ON THE ADJOINT CANONICAL DIVISOR OF A FOLIATION

JUN LU AND XIAO HANG WU*

Dedicated to the memory of Professor Gang Xiao

Abstract. In this paper, we describe the structure of the negative part of a Zariski decomposition of $K_X + K_{\mathcal{F}}$ for a relatively minimal foliation (X, \mathcal{F}) whenever $K_X + K_{\mathcal{F}}$ is pseudoeffective.

1. Introduction

For any semistable fibration $f: X \to \mathbb{P}^1$ of genus g on a smooth algebraic surface X, [TTZ05] gives a classical inequality

$$K_f^2 \ge 4g - 4$$

where $K_f = c_1(\omega_{X/\mathbb{P}^1})$ is the relative canonical divisor. This inequality is essentially from the key fact that both K_f and $K_X + K_f$ are nef.

Naturally, we are interested in the analogues of a foliation \mathcal{F} on a smooth algebraic surface X. More precisely, we hope to investigate the *canonical divisor* $K_{\mathcal{F}}$ and the *adjoint canonical divisor* $K_X + K_{\mathcal{F}}$ of \mathcal{F} . More generally, one can define an ϵ -adjoint divisor $\epsilon K_X + K_{\mathcal{F}}$ (0 < $\epsilon \le 1$) which is studied in [SS23] for $\epsilon \ll 1$.

In particular, one has $K_{\mathcal{F}} = K_f$ for a foliation \mathcal{F} generated by the above semistable fibration $f: X \to \mathbb{P}^1$. In this case, both $K_{\mathcal{F}}$ and $K_X + K_{\mathcal{F}}$ are nef. However, they are not necessarily nef for other foliations. Therefore we need to consider the Zariski decompositions of $K_{\mathcal{F}}$ and $K_X + K_{\mathcal{F}}$ respectively whenever they are pseudoeffective.

Miyaoka's rationality criterion says that \mathcal{F} is a foliation by a rational curves if $K_{\mathcal{F}}$ is not pseudoeffective (see [Miy87] or [Bru15, Theorem 7.1]). If $K_{\mathcal{F}}$ is pseudoeffective, it has a Zariski decomposition

$$(1.1) K_{\mathcal{F}} \stackrel{num}{=} P + N$$

where

- (1) N is a \mathbb{Q}^+ -divisor and the intersection matrix of the irreducible components of N is negative definite;
- (2) P is a nef \mathbb{Q} -divisor and PN = 0 (see [Sak84, Corollary 7.5] or [Fuj79, Theorem 1.12]). P (resp., N) is called *positive* (resp., *negative*) part.

Furthermore, if \mathcal{F} is relative minimal, then N is a disjoint union of maximal \mathcal{F} -chains and the integral part $\lfloor N \rfloor = 0$ (see [McQ00] or [Bru15, Theorem 8.1]).

In this paper, we shall study mainly the *adjoint canonical divisor* $K_X + K_{\mathcal{F}}$ of a relatively minimal foliation \mathcal{F} . We assume that $K_X + K_{\mathcal{F}}$ is pseudoeffective and denote a Zariski decomposition of $K_X + K_{\mathcal{F}}$ by

$$K_X + K_{\mathcal{F}} = \overline{P} + \overline{N}$$

where \overline{P} (resp., \overline{N}) is the positive (resp., negative) part of $K_{\mathcal{F}}$. We hope to answer the following problem.

¹ This work is supported by NSFC, Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014)

² 2020 Mathematics Subject Classification. 14C21, 14D06, 14H10, 32S65, 37F75

³ Key words and phrases. foliation, fibration, canonical divisor, Chern number, Zariski decomposition.

Problem 1.1. What is the structure of the negative part \overline{N} ?

For this purpose, we will consider a bimeromorphic morphism $\rho:(X,\mathcal{F})\to (X_0,\mathcal{F}_0)$ onto a so-called *relatively minimal A-D-E model* \mathcal{F}_0 of \mathcal{F} on a smooth algebraic surface X_0 (see Definition 3.1). The adjoint canonical divisor $K_{X_0}+K_{\mathcal{F}_0}$ is also pseudoeffective and has a Zariski decomposition

$$(1.2) K_{X_0} + K_{\mathcal{F}_0} = P_0 + N_0$$

with a positive part P_0 and a negative part N_0 . One can see easily that

$$(1.3) \overline{P} = \rho^* P_0, \quad \overline{N} = \rho^* N_0 + V$$

where V is a \mathbb{Q}^+ -divisor supported on the exceptional set of ρ (see (3.1) and Theorem 3.9 for a precise expression). Therefore it's sufficient to determine the structure of N_0 .

Our main result is as follows.

Theorem 1.2. Let (X, \mathcal{F}) be a relative minimal foliation. If $K_X + K_{\mathcal{F}}$ is pseudoeffective, then \mathcal{F} is minimal and the negative part \overline{N} of the Zariski decomposition of $K_X + K_{\mathcal{F}}$ can be expressed as in (1.3) where the support of N_0 is a disjoint union of maximal simple \mathcal{F}_0 -chains (see Definition 2.1) and the integral part $\lfloor N_0 \rfloor = 0$. Furthermore, $\rho^* N_0$ is disjoint from the exceptional set of ρ .

Remark 1.3. However, it is possible that V contains some curves which are not \mathcal{F} -invariant.

An interesting question is when $K_X + K_{\mathcal{F}}$ is pseudoeffective. The following result provide an partial answer.

Theorem 1.4. Let (X, \mathcal{F}) be a relatively minimal foliation with a non-zero pseudoeffective canonical divisor $K_{\mathcal{F}}$. Set

$$\rho(X) := \frac{1}{2}(K_X + K_{\mathcal{F}})K_{\mathcal{F}}.$$

We have

$$h^0(K_X + K_{\mathcal{F}}) \ge \chi(O_X) + \rho(X).$$

The equality holds if \mathcal{F} is of general type, i.e., $P^2 > 0$ (see [Bru15, Ch 8., Sec.1]).

Therefore $K_X + K_{\mathcal{F}}$ is pseudoeffective if it satisfies one of the following conditions:

- (1) $kod(X) \ge 0$;
- (2) $\operatorname{kod}(X) = -\infty \ and \ \rho(X) \ge q(X)$,

where q(X) is the irregularity of X.

Corollary 1.5. For any relatively minimal foliation (X, \mathcal{F}) of general type with $h^0(K_{\mathcal{F}}) > 0$, we have

$$q(X) \leq 1 + \rho(X).$$

For any foliation (Y, \mathcal{G}) with a minimal model (X, \mathcal{F}) , we can define some invariants of \mathcal{G} by the adjoint canonical divisor of \mathcal{F} :

(1) adjoint numerical Kodaira dimension

$$\bar{v}(\mathcal{F}) = \begin{cases} 0, & \text{if } \overline{P} \stackrel{num}{=} 0. \\ 1, & \text{if } \overline{P} \stackrel{num}{\neq} 0 \text{ but } \overline{P}^2 = 0, \\ 2, & \text{if } \overline{P}^2 = 0. \end{cases}$$

In order to be complete, we also set $\bar{\nu}(\mathcal{F}) = -\infty$ if $K_X + K_{\mathcal{F}}$ is not pseudoeffective;

(2) adjoint Kodaira dimension

$$\bar{k}(\mathcal{F}) := \limsup_{n \to +\infty} \frac{\log h^0(X, n(K_X + K_{\mathcal{F}}))}{\log n};$$

(3) adjoint the first Chern numer $\bar{c}_1^2(\mathcal{F}) := \overline{P}^2$.

Remark 1.6. [Tan23] defines a biholomorphic invariant $c_1^2(\mathcal{F})$ for any foliation \mathcal{F} and proves that $c_1^2(\mathcal{F}) = P^2$ for the positive part P in (1.1) whenever \mathcal{F} is relatively minimal.

As an application, one can investigate an algebraic foliation generated by a semistable fibration.

Corollary 1.7. Let $f: X \to B$ be a non-trivial semistable fibration of genus $g \ge 2$ over a smooth algebraic curve B of genus b and \mathcal{F} be the foliation induced by f. Then $K_X + K_{\mathcal{F}}$ is nef and $\bar{v}(\mathcal{F}) \ge 1$. We have

(1.4)
$$h^0(K_X + K_{\mathcal{F}}) = \chi_f + K_f^2 + 3(g-1)(b-1)$$

and

(1.5)
$$\bar{c}_1^2(\mathcal{F}) = 4\left(K_f^2 + 4(g-1)(b-1)\right) \ge 0$$

where $K_f = c_1(\omega_{X/B})$ is the relative canonical divisor of f and

$$\chi_f = \deg f_* \omega_{X/B} = \chi(O_X) - (g-1)(b-1)$$

is a positive invariant (cf. [AK00, pp.6] or [BHPV04, Ch. III, Theorem 18.2]).

In particular, if $B \cong \mathbb{P}^1$, the non-negativity of $\bar{c}_1^2(\mathcal{F})$ is equivalent to the well-known inequality $K_f^2 \geq 4(g-1)$ in [TTZ05, Theorem 2.1]. They describe such fibrations satisfying $\bar{c}_1^2(\mathcal{F}) = 0$ which can be rephrased in the language of foliation theory as follows.

