ON THE ADJOINT CANONICAL DIVISOR OF A FOLIATION

JUN LU AND XIAO HANG WU*

Dedicated to the memory of Professor Gang Xiao

Abstract

In this paper, we describe the structure of the negative part of a Zariski decomposition of $K_{X}+K_{\mathcal{F}}$ for a relatively minimal foliation (X, \mathcal{F}) whenever $K_{X}+K_{\mathcal{F}}$ is pseudoeffective.

1. Introduction

For any semistable fibration $f: X \rightarrow \mathbb{P}^{1}$ of genus g on a smooth algebraic surface X, [TTZ05] gives a classical inequality

$$
K_{f}^{2} \geq 4 g-4
$$

where $K_{f}=c_{1}\left(\omega_{X / \mathbb{P}}\right)$ is the relative canonical divisor. This inequality is essentially from the key fact that both K_{f} and $K_{X}+K_{f}$ are nef.

Naturally, we are interested in the analogues of a foliation \mathcal{F} on a smooth algebraic surface X. More precisely, we hope to investigate the canonical divisor $K_{\mathcal{F}}$ and the adjoint canonical divisor $K_{X}+K_{\mathcal{F}}$ of \mathcal{F}. More generally, one can define an ϵ-adjoint divisor $\epsilon K_{X}+K_{\mathcal{F}}(0<\epsilon \leq 1)$ which is studied in [SS23] for $\epsilon \ll 1$.

In particular, one has $K_{\mathcal{F}}=K_{f}$ for a foliation \mathcal{F} generated by the above semistable fibration $f: X \rightarrow \mathbb{P}^{1}$. In this case, both $K_{\mathcal{F}}$ and $K_{X}+K_{\mathcal{F}}$ are nef. However, they are not necessarily nef for other foliations. Therefore we need to consider the Zariski decompositions of $K_{\mathcal{F}}$ and $K_{X}+K_{\mathcal{F}}$ respectively whenever they are pseudoeffective.

Miyaoka's rationality criterion says that \mathcal{F} is a foliation by a rational curves if $K_{\mathcal{F}}$ is not pseudoeffective (see [Miy87] or [Bru15, Theorem 7.1]). If $K_{\mathcal{F}}$ is pseudoeffective, it has a Zariski decomposition

$$
\begin{equation*}
K_{\mathcal{F}} \stackrel{n u m}{=} P+N \tag{1.1}
\end{equation*}
$$

where
(1) N is a \mathbb{Q}^{+}-divisor and the intersection matrix of the irreducible components of N is negative definite;
(2) P is a nef \mathbb{Q}-divisor and $P N=0$ (see [Sak84, Corollary 7.5] or [Fuj79, Theorem 1.12]). P (resp., N) is called positive (resp., negative) part.

Furthermore, if \mathcal{F} is relative minimal, then N is a disjoint union of maximal \mathcal{F}-chains and the integral part $\lfloor N\rfloor=0$ (see [McQ00] or [Bru15, Theorem 8.1]).

In this paper, we shall study mainly the adjoint canonical divisor $K_{X}+K_{\mathcal{F}}$ of a relatively minimal foliation \mathcal{F}. We assume that $K_{X}+K_{\mathcal{F}}$ is pseudoeffective and denote a Zariski decomposition of $K_{X}+K_{\mathcal{F}}$ by

$$
K_{X}+K_{\mathcal{F}}=\bar{P}+\bar{N}
$$

where \bar{P} (resp., \bar{N}) is the positive (resp., negative) part of $K_{\mathcal{F}}$. We hope to answer the following problem.

[^0]Problem 1.1. What is the structure of the negative part \bar{N} ?
For this purpose, we will consider a bimeromorphic morphism $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ onto a so-called relatively minimal $A-D-E$ model \mathcal{F}_{0} of \mathcal{F} on a smooth algebraic surface X_{0} (see Definition 3.1). The adjoint canonical divisor $K_{X_{0}}+K_{\mathcal{F}_{0}}$ is also pseudoeffective and has a Zariski decomposition

$$
\begin{equation*}
K_{X_{0}}+K_{\mathcal{F}_{0}}=P_{0}+N_{0} \tag{1.2}
\end{equation*}
$$

with a positive part P_{0} and a negative part N_{0}. One can see easily that

$$
\begin{equation*}
\bar{P}=\rho^{*} P_{0}, \quad \bar{N}=\rho^{*} N_{0}+V \tag{1.3}
\end{equation*}
$$

where V is a \mathbb{Q}^{+}-divisor supported on the exceptional set of ρ (see (3.1) and Theorem 3.9 for a precise expression). Therefore it's sufficient to determine the structure of N_{0}.

Our main result is as follows.
Theorem 1.2. Let (X, \mathcal{F}) be a relative minimal foliation. If $K_{X}+K_{\mathcal{F}}$ is pseudoeffective, then \mathcal{F} is minimal and the negative part \bar{N} of the Zariski decomposition of $K_{X}+K_{\mathcal{F}}$ can be expressed as in (1.3) where the support of N_{0} is a disjoint union of maximal simple \mathcal{F}_{0} chains (see Definition 2.1) and the integral part $\left\lfloor N_{0}\right\rfloor=0$. Furthermore, $\rho^{*} N_{0}$ is disjoint from the exceptional set of ρ.
Remark 1.3. However, it is possible that V contains some curves which are not \mathcal{F} invariant.

An interesting question is when $K_{X}+K_{\mathcal{F}}$ is pseudoeffective. The following result provide an partial answer.
Theorem 1.4. Let (X, \mathcal{F}) be a relatively minimal foliation with a non-zero pseudoeffective canonical divisor $K_{\mathcal{F}}$. Set

$$
\rho(X):=\frac{1}{2}\left(K_{X}+K_{\mathcal{F}}\right) K_{\mathcal{F}} .
$$

We have

$$
h^{0}\left(K_{X}+K_{\mathcal{F}}\right) \geq \chi\left(O_{X}\right)+\rho(X) .
$$

The equality holds if \mathcal{F} is of general type, i.e., $P^{2}>0$ (see [Bru15, Ch 8., Sec.1]).
Therefore $K_{X}+K_{\mathcal{F}}$ is pseudoeffective if it satisfies one of the following conditions:
(1) $\operatorname{kod}(X) \geq 0$;
(2) $\operatorname{kod}(X)=-\infty$ and $\rho(X) \geq q(X)$,
where $q(X)$ is the irregularity of X.
Corollary 1.5. For any relatively minimal foliation (X, \mathcal{F}) of general type with $h^{0}\left(K_{\mathcal{F}}\right)>0$, we have

$$
q(X) \leq 1+\rho(X)
$$

For any foliation (Y, \mathcal{G}) with a minimal model (X, \mathcal{F}), we can define some invariants of \mathcal{G} by the adjoint canonical divisor of \mathcal{F} :
(1) adjoint numerical Kodaira dimension

$$
\bar{v}(\mathcal{F})= \begin{cases}0, & \text { if } \bar{P} \stackrel{\text { num }}{=} 0 \\ 1, & \text { if } \bar{P}^{n u m} \neq 0 \text { but } \bar{P}^{2}=0 \\ 2, & \text { if } \bar{P}^{2}=0\end{cases}
$$

In order to be complete, we also set $\bar{v}(\mathcal{F})=-\infty$ if $K_{X}+K_{\mathcal{F}}$ is not pseudoeffective;
(2) adjoint Kodaira dimension

$$
\bar{k}(\mathcal{F}):=\limsup _{n \rightarrow+\infty} \frac{\log h^{0}\left(X, n\left(K_{X}+K_{\mathcal{F}}\right)\right)}{\log n}
$$

(3) adjoint the first Chern numer $\bar{c}_{1}^{2}(\mathcal{F}):=\bar{P}^{2}$.

Remark 1.6. [Tan23] defines a biholomorphic invariant $c_{1}^{2}(\mathcal{F})$ for any foliation \mathcal{F} and proves that $c_{1}^{2}(\mathcal{F})=P^{2}$ for the positive part P in (1.1) whenever \mathcal{F} is relatively minimal.

As an application, one can investigate an algebraic foliation generated by a semistable fibration.

Corollary 1.7. Let $f: X \rightarrow B$ be a non-trivial semistable fibration of genus $g \geq 2$ over a smooth algebraic curve B of genus b and \mathcal{F} be the foliation induced by f. Then $K_{X}+K_{\mathcal{F}}$ is nef and $\bar{v}(\mathcal{F}) \geq 1$. We have

$$
\begin{equation*}
h^{0}\left(K_{X}+K_{\mathcal{F}}\right)=\chi_{f}+K_{f}^{2}+3(g-1)(b-1) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{c}_{1}^{2}(\mathcal{F})=4\left(K_{f}^{2}+4(g-1)(b-1)\right) \geq 0 \tag{1.5}
\end{equation*}
$$

where $K_{f}=c_{1}\left(\omega_{X / B}\right)$ is the relative canonical divisor of f and

$$
\chi_{f}=\operatorname{deg} f_{*} \omega_{X / B}=\chi\left(O_{X}\right)-(g-1)(b-1)
$$

is a positive invariant (cf. [AK00, pp.6] or [BHPV04, Ch. III, Theorem 18.2]).
In particular, if $B \cong \mathbb{P}^{1}$, the non-negativity of $\bar{c}_{1}^{2}(\mathcal{F})$ is equivalent to the well-known inequality $K_{f}^{2} \geq 4(g-1)$ in [TTZ05, Theorem 2.1]. They describe such fibrations satisfying $\bar{c}_{1}^{2}(\mathcal{F})=0$ which can be rephrased in the language of foliation theory as follows.

