pu(Co) + 8(Co) =2) + Y > u(Fo, B, p).
peCo BeCo(p)
Combing (4.4), (4.5) and (4.6), one gets

k
(47) ~C+2pu(Co) +8(Co) =2+ TCo+ 3 > u(Fo.B.p) =5 <0.
peCo BeCo(p)
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Claim 1. Cy = P".

Firstly, we claim that Cy is smooth. Suppose that Cy have a singularity p. If p € ©,,
then p is not a reduced singularity of #( on ®;, a contradiction. So any simple ¥y-chain
doesn’t pass through p. Thus we have

4.8) —C(2) +2(pa(Co) + 8(Co) =2)+ TCo+ (1 + k) - ]EC <0.

From (4.8) and —C2 > 1, we get p,(Co) = 0 (i.e., Cy = P'), a contradiction. Hence Cy is
smooth.
Therefore, by (4.7), we have

k
~C% +4(pa(Co) — 1) + TCy + 3 < 0.

It implies that Cy = P! .
Let py, ..., py be the singularities of 7 on Cy outside ®;s.
Calim 2. y,, (¥, C) = 1 for each p; and h < 2.
(4.7) implies that

h
k
(4.9) ~Ci-4+TCot 5+ ; 11,(F0, Co) < 0.
If p,,(Fo, Co) = 2 for some i, then Cy is a (=1)-curve, h = 1, k < 1 and u,, (%o, Co) = 2
from (4.9). By Cerveau-Lins Neto formula,

K‘TUCO =-2 +k+/,t,,l(%,Co) <1

However, K¢, Cy > 2 by Lemma 3.5, a contradiction. Hence u,,(Fo,Co) = 1 for each p;
and h < 2.
Therefore we get

(4.10) —Cg—4+Tco+§+h<o.

Claim 3. 7 =k =1 and Cg =-2.

From separatrix Theorem (see [Brul5, Theorem 3.4] or [Cam88]), one can find that
h > 0. So one can find that —C2 < 2 by (4.10).

If £ > 2, then one can find two Fy-invariant (—2)-curves, says I';, 1>, meeting with Cy
transversely. Since I'} + I'; + Cy is negative, —Cg > 2. Thus

k
—C§—4+TCO+§+h20,

a contradiction. Hence k < 1. By Cerveau-Lins Neto formula, K Cy = -2 +k+h < 1.
From Lemma 3.5 and —C(z) < 2, one gets C(z) =-2.Soh=1land k< 1.

If k = 0, then NyCy = NoyCo < (No +T)Cp < 0. By Lemma 4.1, Cy is contained in some
simple Fp-chain, a contradiction. So k = 1.

Claim 4. Cy + O, is a simple Fy-chain.

By the above discussion, Cy has two singularities of Fo: p; and g; = @; N Cy. Let 4,

(resp., 4,,) be the eigenvalue of p; (resp., q) along Cy. More precisely, A, = —”71 by
Camacho-Sad formula where [ is the number of irreducible components of ®;. Note that
Cé = —2. By Camacho-Sad formula again, one has 4, = —%. Thus Cy + © is a simple
Fo-chain. However, ®; is a maximal simple ¥(-chain, a contradiction.

Up to now, this proof is completed. O

Proof of Theorem 1.2. From Lemma 3.8, ¥ is minimal. Lemma 4.5 implies that

No = 3 M(®,). So [No] = 0.
i=1
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If p* Ny meets with the exceptional set E of p, then p contracts some exceptional curves
to a point, says p, on a maximal simple Fy-chain. Thus p is either smooth or reduced.
However, ¥ is relatively minimal, a contradiction. Hence p* N, is disjoint from E. O

Proof of Theorem 1.4. Since Ky is pseudoeffective, h*(Kx + K) = h°(-K¢) = 0.
From Riemann-Roch formula, one has

(4.11) h(Kx + Kz) = h'(Kx + K7) + x(Ox) + p(X) 2 p(X) + x(Ox).

If P is big, then h'(Kx + K#) = 0 by Kawamata-Viehweg vanishing theorem and the fact
that [N| = 0 where P is as in (1.1). Thus one gets

(4.12) h(Kx + K7) = x(Ox) + p(X).