Corollary 1.8. Let (X, \mathcal{F}, f) be as in Corollary 1.7. Then $\bar{v}(\mathcal{F}) = 1$ iff $B \cong \mathbb{P}^1$ and X is the minimal resolution of the singularities of a double covering surface $\pi : Z \to \mathbb{P}^1 \times C$ ramified over a curve of numerical type $2F_1 + (2g + 2 - 4g(C))F_2$, and fibration f is induced by the first projection $pr_1 : \mathbb{P}^1 \times C \to \mathbb{P}^1$ where F_i is a fiber of the i-th projection of $\mathbb{P}^1 \times C$.

We will give an example for an algebraic foliation \mathcal{F} with $\bar{\nu}(\mathcal{F}) = 0$ in Sec. 5.

There are some open problem on the adjoint canonical divisor $K_X + K_F$.

Problem 1.9. When is $K_X + K_{\mathcal{F}}$ pseudoeffective for a minimal foliation \mathcal{F} ?

Problem 1.10. *Is there a foliation* \mathcal{F} *satisfying* $\bar{v}(\mathcal{F}) \neq \bar{k}(\mathcal{F})$?

Problem 1.11. What is the relation between $c_1^2(\mathcal{F})$ and $\bar{c}_1^2(\mathcal{F})$?

Problem 1.12. How to give a classification of all foliations with adjoint numerical Kodaira dimensions ≤ 1 ?

Problem 1.13. Given a foliation \mathcal{F} generated by a non-semistable fibration $f: X \to \mathbb{P}^1$. Is there an inequality similar to the classical inequality in [TTZ05, Theorem 2.1] by the non-negativity of $c_1^2(\mathcal{F})$ and $\bar{c}_1^2(\mathcal{F})$?

Problem 1.14. When does a minimal foliation has a unique relatively minimal A-D-E model up to a biholomorphic morphism?

2. Preliminaries

2.1. \mathcal{F} -invariant curves and singularities of a foliation \mathcal{F} . We recall some definitions and basic facts about foliations on a surface (see [Bru15] or [CF18, Sec. 2] for more details).

Let X be a smooth algebraic surface with a tangent bundle T_X . A foliation \mathcal{F} on X is given by a short exact sequence

$$0 \longrightarrow T_{\mathcal{F}} \longrightarrow T_X \longrightarrow I_Z \otimes N_{\mathcal{F}} \longrightarrow 0$$

where $T_{\mathcal{F}}$ and $N_{\mathcal{F}}$ are line bundles and I_Z is an ideal sheaf supported on a finite set. $K_{\mathcal{F}} := c_1(T_{\mathcal{F}}^*)$ is called the canonical divisor of \mathcal{F} .

A curve $C \subseteq X$ is said to be \mathcal{F} -invariant if the inclusion $T_{\mathcal{F}}|_{C} \to T_{X}|_{C}$ factors through T_{C} where T_{C} is the tangent bundle of C.

An \mathcal{F} -chain Θ is a Hirzebruch-Jung string $\Theta = \Gamma_1 + \cdots + \Gamma_l$ consisting of \mathcal{F} -invariant curves Γ_i 's satisfying that

- (1) all singularities of \mathcal{F} on Θ are reduced and non-degenerated;
- (2) there is only one singularity of \mathcal{F} , says $p_l \in \Gamma_l$, on $\Theta \{p_1, \dots, p_{l-1}\}$ where $p_i = \Gamma_i \cap \Gamma_{i+1}$ $(i = 1, \dots, l-1)$;
- (3) Γ_1 has only one singularity p_1 .

For convenience, Γ_1 is said to be *the first component* of Θ . More details can be found in [Bru15, Ch.8, Sec.2].

Definition 2.1. A simple \mathcal{F} -chain is an \mathcal{F} -chain consisting of \mathcal{F} -invariant (-2)-curves. We say a simple \mathcal{F} -chain is maximal if it can not be contained other simple \mathcal{F} -chains.

However, it's possible that a maximal simple \mathcal{F} -chain is contained in an \mathcal{F} -chain.

An \mathcal{F} -invariant (-1)-curve C is said to be \mathcal{F} -exceptional if the contraction of C to a point p produces a new foliation which has at p a regular point or a reduced singular point.

 \mathcal{F} is said to be reduced if all singularities of \mathcal{F} are reduced. Furthermore, a reduced foliation is called *relatively minimal* if it has no \mathcal{F} -exceptional curve. Each foliation has a relatively minimal model (see [Bru15, Proposition 5.1]). A relatively minimal foliation (X,\mathcal{F}) is said to be minimal if any bimeromorphic map $f:(X,\mathcal{F}) \dashrightarrow (Y,\mathcal{G})$ sending \mathcal{F} to a relatively minimal foliation \mathcal{G} is in fact a biholomorphic map.

Consider a blowing-up $\sigma: (\widetilde{X}, \widetilde{\mathcal{F}}, E) \to (X, \mathcal{F}, p)$ centered at a singularity p of \mathcal{F} with an exceptional curve $E \subset \widetilde{X}$ and a pulling-back foliation $\widetilde{\mathcal{F}}$. Let a(p) be the vanishing order of \mathcal{F} at p. One has

(2.1)
$$K_{\widetilde{\mathcal{F}}} = \sigma^* K_{\mathcal{F}} + (1 - l(p)) E$$

where l(p) is the *order* of \mathcal{F} at p defined by

$$l(p) = \begin{cases} a(p), & \text{if } E \text{ is } \mathcal{F}\text{-invariant,} \\ a(p) + 1, & \text{otherwise.} \end{cases}$$

See [Bru15, Ch. 2, Sec. 3] for more details.

Let U be a neighborhood in X with a local coordinate (x, y) and

$$(2.2) v = a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y} \quad (a,b \in \mathbb{C}\{x,y\})$$

be a local generator of \mathcal{F} at a singularity p = (0, 0). Let B be an \mathcal{F} -invariant branch passing through p. We take a minimal Puiseux's parametrization of B at p:

(2.3)
$$\varphi: \mathbb{D} \to B, \quad t \to (\varphi_x(t), \varphi_y(t))$$

where $\varphi_x, \varphi_y \in \mathbb{C}\{t\}$ and \mathbb{D} is a disk centered at $0 \in \mathbb{C}$. The multiplicity $\mu_p(\mathcal{F}, B)$ of \mathcal{F} at B is defined by the order of $\varphi^*(B)$ at t = 0. More precisely, one has

(2.4)
$$\mu_p(\mathcal{F}, B) = \begin{cases} \nu_0(a(\varphi_x(t), \varphi_y(t))) - \nu_0(\varphi_x(t)) + 1 & \text{if } \varphi_x(t) \neq 0, \\ \nu_0(b(\varphi_x(t), \varphi_y(t))) - \nu_0(\varphi_y(t)) + 1 & \text{if } \varphi_y(t) \neq 0, \end{cases}$$

where a, b are as in (2.2) and $\nu_0(h)$ is the order of the zero t = 0 of $h \in \mathbb{C}\{t\}$ (see [Car94]). $\mu_p(\mathcal{F}, B) \ge 0$ the equality holds iff p is not a singularity of \mathcal{F} .

Remark 2.2. For a smooth point p of B, $\mu_p(\mathcal{F}, B) = Z(\mathcal{F}, B, p)$ where $Z(\mathcal{F}, B, p)$ is the Gomez-Mont-Seade-Verjovsky index (cf. [Bru15, Bru97, GSV91]). If B is a smooth irreducible \mathcal{F} -invariant curve, we denote the sum of $\mu_p(\mathcal{F}, B)$'s for all $p \in B$ by $Z(\mathcal{F}, B)$.

Let $\sigma: \widetilde{X} \to X$ be a blowing-up centered at $p \in B$ with an exceptional curve E and \widetilde{B} be the strict transform of B with the only one point $\widetilde{p} := E \cap \widetilde{B}$. From [Car94], one has

(2.5)
$$\mu_p(\mathcal{F}, B) = \mu_{\tilde{p}}(\widetilde{\mathcal{F}}, \widetilde{B}) + m_p(B)(l(p) - 1)$$

where $m_p(B)$ is the multiplicity of B at p and $\widetilde{\mathcal{F}}$ is the pulling-back foliation of \mathcal{F} .

П

Lemma 2.3. $\mu_p(\mathcal{F}, B) = 1$ iff either p has a nonzero eigenvalue or p is a saddle-node with a strong separatrix B.

In particular, in this case, if $m_p(B) \ge 2$, then p is a dicritical singularity with a local generator $v = x \frac{\partial}{\partial x} + \lambda y \frac{\partial}{\partial y}$ for $\lambda \in \mathbb{Q}^+$ by choosing a proper coordinate.