Corollary 1.8. Let (X, \mathcal{F}, f) be as in Corollary 1.7. Then $\bar{v}(\mathcal{F})=1$ iff $B \cong \mathbb{P}^{1}$ and X is the minimal resolution of the singularities of a double covering surface $\pi: Z \rightarrow \mathbb{P}^{1} \times C$ ramified over a curve of numerical type $2 F_{1}+(2 g+2-4 g(C)) F_{2}$, and fibration f is induced by the first projection $p r_{1}: \mathbb{P}^{1} \times C \rightarrow \mathbb{P}^{1}$ where F_{i} is a fiber of the i-th projection of $\mathbb{P}^{1} \times C$.

We will give an example for an algebraic foliation \mathcal{F} with $\overline{\mathcal{v}}(\mathcal{F})=0$ in Sec. 5 .
There are some open problem on the adjoint canonical divisor $K_{X}+K_{\mathcal{F}}$.
Problem 1.9. When is $K_{X}+K_{\mathcal{F}}$ pseudoeffective for a minimal foliation \mathcal{F} ?
Problem 1.10. Is there a foliation \mathcal{F} satisfying $\bar{v}(\mathcal{F}) \neq \bar{k}(\mathcal{F})$?
Problem 1.11. What is the relation between $c_{1}^{2}(\mathcal{F})$ and $\bar{c}_{1}^{2}(\mathcal{F})$?
Problem 1.12. How to give a classification of all foliations with adjoint numerical Kodaira dimensions ≤ 1 ?
Problem 1.13. Given a foliation \mathcal{F} generated by a non-semistable fibration $f: X \rightarrow \mathbb{P}^{1}$. Is there an inequality similar to the classical inequality in [TTZ05, Theorem 2.1] by the non-negativity of $c_{1}^{2}(\mathcal{F})$ and $\bar{c}_{1}^{2}(\mathcal{F})$?

Problem 1.14. When does a minimal foliation has a unique relatively minimal $A-D-E$ model up to a biholomorphic morphism?

2. Preliminaries

2.1. \mathcal{F}-invariant curves and singularities of a foliation \mathcal{F}. We recall some definitions and basic facts about foliations on a surface (see [Bru15] or [CF18, Sec. 2] for more details).

Let X be a smooth algebraic surface with a tangent bundle T_{X}. A foliation \mathcal{F} on X is given by a short exact sequence

$$
0 \longrightarrow T_{\mathcal{F}} \longrightarrow T_{X} \longrightarrow I_{Z} \otimes N_{\mathcal{F}} \longrightarrow 0
$$

where $T_{\mathcal{F}}$ and $N_{\mathcal{F}}$ are line bundles and I_{Z} is an ideal sheaf supported on a finite set. $K_{\mathcal{F}}:=c_{1}\left(T_{\mathcal{F}}^{*}\right)$ is called the canonical divisor of \mathcal{F}.

A curve $C \subseteq X$ is said to be \mathcal{F}-invariant if the inclusion $\left.\left.T_{\mathcal{F}}\right|_{C} \rightarrow T_{X}\right|_{C}$ factors through T_{C} where T_{C} is the tangent bundle of C.

An \mathcal{F}-chain Θ is a Hirzebruch-Jung string $\Theta=\Gamma_{1}+\cdots+\Gamma_{l}$ consisting of \mathcal{F}-invariant curves Γ_{i} 's satisfying that
(1) all singularities of \mathcal{F} on Θ are reduced and non-degenerated;
(2) there is only one singularity of \mathcal{F}, says $p_{l}\left(\in \Gamma_{l}\right)$, on $\Theta-\left\{p_{1}, \ldots, p_{l-1}\right\}$ where $p_{i}=\Gamma_{i} \cap \Gamma_{i+1}(i=1, \ldots, l-1)$;
(3) Γ_{1} has only one singularity p_{1}.

For convenience, Γ_{1} is said to be the first component of Θ. More details can be found in [Bru15, Ch.8, Sec.2].

Definition 2.1. A simple \mathcal{F}-chain is an \mathcal{F}-chain consisting of \mathcal{F}-invariant (-2)-curves. We say a simple \mathcal{F}-chain is maximal if it can not be contained other simple \mathcal{F}-chains.

However, it's possible that a maximal simple \mathcal{F}-chain is contained in an \mathcal{F}-chain.
An \mathcal{F}-invariant (-1)-curve C is said to be \mathcal{F}-exceptional if the contraction of C to a point p produces a new foliation which has at p a regular point or a reduced singular point.
\mathcal{F} is said to be reduced if all singularities of \mathcal{F} are reduced. Furthermore, a reduced foliation is called relatively minimal if it has no \mathcal{F}-exceptional curve. Each foliation has a relatively minimal model (see [Bru15, Proposition 5.1]). A relatively minimal foliation (X, \mathcal{F}) is said to be minimal if any bimeromorphic map $f:(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ sending \mathcal{F} to a relatively minimal foliation \mathcal{G} is in fact a biholomorphic map.

Consider a blowing-up $\sigma:(\widetilde{X}, \widetilde{\mathcal{F}}, E) \rightarrow(X, \mathcal{F}, p)$ centered at a singularity p of \mathcal{F} with an exceptional curve $E \subset \widetilde{X}$ and a pulling-back foliation $\widetilde{\mathcal{F}}$. Let $a(p)$ be the vanishing order of \mathcal{F} at p. One has

$$
\begin{equation*}
K_{\widetilde{\mathcal{F}}}=\sigma^{*} K_{\mathcal{F}}+(1-l(p)) E \tag{2.1}
\end{equation*}
$$

where $l(p)$ is the order of \mathcal{F} at p defined by

$$
l(p)= \begin{cases}a(p), & \text { if } E \text { is } \mathcal{F} \text {-invariant }, \\ a(p)+1, & \text { otherwise } .\end{cases}
$$

See [Bru15, Ch. 2, Sec. 3] for more details.
Let U be a neighborhood in X with a local coordinate (x, y) and

$$
\begin{equation*}
v=a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y} \quad(a, b \in \mathbb{C}\{x, y\}) \tag{2.2}
\end{equation*}
$$

be a local generator of \mathcal{F} at a singularity $p=(0,0)$. Let B be an \mathcal{F}-invariant branch passing through p. We take a minimal Puiseux's parametrization of B at p :

$$
\begin{equation*}
\varphi: \mathbb{D} \rightarrow B, \quad t \rightarrow\left(\varphi_{x}(t), \varphi_{y}(t)\right) \tag{2.3}
\end{equation*}
$$

where $\varphi_{x}, \varphi_{y} \in \mathbb{C}\{t\}$ and \mathbb{D} is a disk centered at $0 \in \mathbb{C}$. The multiplicity $\mu_{p}(\mathcal{F}, B)$ of \mathcal{F} at B is defined by the order of $\varphi^{*}(B)$ at $t=0$. More precisely, one has

$$
\mu_{p}(\mathcal{F}, B)= \begin{cases}v_{0}\left(a\left(\varphi_{x}(t), \varphi_{y}(t)\right)\right)-v_{0}\left(\varphi_{x}(t)\right)+1 & \text { if } \varphi_{x}(t) \neq 0, \tag{2.4}\\ v_{0}\left(b\left(\varphi_{x}(t), \varphi_{y}(t)\right)\right)-v_{0}\left(\varphi_{y}(t)\right)+1 & \text { if } \varphi_{y}(t) \neq 0,\end{cases}
$$

where a, b are as in (2.2) and $v_{0}(h)$ is the order of the zero $t=0$ of $h \in \mathbb{C}\{t\}$ (see [Car94]). $\mu_{p}(\mathcal{F}, B) \geq 0$ the equality holds iff p is not a singularity of \mathcal{F}.

Remark 2.2. For a smooth point p of $B, \mu_{p}(\mathcal{F}, B)=Z(\mathcal{F}, B, p)$ where $Z(\mathcal{F}, B, p)$ is the Gomez-Mont-Seade-Verjovsky index (cf. [Bru15, Bru97, GSV91]). If B is a smooth irreducible \mathcal{F}-invariant curve, we denote the sum of $\mu_{p}(\mathcal{F}, B)$'s for all $p \in B$ by $Z(\mathcal{F}, B)$.

Let $\sigma: \widetilde{X} \rightarrow X$ be a blowing-up centered at $p \in B$ with an exceptional curve E and \widetilde{B} be the strict transform of B with the only one point $\tilde{p}:=E \cap \widetilde{B}$. From [Car94], one has

$$
\begin{equation*}
\mu_{p}(\mathcal{F}, B)=\mu_{\tilde{p}}(\widetilde{\mathcal{F}}, \widetilde{B})+m_{p}(B)(l(p)-1) \tag{2.5}
\end{equation*}
$$

where $m_{p}(B)$ is the multiplicity of B at p and $\widetilde{\mathcal{F}}$ is the pulling-back foliation of \mathcal{F}.