In the case that kod(X) > 0, one can find that Kx is pseudoeffective. If not, nKy) =0
for all n > 1, namely, kod(X) = —co, a contradiction. So Kx + K is also pseudoeffective.
In what follows, we assume that kod(X) = —co. Note that p,(X) = 0. One has

R (Kx + Kg) = pX) + 1 — g(X)

from (4.11). So Kx + K« is pesudoeffective whenever p(X) > g(X). O
Proof of Corollary 1.5. Since h°(K#) > 0, we have

R (Kx + K5) > B(Kx) = pe(X).

From (4.12), we get g(X) < 1 + p(X). O
Proof of Corollary 1.7. In this case, K& = K (see [Brul5, Ch.2, Sec.3, Example (5)]).
It’s well-known, K is a nef and big divisor. By (4.12) and a straightforwards computation,
one gets (1.4) and (1.5).
If b > 1, then (1.4) implies h°(Kx + K#) > 0. If b = 0, one gets again

h(Kx + Kr) 2 xr+K;=3(g-1)2g—-1>0

from (1.4) and the equality K% > 4g — 4 in [TTZ05, Theorem 2.1]. So Ky + Ky is pseudo-
effective. ‘
Now we will claim Kx + K is nef, i.e., the negative part N = 0. We adopt all notations
and assumptions in Sec. 3.2.
Note that each singularities of # has an eigenvalue —1 from f is semistable. The key
fact implies that
(1) No =0;
(2) the eigenvalue of each non-reduced singularity of (X', ") is 1;
(3) the singularities of (Xo, o) is at worst of type Dy,,.» from Theorem 3.9.
By (3.1), for a singularity po of type Dy,.2, the contribution of pgy to V is exactly zero.
Hence N = 0.
Since (Kx + K#)F = 4g —4 > 0 for ageneral fiber F, Kx + K¢ #uum 0, thatis, v(F) > 1.
a

5. AN EXAMPLE FOR A FOLIATION & wITH () = 0
Let Xy = P2. Consider a family of curves as follows:
Co: X+ Y +ZH + 1 X*Y? + Y* 22+ 7°X*) =0, teC!
and C,, is defined by X?Y? + Y2Z? + Z?X? = 0. The family of curves induces a foliation
Fo. More precisely, in the neighbourhood Uy = {[x,y, 1] | x,y € C}, the generator of 7 is
0 0
v=y(y 3P =t - D —x(Py + —y - D —.
Ox ay
The foliation ¥ is an A-D-E foliation. All non-reduced singularities are as follows:

Pl = [w’ wz’ 1]’ PZ = [_w7 wza 1]’ p3 = [(,L), _w29 1]5 P4 = [_w’ _wzv 1]’
ps =0’ w1l ps=[-0* w1l pr=[o’-wll ps=[-0" -l



16 JUN LU AND XIAO-HANG WU

Each p; has an eigenvalue % and lies in C,. Each reduced singularity of ¥\ has an eigen-
value —1.

Consider a minimal resolution p : (X, ) — (Xo, o) of all p;’s such that the exceptional
set of p; is Epi—1 + Ep; where Ej;i_ (resp., Ey;) is a (—2)-curve (resp., (—1)-curve) and
E»;i_1Ey; = 1. The pulling-back foliation ¥ = p*Fy is relatively minimal.

In fact, F gives a minimal normal-crossing fibration f : X — P! of genus g = 3 with

16
four singular fibers F;, = p*C, — Y E; (t = =2,—-1,2,00):
i=1

(1) F_; is areduce nodal curve consisting of four (—3)-curves;
(2) F_; is reduce nodal curve consisting of two (—4)-curves;

8
(3) Fy =2I' + Y, Eyi—; where I is a (—4)-curve meeting transversely with each Ey;_1;

i=
(4) F is airreducible nodal curve with three nodes.
We have K7, = 3L, Kx, = —3L where L is a line in P?. Hence

16 16
Ky + Ky = p"(Ky, + Kz,) + ZEi = ZE
i=1 i=1
So W(F) =0and i°(Ky + K¢) = 1.
Note that C, = 2I'y where I'j is a conic curve. One has

16
20°L=pTo=T+ Z E;.
i=1

Therefore

8
Kgr :Kf—rEp*L+F+ZE2,‘_1.
i=1
The positive and negative parts of a Zariski decomposition of K¢ are

8 8
P:pL+F+§ZE2H, N—EZEQH

i=1 i=1
respectively. Moreover, we have c%((}’:) =5, KJ% =9and y, = 3.
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