Proof. Firstly, we consider the case for $m_p(B) = 1$. By choosing a suitable coordinate, we can take the minimal parametrization (2.3) as $\varphi(t) = (t, 0)$. Thus the local generator (2.2) of \mathcal{F} can be taken as

$$v=(x^mw(x)+yu(x,y))\frac{\partial}{\partial x}+yv(x,y)\frac{\partial}{\partial y},\quad u,v\in\mathbb{C}\{x,y\},\ w\in\mathbb{C}\{x\},\ w(0)\neq0.$$

By (2.4), we get $\mu_p(\mathcal{F}, B) = m$. In particular, $\mu_p(\mathcal{F}.B) = 1$ iff either the eigenvalue of p is nonzero or p is a saddle-node with a strong separatrix B.

So it's enough to consider the case for $m_p(B) \ge 2$ from the above discussion.

(\iff) Since $m_p(B) \ge 2$, p is a singularity of \mathcal{F} with a local generator $v = x \frac{\partial}{\partial x} + \lambda y \frac{\partial}{\partial y}$ for $\lambda \in \mathbb{Q}^+$ by choosing a proper coordinate (see [Bru15, pp. 7-8]). Thus (2.4) gives $\mu_p(\mathcal{F}, B) = 1$.

 (\Longrightarrow) If $l(p) \ge 2$, then (2.5) implies that l(p) = 2 and $m_p(B) = 1$, a contradiction. So l(p) = 1. If the eigenvalue of p is nonzero, the proof is finished. If p is a saddle-node, then B is a strong separatrix by [Bru15, pp. 31] and so $m_p(B) = 1$, a contradiction.

In what follows, we assume p is a nilpotent singularity. By choosing a suitable coordinate, the local generator of \mathcal{F} can be written as

$$v = (y + u(x, y)) \frac{\partial}{\partial x} + v(x, y) \frac{\partial}{\partial y}$$

where u, v are holomorphic functions which vanish at (0,0) up to order 2. Consider the minimal parametrization (2.3) of B at p. In this case, $\varphi_x \varphi_v \neq 0$. From (2.4), one has

$$v_0(\varphi_v(t) + u(\varphi_x(t), \varphi_v(t))) = v_0(\varphi_x(t)), \quad v_0(v(\varphi_x(t), \varphi_v(t))) = v_0(\varphi_v(t)).$$

Hence

$$v_0(\varphi_v(t)) = v_0(\varphi_x(t)), \quad 2v_0(\varphi_x(t)) \le v_0(\varphi_v(t)).$$

It implies that $v_0(\varphi_x(t)) = v_0(\varphi_y(t)) = 0$, a contradiction.

This proof is completed.

Due to Camacho-Lins Neto-Sad's formula in nondicritical case ([CLS84, Theorem 1]), we have a modified version which can be rephrased as follows.

Lemma 2.4 (Camacho-Lins Neto-Sad's formula). Consider a sequence of blowing ups

$$X_r \xrightarrow{\sigma_r} (X_{r-1}, p_{r-1}) \xrightarrow{\sigma_{r-1}} \cdots (X_1, p_1) \xrightarrow{\sigma_1} (X_0, p_0) := (X, p)$$

where σ_{i+1} is a blowing-up centered at a point $p_i \in X_i$ and $(X_r, \widetilde{\mathcal{F}})$ is the pulling-back foliation of (X, \mathcal{F}) . Let E_i (resp., \mathcal{E}_i) in X_r be the strict (resp., total) transform of the exceptional curve of σ_i . Write $\mathcal{E}_1 = \sum_{i=1}^r n_i E_i$.

If each E_i is $\widetilde{\mathcal{F}}$ -invariant, then the order l(p) of the singularity p satisfies

(2.6)
$$1 + l(p) = \sum_{i=1}^{r} \sum_{q \in E_i} n_i \left(\mu_q(\widetilde{\mathcal{F}}, E_i) - \mu_q(\mathcal{E}_1) \right)$$

where $\mu_a(\mathcal{E}_1)$ is the Milnor's number of the support of \mathcal{E}_1 at q, namely,

$$\mu_q(\mathcal{E}_1) = \begin{cases} 1, & \text{if } q \text{ is a corner,} \\ 0, & \text{else.} \end{cases}$$

Proof. It's similar to the proof of [CLS84, Theorem 1].

Recall the notation in Remark 2.2. We set

$$Z(\widetilde{\mathcal{F}},E_i):=\sum_{q\in E_i}\mu_q(\widetilde{\mathcal{F}},E_i).$$

The formula (2.6) is equivalent to

(2.7)
$$1 + l(p) = \sum_{i=1}^{r} n_i (Z(\widetilde{\mathcal{F}}, E_i) - k_i)$$

where k_i is the number of irreducible components of \mathcal{E}_1 meeting transversely with E_i .

2.2. **Cerveau-Lins Neto's formula.** Due to Cerveau-Lins Neto formula for a foliation on \mathbb{P}^2 (see [CLN91, pp. 885]), we have a generalized result as follows.

Lemma 2.5 (Cerveau-Lins Neto formula). For any irreducible \mathcal{F} -invariant curve C, we have

$$2-2g(C)+K_{\mathcal{F}}C=\sum_{p\in C}\sum_{B\in C(p)}\mu_p(\mathcal{F},B)$$

where C(p) is the set of analytic branches of C passing through p and g(C) is the geometric genus of C.

Proof. Let $\sigma : \widetilde{X} \to X$ be a blowing-up centered at $p \in C$ with an exceptional curve E. Let $C(p) = \{B_1, \dots, B_k\}$ and \widetilde{B}_i be the strict transform of B_i with the only one point $\widetilde{p}_i := E \cap \widetilde{B}_i$. By (2.5),

$$\mu_p(\mathcal{F}, B_i) = \mu_{\tilde{p}_i}(\widetilde{\mathcal{F}}, \widetilde{B}_i) + m_i(l(p) - 1)$$

where m_i is the multiplicity of B_i at p and $\widetilde{\mathcal{F}}$ is the pulling-back foliation of \mathcal{F} .

Let \widetilde{C} be the strict transform of C. By (2.1) and $\sigma^*C = \widetilde{C} + (\sum_{i=1}^k m_i)E$, we get

$$K_{\mathcal{F}}C = K_{\widetilde{\mathcal{F}}}\widetilde{C} + \left(\sum_{i=1}^k m_i\right)(l(p)-1).$$

So

$$\sum_{p \in C} \sum_{B \in C(p)} \mu_p(\mathcal{F}, B) - K_{\mathcal{F}}C = \sum_{\widetilde{p} \in \widetilde{C}} \sum_{\widetilde{B} \in \widetilde{C}(\widetilde{p})} \mu_{\widetilde{p}}(\widetilde{\mathcal{F}}, \widetilde{B}) - K_{\widetilde{\mathcal{F}}}\widetilde{C}.$$

Therefore, it's enough to consider the case that \mathcal{F} is reduced and C is smooth. In this case, $C(p) = \{C\}$ and $\mu_p(\mathcal{F}, C) = Z(\mathcal{F}, C, p)$ for each singularity p of \mathcal{F} . From [Bru15, Ch. 2, Proposition 3],

$$2-2g(C)+K_{\mathcal{F}}C=\sum_{p\in C}Z(\mathcal{F},C,p)=\sum_{p\in C}\mu_p(\mathcal{F},C).$$

This proof is finished.

As the applications of Cerveau-Lins Neto formula, one can obtain the following consequences which are essentially due to [McQ08, Lemma II. 3.2, Proposition III.1.2, Theorem IV.1.1].

Corollary 2.6. For any irreducible \mathcal{F} -invariant curve C, we have $K_{\mathcal{F}}C \geq -2$. The equality holds iff

- (1) $C \cong \mathbb{P}^1 \text{ and } C^2 = 0$;
- (2) there is no singularity of \mathcal{F} on C;
- (3) $K_{\mathcal{F}}$ is not pseudo-effective and hence \mathcal{F} is a foliation by rational curves.

Proof. From Lemma 2.5, $K_{\mathcal{F}}C \ge 2g(C) - 2 \ge -2$. If $K_{\mathcal{F}}C = -2$, then g(C) = 0 and $\mu_p(\mathcal{F}, B) = 0$ for each $p \in C$ and $B \in C(p)$. So C contains no singularity of \mathcal{F} and hence C is smooth. Thus $C \cong \mathbb{P}^1$. By Camacho-Sad formula ([CS82, Suw98]), $C^2 = 0$ and so C is nef. Thus $K_{\mathcal{F}}C < 0$ implies that $K_{\mathcal{F}}$ is not pseudo-effective. From [Miy87], \mathcal{F} is a foliation induced by a family of rational curves.

Conversely, for an irreducible \mathcal{F} -invariant curve satisfying the above conditions (1) and (2), one can get $K_{\mathcal{F}}C = -2$ by Cerveau-Lins Neto formula.

Corollary 2.7. Assume that $K_{\mathcal{F}}$ is pseudo-effective. We have $K_{\mathcal{F}}C \geq -1$ for any irreducible \mathcal{F} -invariant curve C. The equality holds iff one of the following cases occurs.

- (1) C is the first component of an \mathcal{F} -chain;
- (2) C is an \mathcal{F} -exceptional curve with only one singularity.