Lemma 2.3. $\mu_{p}(\mathcal{F}, B)=1$ iff either p has a nonzero eigenvalue or p is a saddle-node with a strong separatrix B.

In particular, in this case, if $m_{p}(B) \geq 2$, then p is a dicritical singularity with a local generator $v=x \frac{\partial}{\partial x}+\lambda y \frac{\partial}{\partial y}$ for $\lambda \in \mathbb{Q}^{+}$by choosing a proper coordinate.
Proof. Firstly, we consider the case for $m_{p}(B)=1$. By choosing a suitable coordinate, we can take the minimal parametrization (2.3) as $\varphi(t)=(t, 0)$. Thus the local generator (2.2) of \mathcal{F} can be taken as

$$
v=\left(x^{m} w(x)+y u(x, y)\right) \frac{\partial}{\partial x}+y v(x, y) \frac{\partial}{\partial y}, \quad u, v \in \mathbb{C}\{x, y\}, w \in \mathbb{C}\{x\}, w(0) \neq 0 .
$$

By (2.4), we get $\mu_{p}(\mathcal{F}, B)=m$. In particular, $\mu_{p}(\mathcal{F} . B)=1$ iff either the eigenvalue of p is nonzero or p is a saddle-node with a strong separatrix B.

So it's enough to consider the case for $m_{p}(B) \geq 2$ from the above discussion.
(\Longleftarrow) Since $m_{p}(B) \geq 2, p$ is a singularity of \mathcal{F} with a local generator $v=x \frac{\partial}{\partial x}+\lambda y \frac{\partial}{\partial y}$ for $\lambda \in \mathbb{Q}^{+}$by choosing a proper coordinate (see [Bru15, pp. 7-8]). Thus (2.4) gives $\mu_{p}(\mathcal{F}, B)=1$.
(\Longrightarrow) If $l(p) \geq 2$, then (2.5) implies that $l(p)=2$ and $m_{p}(B)=1$, a contradiction. So $l(p)=1$. If the eigenvalue of p is nonzero, the proof is finished. If p is a saddle-node, then B is a strong separatrix by [Bru15, pp. 31] and so $m_{p}(B)=1$, a contradiction.

In what follows, we assume p is a nilpotent singularity. By choosing a suitable coordinate, the local generator of \mathcal{F} can be written as

$$
v=(y+u(x, y)) \frac{\partial}{\partial x}+v(x, y) \frac{\partial}{\partial y}
$$

where u, v are holomorphic functions which vanish at $(0,0)$ up to order 2 . Consider the minimal parametrization (2.3) of B at p. In this case, $\varphi_{x} \varphi_{y} \neq 0$. From (2.4), one has

$$
v_{0}\left(\varphi_{y}(t)+u\left(\varphi_{x}(t), \varphi_{y}(t)\right)\right)=v_{0}\left(\varphi_{x}(t)\right), \quad v_{0}\left(v\left(\varphi_{x}(t), \varphi_{y}(t)\right)\right)=v_{0}\left(\varphi_{y}(t)\right) .
$$

Hence

$$
v_{0}\left(\varphi_{y}(t)\right)=v_{0}\left(\varphi_{x}(t)\right), \quad 2 v_{0}\left(\varphi_{x}(t)\right) \leq v_{0}\left(\varphi_{y}(t)\right) .
$$

It implies that $v_{0}\left(\varphi_{x}(t)\right)=v_{0}\left(\varphi_{y}(t)\right)=0$, a contradiction.
This proof is completed.
Due to Camacho-Lins Neto-Sad's formula in nondicritical case ([CLS84, Theorem 1]), we have a modified version which can be rephrased as follows.
Lemma 2.4 (Camacho-Lins Neto-Sad's formula). Consider a sequence of blowing ups

$$
X_{r} \xrightarrow{\sigma_{r}}\left(X_{r-1}, p_{r-1}\right) \xrightarrow{\sigma_{r-1}} \cdots\left(X_{1}, p_{1}\right) \xrightarrow{\sigma_{1}}\left(X_{0}, p_{0}\right):=(X, p)
$$

where σ_{i+1} is a blowing-up centered at a point $p_{i} \in X_{i}$ and $\left(X_{r}, \widetilde{\mathcal{F}}\right)$ is the pulling-back foliation of (X, \mathcal{F}). Let E_{i} (resp., \mathcal{E}_{i}) in X_{r} be the strict (resp., total) transform of the exceptional curve of σ_{i}. Write $\mathcal{E}_{1}=\sum_{i=1}^{r} n_{i} E_{i}$.

If each E_{i} is $\widetilde{\mathcal{F}}$-invariant, then the order $l(p)$ of the singularity p satisfies

$$
\begin{equation*}
1+l(p)=\sum_{i=1}^{r} \sum_{q \in E_{i}} n_{i}\left(\mu_{q}\left(\widetilde{\mathcal{F}}, E_{i}\right)-\mu_{q}\left(\mathcal{E}_{1}\right)\right) \tag{2.6}
\end{equation*}
$$

where $\mu_{q}\left(\mathcal{E}_{1}\right)$ is the Milnor's number of the support of \mathcal{E}_{1} at q, namely,

$$
\mu_{q}\left(\mathcal{E}_{1}\right)= \begin{cases}1, & \text { if } q \text { is a corner } \\ 0, & \text { else } .\end{cases}
$$

Proof. It's similar to the proof of [CLS84, Theorem 1].

Recall the notation in Remark 2.2. We set

$$
Z\left(\widetilde{\mathcal{F}}, E_{i}\right):=\sum_{q \in E_{i}} \mu_{q}\left(\widetilde{\mathcal{F}}, E_{i}\right)
$$

The formula (2.6) is equivalent to

$$
\begin{equation*}
1+l(p)=\sum_{i=1}^{r} n_{i}\left(Z\left(\widetilde{\mathcal{F}}, E_{i}\right)-k_{i}\right) \tag{2.7}
\end{equation*}
$$

where k_{i} is the number of irreducible components of \mathcal{E}_{1} meeting transversely with E_{i}.
2.2. Cerveau-Lins Neto's formula. Due to Cerveau-Lins Neto formula for a foliation on \mathbb{P}^{2} (see [CLN91, pp. 885]), we have a generalized result as follows.

Lemma 2.5 (Cerveau-Lins Neto formula). For any irreducible \mathcal{F}-invariant curve C, we have

$$
2-2 g(C)+K_{\mathcal{F}} C=\sum_{p \in C} \sum_{B \in C(p)} \mu_{p}(\mathcal{F}, B)
$$

where $C(p)$ is the set of analytic branches of C passing through p and $g(C)$ is the geometric genus of C.

Proof. Let $\sigma: \widetilde{X} \rightarrow X$ be a blowing-up centered at $p \in C$ with an exceptional curve E. Let $C(p)=\left\{B_{1}, \ldots, B_{k}\right\}$ and \widetilde{B}_{i} be the strict transform of B_{i} with the only one point $\tilde{p}_{i}:=E \cap \widetilde{B}_{i}$. By (2.5),

$$
\mu_{p}\left(\mathcal{F}, B_{i}\right)=\mu_{\tilde{P}_{i}}\left(\widetilde{\mathcal{F}}, \widetilde{B}_{i}\right)+m_{i}(l(p)-1)
$$

where m_{i} is the multiplicity of B_{i} at p and $\widetilde{\mathcal{F}}$ is the pulling-back foliation of \mathcal{F}.
Let \widetilde{C} be the strict transform of C. By (2.1) and $\sigma^{*} C=\widetilde{C}+\left(\sum_{i=1}^{k} m_{i}\right) E$, we get

$$
K_{\mathcal{F}} C=K_{\widetilde{\mathcal{F}}} \widetilde{C}+\left(\sum_{i=1}^{k} m_{i}\right)(l(p)-1)
$$

So

$$
\sum_{p \in C} \sum_{B \in C(p)} \mu_{p}(\mathcal{F}, B)-K_{\mathcal{F}} C=\sum_{\tilde{p} \in \widetilde{C}} \sum_{\widetilde{B} \in \widetilde{C}(\widetilde{p})} \mu_{\tilde{p}}(\widetilde{\mathcal{F}}, \widetilde{B})-K_{\widetilde{\mathcal{F}}} \widetilde{C}
$$

Therefore, it's enough to consider the case that \mathcal{F} is reduced and C is smooth. In this case, $C(p)=\{C\}$ and $\mu_{p}(\mathcal{F}, C)=Z(\mathcal{F}, C, p)$ for each singularity p of \mathcal{F}. From [Bru15, Ch. 2, Proposition 3],

$$
2-2 g(C)+K_{\mathcal{F}} C=\sum_{p \in C} Z(\mathcal{F}, C, p)=\sum_{p \in C} \mu_{p}(\mathcal{F}, C)
$$

This proof is finished.
As the applications of Cerveau-Lins Neto formula, one can obtain the following consequences which are essentially due to [McQ08, Lemma II. 3.2, Proposition III.1.2, Theorem IV.1.1].