Proof. By Corollary 2.6, $K_{\mathcal{F}}C \ge -1$. Assume that $K_{\mathcal{F}}C = -1$. From Lemma 2.5, g(C) = 0 and C has only one singularity p of \mathcal{F} with $\mu_p(\mathcal{F}, B) = 1$ where B is a unique branch of C passing through p. Since $K_{\mathcal{F}}$ is pseudo-effective, $C^2 < 0$.

If C is smooth at p, then $C \cong \mathbb{P}^1$ by g(C) = 0. From Camacho-Sad formula, one can see that p is a reduced singularity with an eigenvalue $\lambda = C^2 < 0$. Namely, C occurs in one of the above cases.

It's enough to claim that C is smooth at p. If not, the local generator of \mathcal{F} at p can be taken as $v = x \frac{\partial}{\partial x} + \lambda y \frac{\partial}{\partial y}$ ($\lambda \in \mathbb{Q}^+$) by Lemma 2.3. Consider the resolution of p as in [Bru15, pp. 7-8], denoted by $\hat{\pi}: (\widehat{X}, \widehat{\mathcal{F}}) \to (X, \mathcal{F})$. Let \widehat{C} be the strict transform of C under $\widehat{\pi}$. One can see that \widehat{C} has no singularity of $\widehat{\mathcal{F}}$. So $K_{\widehat{\mathcal{F}}}\widehat{C} = -2$ by Cerveau-Lins Neto formula. Corollary 2.6 implies that $\widehat{C}^2 = 0$. So $C^2 \ge 0$, a contradiction.

Conversely, any \mathcal{F} -invariant curve C in case (1) or (2) satisfies $K_{\mathcal{F}}C = -1$ from Cerveau-Lins Neto formula.

3. A-D-E singularities of foliations

3.1. **Relatively minimal A-D-E model of a foliation.** Let p be a singularity of \mathcal{F} in a neighborhood U. From [Sei68] or [Bru15, Theorem 1.1], one has a minimal resolution of the singularity p:

$$(U_r,\mathcal{F}_r) \xrightarrow{\sigma_r} (U_{r-1},\mathcal{F}_{r-1},p_{r-1}) \xrightarrow{\sigma_{r-1}} \cdots (U_1,\mathcal{F}_1,p_1) \xrightarrow{\sigma_1} (U_0,\mathcal{F}_0,p_0) := (U,\mathcal{F},p)$$

where σ_{i+1} is a blowing-up of a neighborhood U_i at the non-reduced singularity p_i of \mathcal{F}_i with order l_i , $\mathcal{F}_{i+1} = \sigma_{i+1}^* \mathcal{F}_i$ is the pulling-back of the foliation \mathcal{F}_i and (U_r, \mathcal{F}_r) has at worst reduced singularities $(i = 0, \dots, r-1)$.

Definition 3.1. For a given positive integer k, p is said to be a k-simple singularity of \mathcal{F} if $l_i \leq k$ for $i = 0, 1, \ldots, r-1$. For convenience, a 2-simple singularity is also called an A-D-E singularity of \mathcal{F} .

We say \mathcal{F} is an A-D-E foliation if each singularity of \mathcal{F} is an A-D-E singularity. (X,\mathcal{F}) is said to be a relatively minimal A-D-E foliation if it's an A-D-E foliation and any bimeromorphic morphism $(X,\mathcal{F}) \to (Y,\mathcal{G})$ onto an A-D-E foliation (Y,\mathcal{G}) is in fact a biholomorphism.

Example 3.2. A 1-simple singularity p occurs in one of the following cases:

- (1) *p is a reduced singularity;*
- (2) p has a Poincaré-Dulac form xdy (ny + xⁿ)dx by choosing a suitable local coordinate

We will classify all A-D-E singularities of a foliation in Sec. 3.2. Here are some classical examples.

Example 3.3. Take $v = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}$ in (2.2) for a given function $f \in \mathbb{C}\{x,y\}$. The branch B defined by f = 0 is \mathcal{F} -invariant. In this case, p is an A-D-E singularity of \mathcal{F} iff it is a simple singularity of the curve B (see [BHPV04, Ch. II, Sec. 8]).

Example 3.4. If p is a reduced singularity or a singularity whose eigenvalues are positive rational numbers, then it is an A-D-E singularity (see [Bru15, pp. 7-8]).

Lemma 3.5. Let (X, F) be a reduced foliation.

- (1) There is a bimeromorphic morphism $\rho:(X,\mathcal{F})\to (X_0,\mathcal{F}_0)$ onto a relatively minimal A-D-E foliation (X_0,\mathcal{F}_0) . Therefore each foliation has a relatively minimal A-D-E model.
- (2) $K_X + K_{\mathcal{F}} = \rho^*(K_{X_0} + K_{\mathcal{F}_0}) + V$ for some \mathbb{Q}^+ -divisor V supported on the exceptional set of ρ .
- (3) $K_X + K_{\mathcal{F}}$ is pseudoeffective iff $K_{X_0} + K_{\mathcal{F}_0}$ is pseudoeffective.
- (4) For any (-1)-curve $E \subset X_0$, one has $K_{\mathcal{F}_0}E \geq 2$.

Proof. (1) It's obvious that (X, \mathcal{F}) is an A-D-E foliation from Example 3.2. If it is not a relatively minimal A-D-E foliation, then we can find a (-1)-curve whose contraction produces a new A-D-E foliation. One can iterate the contraction procedure and must stop it after finite steps because the rank of the Néron-Severi group of the surface is strictly monotonic decreasing. Thus we get a relatively minimal A-D-E foliation (X_0, \mathcal{F}_0) with a bimeromorphic morphism $\rho: (X, \mathcal{F}) \to (X_0, \mathcal{F}_0)$.

(2) By the above discussion, ρ factorizes through some blowing-ups:

$$(X,\mathcal{F}) := (X_r,\mathcal{F}_r) \xrightarrow{\sigma_r} (X_{r-1},\mathcal{F}_{r-1}) \xrightarrow{\sigma_{r-1}} \cdots (X_1,\mathcal{F}_1) \xrightarrow{\sigma_1} (X_0,\mathcal{F}_0).$$

Let $E_i \subset X_i$ be the exceptional curve of the blowing-up σ_i centred at a point $p_{i-1} \in X_{i-1}$ and \mathcal{E}_i be the total transform of E_i in X ($i=1,\ldots,r$). By (2.1), one gets $K_X+K_{\mathcal{F}}=\rho^*(K_{X_0}+K_{\mathcal{F}_0})+V$ where

(3.1)
$$V = \sum_{i=1}^{r} (2 - l(p_{i-1})) \mathcal{E}_i.$$

Note that each p_{i-1} is an A-D-E singularity and hence $l(p_{i-1}) \le 2$. So V is a \mathbb{Q}^+ -divisor.

(3) (\Longrightarrow) Assume that $K_X + K_{\mathcal{F}}$ is pseudoeffective. For any ample divisor H_0 in X_0 , $\rho^* H_0$ is nef. So one has

$$(K_{X_0} + K_{\mathcal{F}_0})H_0 = (K_X + K_{\mathcal{F}})\rho^* H_0 \ge 0.$$

 (\Leftarrow) Assume that $K_{X_0} + K_{\mathcal{F}_0}$ is pseudoeffective. Consider the Zariski decomposition (1.2) of $K_{X_0} + K_{\mathcal{F}_0}$. Thus we have

$$K_X + K_{\mathcal{F}} = \rho^*(P_0) + (\rho^* N_0 + V).$$

For any ample divisor $H \subset X$, one can see that

$$(K_X + K_{\mathcal{F}})H \ge \rho^* P_0 \cdot H \ge 0$$

from $\rho^* P_0$ is nef.

(4) Let $E \subset X_0$ be a (-1)-curve. Consider a contraction $\sigma: (X_0, \mathcal{F}_0, E) \to (Y, \mathcal{G}, p)$ sending E to a point $p = \sigma(E)$. It produces a new foliation \mathcal{G} with a singularity p with order l. The minimality of the A-D-E foliation \mathcal{F}_0 implies that $l \geq 3$. By (2.1), one has $K_{\mathcal{F}_0}E = l - 1 \geq 2$.

Remark 3.6. However the relatively minimal A-D-E model of a foliation is not necessarily unique. For example, we consider a Riccati foliation \mathcal{F}_{λ} on $X = \mathbb{P}^1 \times \mathbb{P}^1$, defined by $x \frac{\partial}{\partial x} + \lambda y \frac{\partial}{\partial y}$ ($\lambda \in \mathbb{C}$ and $\lambda \neq 0$), with respect to a ruling map

$$pr_1: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1, \quad (x, y) \to y.$$

 \mathcal{F}_{λ} is a relatively minimal A-D-E foliation.

We have a bimeromorphic map $\sigma:(X,\mathcal{F}_{\lambda-1}) \to (X,\mathcal{F}_{\lambda})$ sending (x,y) to (x,xy) for each $\lambda \neq 0,1$.

Corollary 3.7. Given a bimeromorphic map $\sigma: (Y, \mathcal{G}) \dashrightarrow (X_0, \mathcal{F}_0)$ from a relatively minimal A-D-E foliation (Y, \mathcal{G}) . $K_{X_0} + K_{\mathcal{F}_0}$ is pseudoeffective iff $K_Y + K_{\mathcal{G}}$ is pseudoeffective.