Corollary 2.6. For any irreducible \mathcal{F}-invariant curve C, we have $K_{\mathcal{F}} C \geq-2$. The equality holds iff
(1) $C \cong \mathbb{P}^{1}$ and $C^{2}=0$;
(2) there is no singularity of \mathcal{F} on C;
(3) $K_{\mathcal{F}}$ is not pseudo-effective and hence \mathcal{F} is a foliation by rational curves.

Proof. From Lemma 2.5, $K_{\mathcal{F}} C \geq 2 g(C)-2 \geq-2$. If $K_{\mathcal{F}} C=-2$, then $g(C)=0$ and $\mu_{p}(\mathcal{F}, B)=0$ for each $p \in C$ and $B \in C(p)$. So C contains no singularity of \mathcal{F} and hence C is smooth. Thus $C \cong \mathbb{P}^{1}$. By Camacho-Sad formula ([CS82, Suw98]), $C^{2}=0$ and so C is nef. Thus $K_{\mathcal{F}} C<0$ implies that $K_{\mathcal{F}}$ is not pseudo-effective. From [Miy87], \mathcal{F} is a foliation induced by a family of rational curves.

Conversely, for an irreducible \mathcal{F}-invariant curve satisfying the above conditions (1) and (2), one can get $K_{\mathcal{F}} C=-2$ by Cerveau-Lins Neto formula.

Corollary 2.7. Assume that $K_{\mathcal{F}}$ is pseudo-effective. We have $K_{\mathcal{F}} C \geq-1$ for any irreducible \mathcal{F}-invariant curve C. The equality holds iff one of the following cases occurs.
(1) C is the first component of an \mathcal{F}-chain;
(2) C is an \mathcal{F}-exceptional curve with only one singularity.

Proof. By Corollary 2.6, $K_{\mathcal{F}} C \geq-1$. Assume that $K_{\mathcal{F}} C=-1$. From Lemma 2.5, $g(C)=0$ and C has only one singularity p of \mathcal{F} with $\mu_{p}(\mathcal{F}, B)=1$ where B is a unique branch of C passing through p. Since $K_{\mathcal{F}}$ is pseudo-effective, $C^{2}<0$.

If C is smooth at p, then $C \cong \mathbb{P}^{1}$ by $g(C)=0$. From Camacho-Sad formula, one can see that p is a reduced singularity with an eigenvalue $\lambda=C^{2}<0$. Namely, C occurs in one of the above cases.

It's enough to claim that C is smooth at p. If not, the local generator of \mathcal{F} at p can be taken as $v=x \frac{\partial}{\partial x}+\lambda y \frac{\partial}{\partial y}\left(\lambda \in \mathbb{Q}^{+}\right)$by Lemma 2.3. Consider the resolution of p as in [Bru15, pp. 7-8], denoted by $\hat{\pi}:(\widehat{X}, \widehat{\mathcal{F}}) \rightarrow(X, \mathcal{F})$. Let \widehat{C} be the strict transform of C under $\hat{\pi}$. One can see that \widehat{C} has no singularity of $\widehat{\mathcal{F}}$. So $K_{\widehat{\mathcal{F}}} \widehat{C}=-2$ by Cerveau-Lins Neto formula. Corollary 2.6 implies that $\widehat{C}^{2}=0$. So $C^{2} \geq 0$, a contradiction.

Conversely, any \mathcal{F}-invariant curve C in case (1) or (2) satisfies $K_{\mathcal{F}} C=-1$ from Cerveau-Lins Neto formula.

3. A-D-E singularities of foliations

3.1. Relatively minimal A-D-E model of a foliation. Let p be a singularity of \mathcal{F} in a neighborhood U. From [Sei68] or [Bru15, Theorem 1.1], one has a minimal resolution of the singularity p :

$$
\left(U_{r}, \mathcal{F}_{r}\right) \xrightarrow{\sigma_{r}}\left(U_{r-1}, \mathcal{F}_{r-1}, p_{r-1}\right) \xrightarrow{\sigma_{r-1}} \cdots\left(U_{1}, \mathcal{F}_{1}, p_{1}\right) \xrightarrow{\sigma_{1}}\left(U_{0}, \mathcal{F}_{0}, p_{0}\right):=(U, \mathcal{F}, p)
$$

where σ_{i+1} is a blowing-up of a neighborhood U_{i} at the non-reduced singularity p_{i} of \mathcal{F}_{i} with order $l_{i}, \mathcal{F}_{i+1}=\sigma_{i+1}^{*} \mathcal{F}_{i}$ is the pulling-back of the foliation \mathcal{F}_{i} and $\left(U_{r}, \mathcal{F}_{r}\right)$ has at worst reduced singularities $(i=0, \ldots, r-1)$.
Definition 3.1. For a given positive integer k, p is said to be a k-simple singularity of \mathcal{F} if $l_{i} \leq k$ for $i=0,1 \ldots, r-1$. For convenience, a 2 -simple singularity is also called an $A-D-E$ singularity of \mathcal{F}.

We say \mathcal{F} is an $A-D-E$ foliation if each singularity of \mathcal{F} is an $A-D-E$ singularity. (X, \mathcal{F}) is said to be a relatively minimal A-D-E foliation if it's an A-D-E foliation and any bimeromorphic morphism $(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ onto an A-D-E foliation (Y, \mathcal{G}) is in fact a biholomorphism.

Example 3.2. A 1-simple singularity p occurs in one of the following cases:
(1) p is a reduced singularity;
(2) p has a Poincaré-Dulac form $x d y-\left(n y+x^{n}\right) d x$ by choosing a suitable local coordinate.

We will classify all A-D-E singularities of a foliation in Sec. 3.2. Here are some classical examples.

Example 3.3. Take $v=\frac{\partial f}{\partial y} \frac{\partial}{\partial x}-\frac{\partial f}{\partial x} \frac{\partial}{\partial y}$ in (2.2) for a given function $f \in \mathbb{C}\{x, y\}$. The branch B defined by $f=0$ is \mathcal{F}-invariant. In this case, p is an $A-D-E$ singularity of \mathcal{F} iff it is a simple singularity of the curve B (see [BHPV04, Ch. II, Sec. 8]).

Example 3.4. If p is a reduced singularity or a singularity whose eigenvalues are positive rational numbers, then it is an A-D-E singularity (see [Bru15, pp. 7-8]).

Lemma 3.5. Let (X, F) be a reduced foliation.
(1) There is a bimeromorphic morphism $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ onto a relatively minimal $A-D$-E foliation $\left(X_{0}, \mathcal{F}_{0}\right)$. Therefore each foliation has a relatively minimal A-D-E model.
(2) $K_{X}+K_{\mathcal{F}}=\rho^{*}\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right)+V$ for some \mathbb{Q}^{+}-divisor V supported on the exceptional set of ρ.
(3) $K_{X}+K_{\mathcal{F}}$ is pseudoeffective iff $K_{X_{0}}+K_{\mathcal{F}_{0}}$ is pseudoeffective.
(4) For any (-1)-curve $E \subset X_{0}$, one has $K_{\mathcal{F}_{0}} E \geq 2$.

Proof. (1) It's obvious that (X, \mathcal{F}) is an A-D-E foliation from Example 3.2. If it is not a relatively minimal A-D-E foliation, then we can find a (-1)-curve whose contraction produces a new A-D-E foliation. One can iterate the contraction procedure and must stop it after finite steps because the rank of the Néron-Severi group of the surface is strictly monotonic decreasing. Thus we get a relatively minimal A-D-E foliation $\left(X_{0}, \mathcal{F}_{0}\right)$ with a bimeromorphic morphism $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$.
(2) By the above discussion, ρ factorizes through some blowing-ups :

$$
(X, \mathcal{F}):=\left(X_{r}, \mathcal{F}_{r}\right) \xrightarrow{\sigma_{r}}\left(X_{r-1}, \mathcal{F}_{r-1}\right) \xrightarrow{\sigma_{r-1}} \cdots\left(X_{1}, \mathcal{F}_{1}\right) \xrightarrow{\sigma_{1}}\left(X_{0}, \mathcal{F}_{0}\right) .
$$

Let $E_{i} \subset X_{i}$ be the exceptional curve of the blowing-up σ_{i} centred at a point $p_{i-1} \in X_{i-1}$ and \mathcal{E}_{i} be the total transform of E_{i} in $X(i=1, \ldots, r)$. By (2.1), one gets $K_{X}+K_{\mathcal{F}}=$ $\rho^{*}\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right)+V$ where

$$
\begin{equation*}
V=\sum_{i=1}^{r}\left(2-l\left(p_{i-1}\right)\right) \mathcal{E}_{i} . \tag{3.1}
\end{equation*}
$$

Note that each p_{i-1} is an A-D-E singularity and hence $l\left(p_{i-1}\right) \leq 2$. So V is a \mathbb{Q}^{+}-divisor.
(3) (\Longrightarrow) Assume that $K_{X}+K_{\mathcal{F}}$ is pseudoeffective. For any ample divisor H_{0} in X_{0}, $\rho^{*} H_{0}$ is nef. So one has

$$
\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right) H_{0}=\left(K_{X}+K_{\mathcal{F}}\right) \rho^{*} H_{0} \geq 0 .
$$

(\Longleftarrow) Assume that $K_{X_{0}}+K_{\mathcal{F}_{0}}$ is pseudoeffective. Consider the Zariski decomposition (1.2) of $K_{X_{0}}+K_{\mathcal{F}_{0}}$. Thus we have

$$
K_{X}+K_{\mathcal{F}}=\rho^{*}\left(P_{0}\right)+\left(\rho^{*} N_{0}+V\right) .
$$

For any ample divisor $H \subset X$, one can see that

$$
\left(K_{X}+K_{\mathcal{F}}\right) H \geq \rho^{*} P_{0} \cdot H \geq 0
$$

from $\rho^{*} P_{0}$ is nef.
(4) Let $E \subset X_{0}$ be a (-1)-curve. Consider a contraction $\sigma:\left(X_{0}, \mathcal{F}_{0}, E\right) \rightarrow(Y, \mathcal{G}, p)$ sending E to a point $p=\sigma(E)$. It produces a new foliation \mathcal{G} with a singularity p with order l. The minimality of the A-D-E foliation \mathcal{F}_{0} implies that $l \geq 3$. By (2.1), one has $K_{\mathcal{F}_{0}} E=l-1 \geq 2$.

Remark 3.6. However the relatively minimal A-D-E model of a foliation is not necessarily unique. For example, we consider a Riccati foliation \mathcal{F}_{λ} on $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, defined by $x \frac{\partial}{\partial x}+\lambda y \frac{\partial}{\partial y}(\lambda \in \mathbb{C}$ and $\lambda \neq 0)$, with respect to a ruling map

$$
p r_{1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \quad(x, y) \rightarrow y
$$

\mathcal{F}_{λ} is a relatively minimal $A-D-E$ foliation.

We have a bimeromorphic map $\sigma:\left(X, \mathcal{F}_{\lambda-1}\right) \rightarrow\left(X, \mathcal{F}_{\lambda}\right)$ sending (x, y) to $(x, x y)$ for each $\lambda \neq 0,1$.

Corollary 3.7. Given a bimeromorphic map $\sigma:(Y, \mathcal{G}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ from a relatively minimal A-D-E foliation $(Y, \mathcal{G}) . K_{X_{0}}+K_{\mathcal{F}_{0}}$ is pseudoeffective iff $K_{Y}+K_{\mathcal{G}}$ is pseudoeffective.

Proof. We may find a reduced foliation $\left(Y_{0}, \mathcal{G}_{0}\right)$ associated with two bimeromorphic morphisms $\rho:\left(Y_{0}, \mathcal{G}_{0}\right) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ and $\tau:\left(Y_{0}, \mathcal{G}_{0}\right) \rightarrow(Y, \mathcal{G})$ satisfying $\rho=\sigma \tau$. By Lemma 3.5, $K_{X_{0}}+K_{\mathcal{F}_{0}}$ (resp., $K_{Y}+K_{\mathcal{G}}$) is pseudoeffective iff $K_{Y_{0}}+K_{\mathcal{G}_{0}}$ is pseudoeffective.

Lemma 3.8. Let (X, \mathcal{F}) be a relatively minimal foliation. If $K_{X}+K_{\mathcal{F}}$ is pseudoeffective, then \mathcal{F} is minimal.

Proof. Suppose that \mathcal{F} be not minimal. We will get a contradiction.
From [Bru15, Theorem 5.1], \mathcal{F} is biholomorphic to one of the following foliations:
(1) rational fibrations;
(2) nontrivial Riccati foliations;
(3) the very special foliation.

In case (1), we have $\left(K_{X}+K_{\mathcal{F}}\right) F=-4$ for a general fiber F of the rational fibration generating \mathcal{F}. Hence $K_{X}+K_{\mathcal{F}}$ is not pseudoeffective, a contradiction.

In case (2), we have $\left(K_{X}+K_{\mathcal{F}}\right) F=-2$ for a general fiber F of the rational fibration adapted to the Riccati foliation \mathcal{F}. We get a contradiction again.

In case (3), from [Per05, Sec. 5], (X, \mathcal{F}) has a relatively minimal A-D-E model $\left(\mathbb{P}^{2}, \mathcal{F}_{0}\right)$ induced by a homogeneous one-form on \mathbb{P}^{2}

$$
\Omega:=Z\left(-Y^{2}-X Z+2 X Y\right) d X+3 X Z(Y-X) d Y+X\left(X Z-2 Y^{2}+X Y\right) d Z,
$$

One has $K_{\mathbb{P}^{2}}+K_{\mathcal{F}_{0}}=-2 L$ for a general line L in \mathbb{P}^{2}, a contradiction.
3.2. Classification of A-D-E singularities of foliations. For convenience, we assume that (X, \mathcal{F}) is relatively minimal. Let $\left(X_{0}, \mathcal{F}_{0}\right)$ be the relatively minimal A-D-E model of (X, \mathcal{F}) with a bimeromorphic morphism $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$.

The morphism ρ can factorize through a bimeromorphic morphism $\rho^{\prime}:(X, \mathcal{F}) \rightarrow$ ($X^{\prime}, \mathcal{F}^{\prime}$) onto a foliation ($X^{\prime}, \mathcal{F}^{\prime}$) satisfying
(1) each singularity of $\left(X^{\prime}, \mathcal{F}^{\prime}\right)$ has an eigenvalue, namely, it is either a reduced singularity or a singularity whose eigenvalues are positive rational numbers;
(2) $\sigma:\left(X^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ consists of blowing-ups and satisfies $\rho=\sigma \rho^{\prime}$;

(3) for any (-1)-curve $E \subset X^{\prime}$ in the exceptional set of σ, the contraction of E to a point p produces a new foliation (Y, \mathcal{G}) which has at p a singularity without eigenvalue.
Let p_{0} be an A-D-E singularity of \mathcal{F}_{0} without eigenvalue in a neighbourhood U_{0}. From the above discussion, σ gives a partial resolution of p_{0} :

$$
\left(X^{\prime}, \mathcal{F}^{\prime}\right) \xrightarrow{\sigma_{r}}\left(U_{r-1}, \mathcal{F}_{r-1}, p_{r-1}\right) \xrightarrow{\sigma_{r-1}} \cdots\left(U_{1}, \mathcal{F}_{1}, p_{1}\right) \xrightarrow{\sigma_{1}}\left(U_{0}, \mathcal{F}_{0}, p_{0}\right)
$$

where σ_{i+1} is a blowing-up of a neighborhood U_{i} at the A-D-E singularity p_{i} of \mathcal{F}_{i} without eigenvalue, $\mathscr{F}_{i+1}=\sigma_{i+1}^{*} \mathscr{F}_{i}$ is the pulling-back of the foliation \mathcal{F}_{i}.

Let E_{i} be the exceptional curve of σ_{i} and \mathcal{E}_{i} be the total transform of E_{i} in X^{\prime}. For convenience, we also denote the strict transform of E_{i} in X^{\prime} by E_{i}. One can see that each $E_{i} \subset X^{\prime}$ is \mathcal{F}^{\prime}-invariant. If not, p_{i-1} is a singularity with an eigenvalue 1 , a contradiction.

Theorem 3.9. The singularity p_{0} is an A-D-E one without eigenvalue iff each irreducible components of \mathcal{E}_{1} is an $\widetilde{\mathcal{F}}$-invariant rational curve and one of the following cases occurs (we denote $a(-2)$-curve by \circ and the other curve by \bullet):
$\left(A_{2}\right) \mathcal{E}_{1}=E_{1}+E_{2}+2 E_{3}(r=3)$ where $E_{1}\left(\right.$ resp., $\left.E_{2}, E_{3}\right)$ is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=1$ (resp., $Z\left(\mathcal{F}^{\prime}, E_{2}\right)=1, Z\left(\mathcal{F}^{\prime}, E_{3}\right)=3$).

$\left(A_{2 n+1}\right) \mathcal{E}_{1}=E_{1}+\cdots+E_{n}+E_{n+1}(r=n+1 \geq 2)$ where $E_{1}+\cdots+E_{n}$ is a maximal simple \mathcal{F}^{\prime}-chain with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=1$ and E_{n+1} is a (-1)-curve with $Z\left(\mathcal{F}^{\prime}, E_{n+1}\right)=3$.

$\left(A_{2 n}\right) \mathcal{E}_{1}=E_{1}+\cdots+E_{n}+E_{n+1}+2 E_{n+2}(r=n+2 \geq 4)$ where $E_{1}+\cdots+E_{n-1}$ (resp., $\left.E_{n+1}\right)$ is a maximal simple \mathcal{F}^{\prime}-chain with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=1\left(\right.$ resp., $\left.Z\left(\mathcal{F}^{\prime}, E_{n+1}\right)=1\right)$ and E_{n} (resp., E_{n+2}) is a (-3)-curve (resp., (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{n}\right)=2$ (resp., $\left.Z\left(\mathcal{F}^{\prime}, E_{n+2}\right)=3\right)$.