Proof. We may find a reduced foliation (Y_0, \mathcal{G}_0) associated with two bimeromorphic morphisms $\rho: (Y_0, \mathcal{G}_0) \to (X_0, \mathcal{F}_0)$ and $\tau: (Y_0, \mathcal{G}_0) \to (Y, \mathcal{G})$ satisfying $\rho = \sigma \tau$. By Lemma 3.5, $K_{X_0} + K_{\mathcal{F}_0}$ (resp., $K_Y + K_{\mathcal{G}}$) is pseudoeffective iff $K_{Y_0} + K_{\mathcal{G}_0}$ is pseudoeffective.

Lemma 3.8. Let (X, \mathcal{F}) be a relatively minimal foliation. If $K_X + K_{\mathcal{F}}$ is pseudoeffective, then \mathcal{F} is minimal.

Proof. Suppose that \mathcal{F} be not minimal. We will get a contradiction.

From [Bru15, Theorem 5.1], \mathcal{F} is biholomorphic to one of the following foliations:

- (1) rational fibrations;
- (2) nontrivial Riccati foliations;
- (3) the very special foliation.

In case (1), we have $(K_X + K_{\mathcal{F}})F = -4$ for a general fiber F of the rational fibration generating \mathcal{F} . Hence $K_X + K_{\mathcal{F}}$ is not pseudoeffective, a contradiction.

In case (2), we have $(K_X + K_{\mathcal{F}})F = -2$ for a general fiber F of the rational fibration adapted to the Riccati foliation \mathcal{F} . We get a contradiction again.

In case (3), from [Per05, Sec. 5], (X, \mathcal{F}) has a relatively minimal A-D-E model ($\mathbb{P}^2, \mathcal{F}_0$) induced by a homogeneous one-form on \mathbb{P}^2

$$\Omega := Z(-Y^2 - XZ + 2XY)dX + 3XZ(Y - X)dY + X(XZ - 2Y^2 + XY)dZ,$$

One has $K_{\mathbb{P}^2} + K_{\mathcal{F}_0} = -2L$ for a general line L in \mathbb{P}^2 , a contradiction.

3.2. Classification of A-D-E singularities of foliations. For convenience, we assume that (X, \mathcal{F}) is relatively minimal. Let (X_0, \mathcal{F}_0) be the relatively minimal A-D-E model of (X, \mathcal{F}) with a bimeromorphic morphism $\rho: (X, \mathcal{F}) \to (X_0, \mathcal{F}_0)$.

The morphism ρ can factorize through a bimeromorphic morphism $\rho':(X,\mathcal{F})\to (X',\mathcal{F}')$ onto a foliation (X',\mathcal{F}') satisfying

- (1) each singularity of (X', \mathcal{F}') has an eigenvalue, namely, it is either a reduced singularity or a singularity whose eigenvalues are positive rational numbers;
- (2) $\sigma: (X', \mathcal{F}') \to (X_0, \mathcal{F}_0)$ consists of blowing-ups and satisfies $\rho = \sigma \rho'$;

$$(X,\mathcal{F})$$

$$\downarrow^{\rho}$$

$$(X',\mathcal{F}') \xrightarrow{\sigma} (X_0,\mathcal{F}_0)$$

(3) for any (-1)-curve $E \subset X'$ in the exceptional set of σ , the contraction of E to a point p produces a new foliation (Y, \mathcal{G}) which has at p a singularity without eigenvalue.

Let p_0 be an A-D-E singularity of \mathcal{F}_0 without eigenvalue in a neighbourhood U_0 . From the above discussion, σ gives a partial resolution of p_0 :

$$(X',\mathcal{F}') \xrightarrow{\sigma_r} (U_{r-1},\mathcal{F}_{r-1},p_{r-1}) \xrightarrow{\sigma_{r-1}} \cdots (U_1,\mathcal{F}_1,p_1) \xrightarrow{\sigma_1} (U_0,\mathcal{F}_0,p_0)$$

where σ_{i+1} is a blowing-up of a neighborhood U_i at the A-D-E singularity p_i of \mathcal{F}_i without eigenvalue, $\mathcal{F}_{i+1} = \sigma_{i+1}^* \mathcal{F}_i$ is the pulling-back of the foliation \mathcal{F}_i .

Let E_i be the exceptional curve of σ_i and \mathcal{E}_i be the total transform of E_i in X'. For convenience, we also denote the strict transform of E_i in X' by E_i . One can see that each $E_i \subset X'$ is \mathcal{F}' -invariant. If not, p_{i-1} is a singularity with an eigenvalue 1, a contradiction.

Theorem 3.9. The singularity p_0 is an A-D-E one without eigenvalue iff each irreducible components of \mathcal{E}_1 is an $\widetilde{\mathcal{F}}$ -invariant rational curve and one of the following cases occurs (we denote a (-2)-curve by \circ and the other curve by \bullet):

(A₂) $\mathcal{E}_1 = E_1 + E_2 + 2E_3$ (r = 3) where E_1 (resp., E_2 , E_3) is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z(\mathcal{F}', E_1) = 1$ (resp., $Z(\mathcal{F}', E_2) = 1$, $Z(\mathcal{F}', E_3) = 3$).

$$E_1$$
 E_3 E_2

 (A_{2n+1}) $\mathcal{E}_1 = E_1 + \dots + E_n + E_{n+1}$ $(r = n+1 \ge 2)$ where $E_1 + \dots + E_n$ is a maximal simple \mathcal{F}' -chain with $Z(\mathcal{F}', E_1) = 1$ and E_{n+1} is a (-1)-curve with $Z(\mathcal{F}', E_{n+1}) = 3$.

(A_{2n}) $E_1 = E_1 + \dots + E_n + E_{n+1} + 2E_{n+2}$ ($r = n + 2 \ge 4$) where $E_1 + \dots + E_{n-1}$ (resp., E_{n+1}) is a maximal simple \mathcal{F}' -chain with $Z(\mathcal{F}', E_1) = 1$ (resp., $Z(\mathcal{F}', E_{n+1}) = 1$) and E_n (resp., E_{n+2}) is a (-3)-curve (resp., (-1)-curve) with $Z(\mathcal{F}', E_n) = 2$ (resp., $Z(\mathcal{F}', E_{n+2}) = 3$).

(D₄) $\mathcal{E}_1 = E_1 \ (r = 1) \ where \ E_1 \ is \ a \ (-1)$ -curve with $Z(\mathcal{F}', E_1) = 3$.

(D₅) $\mathcal{E}_1 = E_1 + E_2 + 2E_3$ (r = 3) where E_1 (resp., E_2 , E_3) is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z(\mathcal{F}', E_1) = 2$ (resp., $Z(\mathcal{F}', E_2) = 1$, $Z(\mathcal{F}', E_3) = 3$).

$$E_1$$
 E_3 E_2

 (D_{2n+2}) $\mathcal{E}_1 = E_1 + \dots + E_{n-1} + E_n \ (r = n \ge 2) \ where \ E_i \ is \ a \ (-2)$ -curve with $Z(\mathcal{F}', E_i) = 2$ $(i = 1, \dots, n-1) \ and \ E_n \ is \ a \ (-1)$ -curve with $Z(\mathcal{F}', E_n) = 3$.

 (D_{2n+3}) $\mathcal{E}_1 = E_1 + \dots + E_n + E_{n+1} + 2E_{n+2}$ $(r = n + 2 \ge 4)$ where E_i is a (-2)-curve with $Z(\mathcal{F}', E_i) = 2$ $(i = 1, \dots, n-1)$ and E_n (resp., E_{n+1} , E_{n+2}) is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z(\mathcal{F}', E_n) = 2$ (resp., $Z(\mathcal{F}', E_{n+1}) = 1$, $Z(\mathcal{F}', E_{n+2}) = 3$).

(E₆) $\mathcal{E}_1 = E_1 + E_2 + 2E_3 + 3E_4$ (r = 4) where $E_2 + E_3$ is a maximal simple \mathcal{F}' -chain with $Z(\mathcal{F}', E_2) = 1$ and E_1 (resp., E_4) is a (-4)-curve (resp., (-1)-curve) with $Z(\mathcal{F}', E_1) = 1$ (resp., $Z(\mathcal{F}', E_4) = 3$).

(E₇) $\mathcal{E}_1 = E_1 + E_2 + 2E_3$ (r = 3) where E_1 (resp., E_2 , E_3) is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z(\mathcal{F}', E_1) = 1$ (resp., $Z(\mathcal{F}', E_2) = 2$, $Z(\mathcal{F}', E_3) = 3$).

(E₈) $\mathcal{E}_1 = E_1 + E_2 + 2E_3 + 3E_4$ (r = 4) where E_i is a (-3)-curves with $Z(\mathcal{F}', E_i) = 1$ (i = 1, 2), and E_3 (resp., E_4) is a (-2)-curve (resp., (-1)-curve) with $Z(\mathcal{F}', E_3) = 2$ (resp., $Z(\mathcal{F}', E_4) = 3$).

$$E_1$$
 E_3 E_4 E_2

Proof. (\iff) It's from Lemma 2.4.