$\left(D_{4}\right) \mathcal{E}_{1}=E_{1}(r=1)$ where E_{1} is a (-1)-curve with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=3$.
$\stackrel{\bullet}{E_{1}}$
$\left(D_{5}\right) \mathcal{E}_{1}=E_{1}+E_{2}+2 E_{3}(r=3)$ where E_{1} (resp., $\left.E_{2}, E_{3}\right)$ is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=2$ (resp., $\left.Z\left(\mathcal{F}^{\prime}, E_{2}\right)=1, Z\left(\mathcal{F}^{\prime}, E_{3}\right)=3\right)$.

$\left(D_{2 n+2}\right) \mathcal{E}_{1}=E_{1}+\cdots+E_{n-1}+E_{n}(r=n \geq 2)$ where E_{i} is a (-2)-curve with $Z\left(\mathcal{F}^{\prime}, E_{i}\right)=2$ $(i=1, \ldots, n-1)$ and E_{n} is a (-1)-curve with $Z\left(\mathcal{F}^{\prime}, E_{n}\right)=3$.

$\left(D_{2 n+3}\right) \mathcal{E}_{1}=E_{1}+\cdots+E_{n}+E_{n+1}+2 E_{n+2}(r=n+2 \geq 4)$ where E_{i} is a (-2)-curve with $Z\left(\mathcal{F}^{\prime}, E_{i}\right)=2(i=1, \ldots, n-1)$ and $E_{n}\left(r e s p ., E_{n+1}, E_{n+2}\right)$ is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{n}\right)=2\left(\right.$ resp., $Z\left(\mathcal{F}^{\prime}, E_{n+1}\right)=1, Z\left(\mathcal{F}^{\prime}, E_{n+2}\right)=$ $3)$.

(E_{6}) $\mathcal{E}_{1}=E_{1}+E_{2}+2 E_{3}+3 E_{4}(r=4)$ where $E_{2}+E_{3}$ is a maximal simple \mathcal{F}^{\prime}-chain with $Z\left(\mathcal{F}^{\prime}, E_{2}\right)=1$ and E_{1} (resp., E_{4}) is a (-4)-curve (resp., (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=1\left(\right.$ resp., $\left.Z\left(\mathcal{F}^{\prime}, E_{4}\right)=3\right)$.

(E_{7}) $\mathcal{E}_{1}=E_{1}+E_{2}+2 E_{3}\left(r=3\right.$) where E_{1} (resp., E_{2}, E_{3}) is a (-3)-curve (resp., (-2)-curve, (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{1}\right)=1$ (resp., $Z\left(\mathcal{F}^{\prime}, E_{2}\right)=2, Z\left(\mathcal{F}^{\prime}, E_{3}\right)=3$).

(E_{8}) $\mathcal{E}_{1}=E_{1}+E_{2}+2 E_{3}+3 E_{4}(r=4)$ where E_{i} is a (-3)-curves with $Z\left(\mathcal{F}^{\prime}, E_{i}\right)=1$ ($i=1,2$), and E_{3} (resp., E_{4}) is a (-2)-curve (resp., (-1)-curve) with $Z\left(\mathcal{F}^{\prime}, E_{3}\right)=2$ (resp., $Z\left(\mathcal{F}^{\prime}, E_{4}\right)=3$).

Proof. (\Longleftarrow) It's from Lemma 2.4.
(\Longrightarrow) Consider the blowing-up $\sigma_{1}:\left(U_{1}, \mathcal{F}_{1}, p_{1}\right) \rightarrow\left(U_{0}, \mathcal{F}_{0}, p_{0}\right)$. By (2.7), one has $Z\left(\mathcal{F}_{1}, E_{1}\right)=1+l\left(p_{0}\right) \leq 3$. Therefore one the following cases occurs.
(1) There are exactly three singularities of \mathcal{F}_{1} on E_{1}.
(2) There are two singularities of \mathcal{F}_{1}, says q and p_{1}, satisfying $\mu_{q}\left(\mathcal{F}_{1}, E_{1}\right)=1$ and $\mu_{p_{1}}\left(\mathcal{F}_{1}, E_{1}\right)=2$.
(3) There are a unique singularity p_{1} of \mathcal{F}_{1} with $\mu_{p_{1}}\left(\mathcal{F}_{1}, E_{1}\right) \leq 3$.

It's easy to see that p_{0} is of type D_{4} in case (1).
In case (2), q has an eigenvalue by Lemma 2.3. We apply induction on the number r of the blowing-ups and assume that p_{1} is of type A-D-E. If p_{1} has an eigenvalue, then p_{1} is a saddle-node with a weak separatrix E_{1} ans so p_{0} is D_{4} again. If p_{1} of type $A_{2 n+1}$, then the exceptional set of p_{0} in X^{\prime} is as follows.

By (2.7) again, one has

$$
3 \geq 1+l\left(p_{0}\right) \geq(n+1)\left(Z\left(E_{n+2}\right)-2\right)+\left(Z\left(\mathcal{F}^{\prime}, E_{1}\right)-1\right) \geq n+2
$$

So $n=1$. Thus p_{0} is of type D_{5}. Similarly, p_{0} may also be of type D_{n+2} if p_{1} is of type D_{n}. However, p_{1} cannot be one of other types. If not, one can find that $E_{1} \subset X_{1}$ is not smooth, a contradiction.

By a similar discussion, in case (3), one can find that p_{0} may be of type $A_{n}(n \geq 2), E_{6}$, E_{7} and E_{8}.

4. The proves of our Theorems and Corollaries

Let (X, \mathcal{F}) be a a relatively minimal foliation and $\left(X_{0}, \mathcal{F}_{0}\right)$ be the relatively minimal A-D-E model of (X, \mathcal{F}) with a bimeromorphic morphism $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$. One has

$$
K_{X}+K_{\mathcal{F}}=\rho^{*}\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right)+V
$$

where V is a \mathbb{Q}^{+}-divisor supported on the exceptional set of ρ.
In what follows, we assume that both $K_{\mathcal{F}_{0}}$ and $K_{X_{0}}+K_{\mathcal{F}_{0}}$ are pseudo-effective. Consider the Zariski decomposition of $K_{X_{0}}+K_{\mathscr{F}_{0}}$ as in (1.2).

Lemma 4.1. For an irreducible curve C in X_{0}, we have $N_{0} C<0$ iff C is a (-2)-curve as the first component of some \mathcal{F}_{0}-chain.
Proof. (\Longrightarrow) Since $N_{0} C<0$ and $N_{0} \geq 0, C$ is a component of N_{0} with $C^{2}<0$. If C is not \mathcal{F}_{0}-invariant, then

$$
N_{0} C=\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right) C=2\left(p_{a}(C)-1-C^{2}\right)+\operatorname{tang}\left(\mathcal{F}_{0}, C\right) \geq \operatorname{tang}\left(\mathcal{F}_{0}, C\right) \geq 0,
$$

a contradiction. Therefore C is \mathcal{F}_{0}-invariant.
Since $\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right) C<0$, one has

$$
-1 \leq K_{\mathcal{F}_{0}} C \leq-1-K_{X_{0}} C=-2 p_{a}(C)+1+C^{2}
$$

Thus

$$
0 \leq p_{a}(C) \leq 1+\frac{1}{2} C^{2} .
$$

It implies that C is a (-2)-curve or (-1)-curve. If C is a (-1)-curve, then $K_{\mathcal{F}_{0}} C \geq 2$ by Lemma 3.5, a contradiction. Thus C is a (-2)-curve and hence $K_{\mathcal{F}_{0}} C=-1$. By Corollary 2.7, C is the first component of an \mathcal{F}_{0}-chain.
(\Longleftarrow) Since $K_{X_{0}} C=0$ and $K_{\mathcal{F}_{0}} C=-1$,

$$
N_{0} C \leq P_{0} C+N_{0} C=\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right) C=-1 .
$$

Up to now, we complete this proof.
Lemma 4.2. These maximal simple \mathcal{F}_{0}-chains are disjoint. Furthermore, they are contained in the support of N_{0}. In particular, There are finite maximal A-chains.

Proof. The first part is from separatrix Theorem.
Let $\Theta=\Gamma_{1}+\cdots+\Gamma_{l}$ be a maximal simple \mathcal{F}_{0}-chain with the first component Γ_{1} and $\Gamma_{i} \Gamma_{i+1}=1(i=1, \ldots, l-1)$. By Lemma 4.1, Γ_{1} is in N_{0}. Suppose that Γ_{k} be not in N_{0} for some k. Without loss of generality, we assume Γ_{k-1} is in N_{0}. So $N_{0} \Gamma_{k}>0$. However one has

$$
0 \geq K_{\mathcal{F}_{0}} \Gamma_{k}=\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right) \Gamma_{k} \geq N_{0} \Gamma_{k}>0,
$$

a contradiction.
Let T be the sum of all curves in N_{0} which are not \mathcal{F}_{0}-invariant. Consider a maximal simple \mathcal{F}_{0}-chain $\Theta=\sum_{i=1}^{l} \Gamma_{i}$ as above. Let r be the minimal number such that Γ_{r+1} meets with T (if C and T are disjoint, then we take $r=l$). We define

$$
M(\Theta):= \begin{cases}\frac{1}{r+1} \sum_{i=1}^{r}(r+1-i) \Gamma_{i}, & \text { if } r>0, \\ 0, & \text { if } r=0 .\end{cases}
$$

It's easy to see that

$$
M(\Theta) \Gamma_{i}=\left\{\begin{array}{cl}
-1, & \text { if } i=1, \tag{4.1}\\
\frac{1}{r+1}, & \text { if } i=r+1 \\
0, & \text { if } i \neq 1, r+1
\end{array}\right.
$$

whenever $r>0$. Thus one has

$$
\left(N_{0}-M(\Theta)\right) \Gamma_{i}=\left\{\begin{align*}
0, & \text { if } i \neq r+1 \tag{4.2}\\
-\frac{1}{r+1}, & \text { if } i=r+1
\end{align*}\right.
$$

Note that the above equalities hold also in the case that $r=0$.
For any irreducible \mathcal{F}_{0}-invariant C_{0} outside of Θ, either $C_{0} \Theta=0$ or C_{0} meets transversely with the last component Γ_{l} of Θ. Hence

$$
M(\Theta) C_{0}=\left\{\begin{array}{cl}
\frac{1}{l+1}, & \text { if } r=l \text { and } C_{0} \Gamma_{l}>0 \tag{4.3}\\
0, & \text { otherwise }
\end{array}\right.
$$

In particular, $M(\Theta) C_{0} \leq \frac{1}{2}$.

Let $\Theta_{1}, \ldots, \Theta_{s}$ be all maximal simple \mathcal{F}_{0}-chainx. Take

$$
\bar{N}_{0}=N_{0}-\sum_{i=1}^{s} M\left(\Theta_{i}\right)
$$

Lemma 4.3. $\bar{N}_{0} \geq 0$.
Proof. Write

$$
N_{0}=D+\sum_{i=1}^{s} Z_{i}
$$

where the support of Z_{i} is contained in $\Theta_{i}(i=1, \ldots, s)$ and the support of D contains no irreducible component in Θ_{i} 's. Since $N_{0} \geq 0$, we have $D \geq 0$ and $Z_{i} \geq 0(i=1, \ldots, s)$.

It's enough to prove $Z_{i} \geq M\left(\Theta_{i}\right)$. Take $\Theta=\Theta_{i}$ and adopt all notations as above. If $r=0$, then $M(\Theta)=0$ and hence $Z_{i} \geq M(\Theta)$. We assume that $r>0$. By (4.2), one has

$$
\left(Z_{i}-M(\Theta)\right) \Gamma \leq\left(N_{0}-M(\Theta)\right) \Gamma \leq 0
$$

for each irreducible component Γ of Θ. It implies that $Z_{i}-M\left(\Theta_{i}\right) \geq 0$.
Lemma 4.4. We have $\left(\bar{N}_{0}+T\right) C \geq 0$ if C occurs in one of the following cases:
(1) C is a component of T.
(2) C is an irreducible component of a maximal simple \mathcal{F}_{0}-chain.

Proof. (1) Let C be a component of T. One has

$$
\left(\bar{N}_{0}+T\right) C \geq\left(\bar{N}_{0}+C\right) C=\left(N_{0}+C\right) C=K_{X_{0}} C+K_{\mathcal{F}_{0}} C+C^{2}=\operatorname{tang}\left(\mathcal{F}_{0}, C\right)+K_{X_{0}} C .
$$

Suppose that $\left(\bar{N}_{0}+T\right) C<0$. Note C is in N_{0}. So $C^{2}<0$. If $K_{X_{0}} C<0$, then C is a (-1)-curve and so $K_{X_{0}} C=-1$. Hence the above inequality implies that $\operatorname{tang}\left(\mathcal{F}_{0}, C\right)=0$. Thus $K_{\mathcal{F}_{0}} C=1$. However $K_{\mathcal{F}_{0}} C \geq 2$ by Lemma 3.5, a contradiction.
(2) Without loss of generality, we assume C is a component of $\Theta_{1}=\Gamma_{1}+\cdots+\Gamma_{l}$, says $C=\Gamma_{i}$. Let r be the minimal subscript such that Γ_{r+1} meets with T. By (4.2), one has

$$
\bar{N}_{0} \Gamma_{i}=\left\{\begin{aligned}
0, & \text { if } i \neq r+1 \\
-\frac{1}{r+1}, & \text { if } i=r+1
\end{aligned}\right.
$$

Note that $T \Gamma_{r+1} \geq 1$ and $T \Gamma_{i} \geq 0(i \neq r+1)$. Thus one has $\left(\bar{N}_{0}+T\right) C \geq 0$.
Lemma 4.5. $\bar{N}_{0}+T=0$.
Proof. By Lemma 4.4 and the negativity of $\bar{N}_{0}+T$, we can find an \mathcal{F}_{0}-invariant curve C_{0} in N_{0} such that C_{0} is outside of Θ_{i} 's and

$$
\begin{equation*}
\left(\bar{N}_{0}+T\right) C_{0}<0 \tag{4.4}
\end{equation*}
$$

whenever $\bar{N}_{0}+T \neq 0$.
Let k be the number of the intersections of Θ_{i} 's and C_{0}. Let h be the number of else singularities of \mathcal{F}_{0} on C_{0}. By (4.3), one gets

$$
\begin{equation*}
\left(\bar{N}_{0}+T\right) C_{0}=\left(N_{0}+T\right) C_{0}-\sum_{i=1}^{s} M\left(\Theta_{i}\right) C_{0} \geq K_{X_{0}} C_{0}+K_{\mathcal{F}_{0}} C_{0}+T C_{0}-\frac{k}{2} \tag{4.5}
\end{equation*}
$$

From Cerveau-Lins Neto formula, we have

$$
\begin{equation*}
K_{X_{0}} C_{0}+K_{\mathcal{F}_{0}} C_{0}=-C_{0}^{2}+2\left(p_{a}\left(C_{0}\right)+g\left(C_{0}\right)-2\right)+\sum_{p \in C_{0}} \sum_{B \in C_{0}(p)} \mu\left(\mathcal{F}_{0}, B, p\right) \tag{4.6}
\end{equation*}
$$

Combing (4.4), (4.5) and (4.6), one gets

$$
\begin{equation*}
-C_{0}^{2}+2\left(p_{a}\left(C_{0}\right)+g\left(C_{0}\right)-2\right)+T C_{0}+\sum_{p \in C_{0}} \sum_{B \in C_{0}(p)} \mu\left(\mathcal{F}_{0}, B, p\right)-\frac{k}{2}<0 \tag{4.7}
\end{equation*}
$$

Claim 1. $C_{0} \cong \mathbb{P}^{1}$.
Firstly, we claim that C_{0} is smooth. Suppose that C_{0} have a singularity p. If $p \in \Theta_{i}$, then p is not a reduced singularity of \mathcal{F}_{0} on Θ_{i}, a contradiction. So any simple \mathcal{F}_{0}-chain doesn't pass through p. Thus we have

$$
\begin{equation*}
-C_{0}^{2}+2\left(p_{a}\left(C_{0}\right)+g\left(C_{0}\right)-2\right)+T C_{0}+(1+k)-\frac{k}{2}<0 . \tag{4.8}
\end{equation*}
$$

From (4.8) and $-C_{0}^{2} \geq 1$, we get $p_{a}\left(C_{0}\right)=0$ (i.e., $C_{0} \cong \mathbb{P}^{1}$), a contradiction. Hence C_{0} is smooth.

Therefore, by (4.7), we have

$$
-C_{0}^{2}+4\left(p_{a}\left(C_{0}\right)-1\right)+T C_{0}+\frac{k}{2}<0 .
$$

It implies that $C_{0} \cong \mathbb{P}^{1}$.
Let p_{1}, \ldots, p_{h} be the singularities of \mathcal{F}_{0} on C_{0} outside Θ_{i} 's.
Calim 2. $\mu_{p_{i}}\left(\mathcal{F}_{0}, C_{0}\right)=1$ for each p_{i} and $h \leq 2$.
(4.7) implies that

$$
\begin{equation*}
-C_{0}^{2}-4+T C_{0}+\frac{k}{2}+\sum_{i=1}^{h} \mu_{p_{i}}\left(\mathcal{F}_{0}, C_{0}\right)<0 \tag{4.9}
\end{equation*}
$$

If $\mu_{p_{i}}\left(\mathcal{F}_{0}, C_{0}\right) \geq 2$ for some i, then C_{0} is a (-1)-curve, $h=1, k \leq 1$ and $\mu_{p_{1}}\left(\mathcal{F}_{0}, C_{0}\right)=2$ from (4.9). By Cerveau-Lins Neto formula,

$$
K_{\mathcal{F}_{0}} C_{0}=-2+k+\mu_{p_{1}}\left(\mathcal{F}_{0}, C_{0}\right) \leq 1 .
$$

However, $K_{\mathcal{F}_{0}} C_{0} \geq 2$ by Lemma 3.5, a contradiction. Hence $\mu_{p_{i}}\left(\mathcal{F}_{0}, C_{0}\right)=1$ for each p_{i} and $h \leq 2$.

Therefore we get

$$
\begin{equation*}
-C_{0}^{2}-4+T C_{0}+\frac{k}{2}+h<0 \tag{4.10}
\end{equation*}
$$

Claim 3. $h=k=1$ and $C_{0}^{2}=-2$.
From separatrix Theorem (see [Bru15, Theorem 3.4] or [Cam88]), one can find that $h>0$. So one can find that $-C_{0}^{2} \leq 2$ by (4.10).