 (\Longrightarrow) Consider the blowing-up $\sigma_1:(U_1,\mathcal{F}_1,p_1)\to (U_0,\mathcal{F}_0,p_0)$. By (2.7), one has $Z(\mathcal{F}_1,E_1)=1+l(p_0)\leq 3$. Therefore one the following cases occurs.

- (1) There are exactly three singularities of \mathcal{F}_1 on E_1 .
- (2) There are two singularities of \mathcal{F}_1 , says q and p_1 , satisfying $\mu_q(\mathcal{F}_1, E_1) = 1$ and $\mu_{p_1}(\mathcal{F}_1, E_1) = 2$.
- (3) There are a unique singularity p_1 of \mathcal{F}_1 with $\mu_{p_1}(\mathcal{F}_1, E_1) \leq 3$.

It's easy to see that p_0 is of type D_4 in case (1).

In case (2), q has an eigenvalue by Lemma 2.3. We apply induction on the number r of the blowing-ups and assume that p_1 is of type A-D-E. If p_1 has an eigenvalue, then p_1 is a saddle-node with a weak separatrix E_1 and so p_0 is D_4 again. If p_1 of type A_{2n+1} , then the exceptional set of p_0 in X' is as follows.

By (2.7) again, one has

$$3 \ge 1 + l(p_0) \ge (n+1)(Z(E_{n+2}) - 2) + (Z(\mathcal{F}', E_1) - 1) \ge n + 2.$$

So n=1. Thus p_0 is of type D_5 . Similarly, p_0 may also be of type D_{n+2} if p_1 is of type D_n . However, p_1 cannot be one of other types. If not, one can find that $E_1 \subset X_1$ is not smooth, a contradiction.

By a similar discussion, in case (3), one can find that p_0 may be of type A_n ($n \ge 2$), E_6 , E_7 and E_8 .

4. The proves of our Theorems and Corollaries

Let (X, \mathcal{F}) be a relatively minimal foliation and (X_0, \mathcal{F}_0) be the relatively minimal A-D-E model of (X, \mathcal{F}) with a bimeromorphic morphism $\rho : (X, \mathcal{F}) \to (X_0, \mathcal{F}_0)$. One has

$$K_X + K_{\mathcal{F}} = \rho^* (K_{X_0} + K_{\mathcal{F}_0}) + V$$

where V is a \mathbb{Q}^+ -divisor supported on the exceptional set of ρ .

In what follows, we assume that both $K_{\mathcal{F}_0}$ and $K_{X_0} + K_{\mathcal{F}_0}$ are pseudo-effective. Consider the Zariski decomposition of $K_{X_0} + K_{\mathcal{F}_0}$ as in (1.2).

Lemma 4.1. For an irreducible curve C in X_0 , we have $N_0C < 0$ iff C is a (-2)-curve as the first component of some \mathcal{F}_0 -chain.

Proof. (\Longrightarrow) Since $N_0C < 0$ and $N_0 \ge 0$, C is a component of N_0 with $C^2 < 0$. If C is not \mathcal{F}_0 -invariant, then

$$N_0C = (K_{X_0} + K_{\mathcal{F}_0})C = 2(p_a(C) - 1 - C^2) + tang(\mathcal{F}_0, C) \ge tang(\mathcal{F}_0, C) \ge 0,$$

a contradiction. Therefore C is \mathcal{F}_0 -invariant.

Since $(K_{X_0} + K_{\mathcal{F}_0})C < 0$, one has

$$-1 \le K_{\mathcal{F}_0}C \le -1 - K_{X_0}C = -2p_a(C) + 1 + C^2.$$

Thus

$$0 \le p_a(C) \le 1 + \frac{1}{2}C^2.$$

It implies that C is a (-2)-curve or (-1)-curve. If C is a (-1)-curve, then $K_{\mathcal{F}_0}C \geq 2$ by Lemma 3.5, a contradiction. Thus C is a (-2)-curve and hence $K_{\mathcal{F}_0}C = -1$. By Corollary 2.7, C is the first component of an \mathcal{F}_0 -chain.

$$(\longleftarrow)$$
 Since $K_{X_0}C = 0$ and $K_{\mathcal{F}_0}C = -1$,

$$N_0C \le P_0C + N_0C = (K_{X_0} + K_{\mathcal{F}_0})C = -1.$$

Up to now, we complete this proof.

Lemma 4.2. These maximal simple \mathcal{F}_0 -chains are disjoint. Furthermore, they are contained in the support of N_0 . In particular, There are finite maximal A-chains.

Proof. The first part is from separatrix Theorem.

Let $\Theta = \Gamma_1 + \cdots + \Gamma_l$ be a maximal simple \mathcal{F}_0 -chain with the first component Γ_1 and $\Gamma_i\Gamma_{i+1} = 1$ $(i = 1, \dots, l-1)$. By Lemma 4.1, Γ_1 is in N_0 . Suppose that Γ_k be not in N_0 for some k. Without loss of generality, we assume Γ_{k-1} is in N_0 . So $N_0\Gamma_k > 0$. However one has

$$0 \ge K_{\mathcal{F}_0} \Gamma_k = (K_{X_0} + K_{\mathcal{F}_0}) \Gamma_k \ge N_0 \Gamma_k > 0,$$

a contradiction.

Let T be the sum of all curves in N_0 which are not \mathcal{F}_0 -invariant. Consider a maximal simple \mathcal{F}_0 -chain $\Theta = \sum_{i=1}^{l} \Gamma_i$ as above. Let r be the minimal number such that Γ_{r+1} meets with T (if C and T are disjoint, then we take r = l). We define

$$M(\Theta) := \begin{cases} \frac{1}{r+1} \sum_{i=1}^{r} (r+1-i)\Gamma_i, & \text{if } r > 0, \\ 0, & \text{if } r = 0. \end{cases}$$

It's easy to see that

(4.1)
$$M(\Theta)\Gamma_{i} = \begin{cases} -1, & \text{if } i = 1, \\ \frac{1}{r+1}, & \text{if } i = r+1, \\ 0, & \text{if } i \neq 1, r+1 \end{cases}$$

whenever r > 0. Thus one has

(4.2)
$$(N_0 - M(\Theta))\Gamma_i = \begin{cases} 0, & \text{if } i \neq r+1, \\ -\frac{1}{r+1}, & \text{if } i = r+1. \end{cases}$$

Note that the above equalities hold also in the case that r = 0.

For any irreducible \mathcal{F}_0 -invariant C_0 outside of Θ , either $C_0\Theta = 0$ or C_0 meets transversely with the last component Γ_I of Θ . Hence

(4.3)
$$M(\Theta)C_0 = \begin{cases} \frac{1}{l+1}, & \text{if } r = l \text{ and } C_0\Gamma_l > 0, \\ 0, & \text{otherwise.} \end{cases}$$

In particular, $M(\Theta)C_0 \leq \frac{1}{2}$.

Let $\Theta_1, \ldots, \Theta_s$ be all maximal simple \mathcal{F}_0 -chainx. Take

$$\overline{N}_0 = N_0 - \sum_{i=1}^s M(\Theta_i).$$

Lemma 4.3. $\overline{N}_0 \geq 0$.

Proof. Write

$$N_0 = D + \sum_{i=1}^s Z_i$$

where the support of Z_i is contained in Θ_i (i = 1, ..., s) and the support of D contains no irreducible component in Θ_i 's. Since $N_0 \ge 0$, we have $D \ge 0$ and $Z_i \ge 0$ (i = 1, ..., s).

It's enough to prove $Z_i \ge M(\Theta_i)$. Take $\Theta = \Theta_i$ and adopt all notations as above. If r = 0, then $M(\Theta) = 0$ and hence $Z_i \ge M(\Theta)$. We assume that r > 0. By (4.2), one has

$$(Z_i - M(\Theta))\Gamma \le (N_0 - M(\Theta))\Gamma \le 0$$

for each irreducible component Γ of Θ . It implies that $Z_i - M(\Theta_i) \ge 0$.

Lemma 4.4. We have $(\overline{N}_0 + T)C \ge 0$ if C occurs in one of the following cases:

- (1) C is a component of T.
- (2) C is an irreducible component of a maximal simple \mathcal{F}_0 -chain.

Proof. (1) Let C be a component of T. One has

$$(\overline{N}_0 + T)C \ge (\overline{N}_0 + C)C = (N_0 + C)C = K_{X_0}C + K_{\mathcal{F}_0}C + C^2 = tang(\mathcal{F}_0, C) + K_{X_0}C.$$

Suppose that $(\overline{N}_0 + T)C < 0$. Note C is in N_0 . So $C^2 < 0$. If $K_{X_0}C < 0$, then C is a (-1)-curve and so $K_{X_0}C = -1$. Hence the above inequality implies that $tang(\mathcal{F}_0, C) = 0$. Thus $K_{\mathcal{F}_0}C = 1$. However $K_{\mathcal{F}_0}C \ge 2$ by Lemma 3.5, a contradiction.

(2) Without loss of generality, we assume C is a component of $\Theta_1 = \Gamma_1 + \cdots + \Gamma_l$, says $C = \Gamma_i$. Let r be the minimal subscript such that Γ_{r+1} meets with T. By (4.2), one has

$$\overline{N}_0 \Gamma_i = \left\{ \begin{array}{ll} 0, & \text{if } i \neq r+1, \\ -\frac{1}{r+1}, & \text{if } i = r+1. \end{array} \right.$$

Note that $T\Gamma_{r+1} \ge 1$ and $T\Gamma_i \ge 0$ $(i \ne r+1)$. Thus one has $(\overline{N}_0 + T)C \ge 0$.

Lemma 4.5. $\overline{N}_0 + T = 0$.

Proof. By Lemma 4.4 and the negativity of $\overline{N}_0 + T$, we can find an \mathcal{F}_0 -invariant curve C_0 in N_0 such that C_0 is outside of Θ_i 's and

$$(4.4) (\overline{N}_0 + T)C_0 < 0$$

whenever $\overline{N}_0 + T \neq 0$.

Let k be the number of the intersections of Θ_i 's and C_0 . Let h be the number of else singularities of \mathcal{F}_0 on C_0 . By (4.3), one gets

$$(4.5) \ (\overline{N}_0 + T)C_0 = (N_0 + T)C_0 - \sum_{i=1}^s M(\Theta_i)C_0 \ge K_{X_0}C_0 + K_{\mathcal{F}_0}C_0 + TC_0 - \frac{k}{2}.$$

From Cerveau-Lins Neto formula, we have

$$(4.6) \ K_{X_0}C_0 + K_{\mathcal{F}_0}C_0 = -C_0^2 + 2(p_a(C_0) + g(C_0) - 2) + \sum_{p \in C_0} \sum_{B \in C_0(p)} \mu(\mathcal{F}_0, B, p).$$

Combing (4.4), (4.5) and (4.6), one gets

$$(4.7) \quad -C_0^2 + 2(p_a(C_0) + g(C_0) - 2) + TC_0 + \sum_{p \in C_0} \sum_{B \in C_0(p)} \mu(\mathcal{F}_0, B, p) - \frac{k}{2} < 0.$$

Claim 1. $C_0 \cong \mathbb{P}^1$.

Firstly, we claim that C_0 is smooth. Suppose that C_0 have a singularity p. If $p \in \Theta_i$, then p is not a reduced singularity of \mathcal{F}_0 on Θ_i , a contradiction. So any simple \mathcal{F}_0 -chain doesn't pass through p. Thus we have

$$(4.8) -C_0^2 + 2(p_a(C_0) + g(C_0) - 2) + TC_0 + (1+k) - \frac{k}{2} < 0.$$

From (4.8) and $-C_0^2 \ge 1$, we get $p_a(C_0) = 0$ (i.e., $C_0 \cong \mathbb{P}^1$), a contradiction. Hence C_0 is smooth.

Therefore, by (4.7), we have

$$-C_0^2 + 4(p_a(C_0) - 1) + TC_0 + \frac{k}{2} < 0.$$

It implies that $C_0 \cong \mathbb{P}^1$.

Let p_1, \ldots, p_h be the singularities of \mathcal{F}_0 on C_0 outside Θ_i 's.

Calim 2. $\mu_{p_i}(\mathcal{F}_0, C_0) = 1$ for each p_i and $h \le 2$.

(4.7) implies that

$$(4.9) -C_0^2 - 4 + TC_0 + \frac{k}{2} + \sum_{i=1}^h \mu_{p_i}(\mathcal{F}_0, C_0) < 0.$$

If $\mu_{p_i}(\mathcal{F}_0, C_0) \ge 2$ for some i, then C_0 is a (-1)-curve, h = 1, $k \le 1$ and $\mu_{p_1}(\mathcal{F}_0, C_0) = 2$ from (4.9). By Cerveau-Lins Neto formula,

$$K_{\mathcal{F}_0}C_0 = -2 + k + \mu_{p_1}(\mathcal{F}_0, C_0) \le 1.$$

However, $K_{\mathcal{F}_0}C_0 \ge 2$ by Lemma 3.5, a contradiction. Hence $\mu_{p_i}(\mathcal{F}_0, C_0) = 1$ for each p_i and $h \le 2$.

Therefore we get

$$(4.10) -C_0^2 - 4 + TC_0 + \frac{k}{2} + h < 0.$$

Claim 3. h = k = 1 and $C_0^2 = -2$.

From separatrix Theorem (see [Bru15, Theorem 3.4] or [Cam88]), one can find that h > 0. So one can find that $-C_0^2 \le 2$ by (4.10).

If $k \ge 2$, then one can find two \mathcal{F}_0 -invariant (-2)-curves, says Γ_1, Γ_2 , meeting with C_0 transversely. Since $\Gamma_1 + \Gamma_2 + C_0$ is negative, $-C_0^2 \ge 2$. Thus

$$-C_0^2 - 4 + TC_0 + \frac{k}{2} + h \ge 0,$$

a contradiction. Hence $k \le 1$. By Cerveau-Lins Neto formula, $K_{\mathcal{F}_0}C_0 = -2 + k + h \le 1$. From Lemma 3.5 and $-C_0^2 \le 2$, one gets $C_0^2 = -2$. So h = 1 and $k \le 1$.

If k = 0, then $N_0C_0 = \overline{N_0}C_0 \le (\overline{N_0} + T)C_0 < 0$. By Lemma 4.1, C_0 is contained in some simple \mathcal{F}_0 -chain, a contradiction. So k = 1.

Claim 4. $C_0 + \Theta_1$ is a simple \mathcal{F}_0 -chain.

By the above discussion, C_0 has two singularities of \mathcal{F}_0 : p_1 and $q_1 = \Theta_1 \cap C_0$. Let λ_{p_1} (resp., λ_{q_1}) be the eigenvalue of p_1 (resp., q_1) along C_0 . More precisely, $\lambda_{q_1} = -\frac{l+1}{l}$ by Camacho-Sad formula where l is the number of irreducible components of Θ_1 . Note that $C_0^2 = -2$. By Camacho-Sad formula again, one has $\lambda_{p_1} = -\frac{l+1}{l+2}$. Thus $C_0 + \Theta_1$ is a simple \mathcal{F}_0 -chain. However, Θ_1 is a maximal simple \mathcal{F}_0 -chain, a contradiction.

Up to now, this proof is completed.

Proof of Theorem 1.2. From Lemma 3.8, \mathcal{F} is minimal. Lemma 4.5 implies that $N_0 = \sum_{i=1}^{s} M(\Theta_i)$. So $\lfloor N_0 \rfloor = 0$.

If ρ^*N_0 meets with the exceptional set E of ρ , then ρ contracts some exceptional curves to a point, says p, on a maximal simple \mathcal{F}_0 -chain. Thus p is either smooth or reduced. However, \mathcal{F} is relatively minimal, a contradiction. Hence ρ^*N_0 is disjoint from E.

Proof of Theorem 1.4. Since $K_{\mathcal{F}}$ is pseudoeffective, $h^2(K_X + K_{\mathcal{F}}) = h^0(-K_{\mathcal{F}}) = 0$. From Riemann-Roch formula, one has

$$(4.11) h^0(K_X + K_{\mathcal{F}}) = h^1(K_X + K_{\mathcal{F}}) + \chi(\mathcal{O}_X) + \rho(X) \ge \rho(X) + \chi(\mathcal{O}_X).$$

If *P* is big, then $h^1(K_X + K_{\mathcal{F}}) = 0$ by Kawamata-Viehweg vanishing theorem and the fact that $\lfloor N \rfloor = 0$ where *P* is as in (1.1). Thus one gets

(4.12)
$$h^{0}(K_{X} + K_{\mathcal{F}}) = \chi(O_{X}) + \rho(X).$$

In the case that $kod(X) \ge 0$, one can find that K_X is pseudoeffective. If not, $h^0(nK_X) = 0$ for all $n \ge 1$, namely, $kod(X) = -\infty$, a contradiction. So $K_X + K_{\mathcal{F}}$ is also pseudoeffective. In what follows, we assume that $kod(X) = -\infty$. Note that $p_{\mathcal{P}}(X) = 0$. One has

$$h^0(K_X + K_{\mathcal{F}}) \ge \rho(X) + 1 - q(X)$$

from (4.11). So $K_X + K_{\mathcal{F}}$ is pesudoeffective whenever $\rho(X) \ge q(X)$. \square *Proof of Corollary 1.5.* Since $h^0(K_{\mathcal{F}}) > 0$, we have

$$h^{0}(K_{X} + K_{\mathcal{F}}) \ge h^{0}(K_{X}) = p_{g}(X).$$

From (4.12), we get $q(X) \le 1 + \rho(X)$.

Proof of Corollary 1.7. In this case, $K_{\mathcal{F}} = K_f$ (see [Bru15, Ch.2, Sec.3, Example (5)]). It's well-known, K_f is a nef and big divisor. By (4.12) and a straightforwards computation, one gets (1.4) and (1.5).

If $b \ge 1$, then (1.4) implies $h^0(K_X + K_{\mathcal{F}}) > 0$. If b = 0, one gets again

$$h^0(K_X + K_{\mathcal{F}}) \ge \chi_f + K_f^2 - 3(g-1) \ge g - 1 > 0$$

from (1.4) and the equality $K_f^2 \ge 4g - 4$ in [TTZ05, Theorem 2.1]. So $K_X + K_{\mathcal{F}}$ is pseudo-effective.

Now we will claim $K_X + K_{\mathcal{F}}$ is nef, i.e., the negative part $\overline{N} = 0$. We adopt all notations and assumptions in Sec. 3.2.

Note that each singularities of $\mathcal F$ has an eigenvalue -1 from f is semistable. The key fact implies that

- (1) $N_0 = 0$;
- (2) the eigenvalue of each non-reduced singularity of (X', \mathcal{F}') is 1;
- (3) the singularities of (X_0, \mathcal{F}_0) is at worst of type D_{2n+2} from Theorem 3.9.

By (3.1), for a singularity p_0 of type D_{2n+2} , the contribution of p_0 to V is exactly zero. Hence $\overline{N} = 0$.

Since $(K_X + K_{\mathcal{F}})F = 4g - 4 > 0$ for ageneral fiber F, $K_X + K_{\mathcal{F}} \not\equiv_{\text{num}} 0$, that is, $\bar{v}(\mathcal{F}) \ge 1$.

5. An example for a foliation \mathcal{F} with $\bar{\nu}(\mathcal{F}) = 0$

Let $X_0 = \mathbb{P}^2$. Consider a family of curves as follows:

$$C_t: (X^4 + Y^4 + Z^4) + t(X^2Y^2 + Y^2Z^2 + Z^2X^2) = 0, \quad t \in \mathbb{C}^1$$

and C_{∞} is defined by $X^2Y^2 + Y^2Z^2 + Z^2X^2 = 0$. The family of curves induces a foliation \mathcal{F}_0 . More precisely, in the neighbourhood $U_0 = \{[x,y,1] \mid x,y \in \mathbb{C}\}$, the generator of \mathcal{F}_0 is

$$v = y(x^2y^2 + y^2 - x^4 - 1)\frac{\partial}{\partial x} - x(x^2y^2 + x^2 - y^4 - 1)\frac{\partial}{\partial y}$$

The foliation \mathcal{F}_0 is an A-D-E foliation. All non-reduced singularities are as follows:

$$\begin{array}{lll} p_1 = [\omega, \omega^2, 1], & p_2 = [-\omega, \omega^2, 1], & p_3 = [\omega, -\omega^2, 1], & p_4 = [-\omega, -\omega^2, 1], \\ p_5 = [\omega^2, \omega, 1], & p_6 = [-\omega^2, \omega, 1], & p_7 = [\omega^2, -\omega, 1], & p_8 = [-\omega^2, -\omega, 1]. \end{array}$$

Each p_i has an eigenvalue $\frac{1}{2}$ and lies in C_2 . Each reduced singularity of \mathcal{F}_0 has an eigenvalue -1.

Consider a minimal resolution $\rho: (X, \mathcal{F}) \to (X_0, \mathcal{F}_0)$ of all p_i 's such that the exceptional set of p_i is $E_{2i-1} + E_{2i}$ where E_{2i-1} (resp., E_{2i}) is a (-2)-curve (resp., (-1)-curve) and $E_{2i-1}E_{2i}=1$. The pulling-back foliation $\mathcal{F}=\rho^*\mathcal{F}_0$ is relatively minimal. In fact, \mathcal{F} gives a minimal normal-crossing fibration $f:X\to\mathbb{P}^1$ of genus g=3 with

four singular fibers $F_t = \rho^* C_t - \sum_{i=1}^{16} E_i$ $(t = -2, -1, 2, \infty)$:

- (1) F_{-2} is a reduce nodal curve consisting of four (-3)-curves;
- (2) F_{-1} is reduce nodal curve consisting of two (-4)-curves;
- (3) $F_2 = 2\Gamma + \sum_{i=1}^{8} E_{2i-1}$ where Γ is a (-4)-curve meeting transversely with each E_{2i-1} ; (4) F_{∞} is a irreducible nodal curve with three nodes.

We have $K_{\mathcal{F}_0} = 3L$, $K_{X_0} = -3L$ where L is a line in \mathbb{P}^2 . Hence

$$K_X + K_{\mathcal{F}} = \rho^* (K_{X_0} + K_{\mathcal{F}_0}) + \sum_{i=1}^{16} E_i = \sum_{i=1}^{16} E_i.$$

So $\bar{v}(\mathcal{F}) = 0$ and $h^0(K_X + K_{\mathcal{F}}) = 1$.

Note that $C_2 = 2\Gamma_0$ where Γ_0 is a conic curve. One has

$$2\rho^*L \equiv \rho^*\Gamma_0 \equiv \Gamma + \sum_{i=1}^{16} E_i.$$

Therefore

$$K_{\mathcal{F}} = K_f - \Gamma \equiv \rho^* L + \Gamma + \sum_{i=1}^8 E_{2i-1}.$$

The positive and negative parts of a Zariski decomposition of $K_{\mathcal{F}}$ are

$$P = \rho^* L + \Gamma + \frac{1}{2} \sum_{i=1}^8 E_{2i-1}, \quad N = \frac{1}{2} \sum_{i=1}^8 E_{2i-1}$$

respectively. Moreover, we have $c_1^2(\mathcal{F}) = 5$, $K_f^2 = 9$ and $\chi_f = 3$.

Acknowledgements The authors would like to give their thanks to professor Sheng-Li Tan, professor Xiaolei Liu and professor Hao Lin for many useful discussions on foliations and fibrations.

REFERENCES

T. Ashikaga and K. Konno: Global and local properties of pencils of algebraic curves, Algebraic [AK00] Geometry 2000, Azumino, Advanced Studies in Pure Mathematics, 36 (2000),1-49.

[BHPV04] W. Barth, K. Hulek, C. Peters, A. Van de ven: Compact complex surfaces (Second Edition), Springer Verlag, Berlin etc. (2004).

M. Brunella, Birational geometry of foliations, IMPA Monographs 1, Springer, Cham (2015). [Bru15]

[Bru97] M. Brunella: Some remarks on indices of holomorphic vector fields, Publicacions matematiques, 41(2) (1997), 527-544

[Car94] Manuel M. Carnicer: The Poincaré problem in the nondicritical case, Annals of mathematics, 140(2) (1994), 289-294.

[Cam88] C. Camacho: Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann., 282 (1988), 177-184.

[CF18] P. Cascini, E. Floris, On invariance of plurigenera for foliations on surfaces, Journal für die reine und angewandte Mathematik (Crelles Journal), 744 (2018), 201-236.

[CS82] C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann.of Math., 115 (3) (1982), 579-595.

C. Camacho, A. Lins Neto, P. Sad, Topological invariants and equidesingularization for holomorphic [CLS84] vector fields, J. Diff. Geom., 20 (1984), 143-174.

D. Cerveau, A. Lins Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. [CLN91] Inst. Fourier (Grenoble) 41 (1991), no. 4, 883-903.

- [GSV91] X. Gomez-Mont, J. Seade, A. Verjovsky: The index of a holomorphic flow with an isolated singularity, Math. Ann., 291 (1991), 737-751.
- [Fuj79] T. Fujita, On Zariski problem, Proc. Japan Acad. Series A, Math. Sci., 55 (3) (1979), 106-110.
- [McQ00] M. Mcquillan, Noncommutative Mori theory, preprint, IHES M/00/15 (2000).
- [McQ08] M. Mcquillan, Canonical models of foliations, Pure Appl. Math. Q. 4 (2008), no. 3, part 2, 877-1012.
- [Miy87] Y. Miyaoka, *Deformations of a morphism along a foliation and applications*, Algebraic Geometry Bowdoin 1985, Proc. Symp. Pure Math. **46** (1985), 245-268.
- [Per05] J. V. Pereira, On the height of foliated surfaces with vanishing Kodaira dimension, Publicacions Matemàtiques (2005), 363–373.
- [Sak84] F. Sakai, Weil divisors on normal surfaces, Duke Math. J. 51 (4) (1984), 877-887.
- [Sei68] A. Seidenberg, *Reduction of singularities of the differential equation Ady = Bdx*, Amer. J. Math. **89** (1968), 248-269.
- [SS23] C. Spicer, R. Svaldi, Effective generation for foliated surfaces: results and applications, J. reine angew. Math. 795 (2023), 45-84.
- [Suw98] T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques (1998).
- [Tan23] S.-L.Tan, Poincaré problem and Painlevé problem Chern numbers of a holomorphic foliation, to appear.
- [TTZ05] S.-L. Tan, Y.-P. Tu, and A.-G. Zamora, On complex surfaces with 5 or 6 semistable singular fibers over P¹, Math. Zeit., 249 (2005), 427-438.

Address of Jun Lu: School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Dongchuan RD 500, Shanghai 200241, P. R. of China

E-mail address: jlu@math.ecnu.edu.cn

ADDRESS OF XIAO-HANG WU: COLLEGE OF SCIENCE, WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, WUHAN 430065, P. R. OF CHINA

E-mail address: wuxiaoh001@foxmail.com