If $k \geq 2$, then one can find two \mathcal{F}_{0}-invariant (-2 -curves, says Γ_{1}, Γ_{2}, meeting with C_{0} transversely. Since $\Gamma_{1}+\Gamma_{2}+C_{0}$ is negative, $-C_{0}^{2} \geq 2$. Thus

$$
-C_{0}^{2}-4+T C_{0}+\frac{k}{2}+h \geq 0
$$

a contradiction. Hence $k \leq 1$. By Cerveau-Lins Neto formula, $K_{\mathcal{F}_{0}} C_{0}=-2+k+h \leq 1$. From Lemma 3.5 and $-C_{0}^{2} \leq 2$, one gets $C_{0}^{2}=-2$. So $h=1$ and $k \leq 1$.

If $k=0$, then $N_{0} C_{0}=\bar{N}_{0} C_{0} \leq\left(\bar{N}_{0}+T\right) C_{0}<0$. By Lemma 4.1, C_{0} is contained in some simple \mathcal{F}_{0}-chain, a contradiction. So $k=1$.

Claim 4. $C_{0}+\Theta_{1}$ is a simple \mathcal{F}_{0}-chain.
By the above discussion, C_{0} has two singularities of $\mathcal{F}_{0}: p_{1}$ and $q_{1}=\Theta_{1} \cap C_{0}$. Let $\lambda_{p_{1}}$ (resp., $\lambda_{q_{1}}$) be the eigenvalue of p_{1} (resp., q_{1}) along C_{0}. More precisely, $\lambda_{q_{1}}=-\frac{l+1}{l}$ by Camacho-Sad formula where l is the number of irreducible components of Θ_{1}. Note that $C_{0}^{2}=-2$. By Camacho-Sad formula again, one has $\lambda_{p_{1}}=-\frac{l+1}{l+2}$. Thus $C_{0}+\Theta_{1}$ is a simple \mathcal{F}_{0}-chain. However, Θ_{1} is a maximal simple \mathcal{F}_{0}-chain, a contradiction.

Up to now, this proof is completed.
Proof of Theorem 1.2. From Lemma 3.8, \mathcal{F} is minimal. Lemma 4.5 implies that $N_{0}=\sum_{i=1}^{s} M\left(\Theta_{i}\right)$. So $\left\lfloor N_{0}\right\rfloor=0$.

If $\rho^{*} N_{0}$ meets with the exceptional set E of ρ, then ρ contracts some exceptional curves to a point, says p, on a maximal simple \mathcal{F}_{0}-chain. Thus p is either smooth or reduced. However, \mathcal{F} is relatively minimal, a contradiction. Hence $\rho^{*} N_{0}$ is disjoint from E.

Proof of Theorem 1.4. Since $K_{\mathcal{F}}$ is pseudoeffective, $h^{2}\left(K_{X}+K_{\mathcal{F}}\right)=h^{0}\left(-K_{\mathcal{F}}\right)=0$. From Riemann-Roch formula, one has

$$
\begin{equation*}
h^{0}\left(K_{X}+K_{\mathcal{F}}\right)=h^{1}\left(K_{X}+K_{\mathcal{F}}\right)+\chi\left(O_{X}\right)+\rho(X) \geq \rho(X)+\chi\left(O_{X}\right) . \tag{4.11}
\end{equation*}
$$

If P is big, then $h^{1}\left(K_{X}+K_{\mathcal{F}}\right)=0$ by Kawamata-Viehweg vanishing theorem and the fact that $\lfloor N\rfloor=0$ where P is as in (1.1). Thus one gets

$$
\begin{equation*}
h^{0}\left(K_{X}+K_{\mathcal{F}}\right)=\chi\left(O_{X}\right)+\rho(X) . \tag{4.12}
\end{equation*}
$$

In the case that $\operatorname{kod}(X) \geq 0$, one can find that K_{X} is pseudoeffective. If not, $h^{0}\left(n K_{X}\right)=0$ for all $n \geq 1$, namely, $\operatorname{kod}(X)=-\infty$, a contradiction. So $K_{X}+K_{\mathcal{F}}$ is also pseudoeffective. In what follows, we assume that $\operatorname{kod}(X)=-\infty$. Note that $p_{g}(X)=0$. One has

$$
h^{0}\left(K_{X}+K_{\mathcal{F}}\right) \geq \rho(X)+1-q(X)
$$

from (4.11). So $K_{X}+K_{\mathcal{F}}$ is pesudoeffective whenever $\rho(X) \geq q(X)$.
Proof of Corollary 1.5. Since $h^{0}\left(K_{\mathcal{F}}\right)>0$, we have

$$
h^{0}\left(K_{X}+K_{\mathcal{F}}\right) \geq h^{0}\left(K_{X}\right)=p_{g}(X) .
$$

From (4.12), we get $q(X) \leq 1+\rho(X)$.
Proof of Corollary 1.7. In this case, $K_{\mathcal{F}}=K_{f}$ (see [Bru15, Ch.2, Sec.3, Example (5)]). It's well-known, K_{f} is a nef and big divisor. By (4.12) and a straightforwards computation, one gets (1.4) and (1.5).

If $b \geq 1$, then (1.4) implies $h^{0}\left(K_{X}+K_{\mathcal{F}}\right)>0$. If $b=0$, one gets again

$$
h^{0}\left(K_{X}+K_{\mathcal{F}}\right) \geq \chi_{f}+K_{f}^{2}-3(g-1) \geq g-1>0
$$

from (1.4) and the equality $K_{f}^{2} \geq 4 g-4$ in [TTZ05, Theorem 2.1]. So $K_{X}+K_{\mathcal{F}}$ is pseudoeffective.

Now we will claim $K_{X}+K_{\mathcal{F}}$ is nef, i.e., the negative part $\bar{N}=0$. We adopt all notations and assumptions in Sec. 3.2.

Note that each singularities of \mathcal{F} has an eigenvalue -1 from f is semistable. The key fact implies that
(1) $N_{0}=0$;
(2) the eigenvalue of each non-reduced singularity of $\left(X^{\prime}, \mathcal{F}^{\prime}\right)$ is 1 ;
(3) the singularities of $\left(X_{0}, \mathcal{F}_{0}\right)$ is at worst of type $D_{2 n+2}$ from Theorem 3.9.

By (3.1), for a singularity p_{0} of type $D_{2 n+2}$, the contribution of p_{0} to V is exactly zero. Hence $\bar{N}=0$.

Since $\left(K_{X}+K_{\mathcal{F}}\right) F=4 g-4>0$ for ageneral fiber $F, K_{X}+K_{\mathcal{F}} \not \equiv_{\text {num }} 0$, that is, $\bar{v}(\mathcal{F}) \geq 1$.

5. An example for a foliation \mathcal{F} with $\bar{v}(\mathcal{F})=0$

Let $X_{0}=\mathbb{P}^{2}$. Consider a family of curves as follows:

$$
C_{t}:\left(X^{4}+Y^{4}+Z^{4}\right)+t\left(X^{2} Y^{2}+Y^{2} Z^{2}+Z^{2} X^{2}\right)=0, \quad t \in \mathbb{C}^{1}
$$

and C_{∞} is defined by $X^{2} Y^{2}+Y^{2} Z^{2}+Z^{2} X^{2}=0$. The family of curves induces a foliation \mathcal{F}_{0}. More precisely, in the neighbourhood $U_{0}=\{[x, y, 1] \mid x, y \in \mathbb{C}\}$, the generator of \mathcal{F}_{0} is

$$
v=y\left(x^{2} y^{2}+y^{2}-x^{4}-1\right) \frac{\partial}{\partial x}-x\left(x^{2} y^{2}+x^{2}-y^{4}-1\right) \frac{\partial}{\partial y}
$$

The foliation \mathcal{F}_{0} is an A-D-E foliation. All non-reduced singularities are as follows:

$$
\begin{array}{lll}
p_{1}=\left[\omega, \omega^{2}, 1\right], & p_{2}=\left[-\omega, \omega^{2}, 1\right], & p_{3}=\left[\omega,-\omega^{2}, 1\right], \\
p_{5}=\left[\omega^{2}, \omega, 1\right], & p_{6}=\left[-\omega^{2}, \omega, 1\right], & p_{7}=\left[-\omega,-\omega^{2}, 1\right], \\
\left.\omega^{2},-\omega, 1\right], & p_{8}=\left[-\omega^{2},-\omega, 1\right] .
\end{array}
$$

Each p_{i} has an eigenvalue $\frac{1}{2}$ and lies in C_{2}. Each reduced singularity of \mathcal{F}_{0} has an eigenvalue -1 .

Consider a minimal resolution $\rho:(X, \mathcal{F}) \rightarrow\left(X_{0}, \mathcal{F}_{0}\right)$ of all p_{i} 's such that the exceptional set of p_{i} is $E_{2 i-1}+E_{2 i}$ where $E_{2 i-1}$ (resp., $E_{2 i}$) is a (-2)-curve (resp., (-1)-curve) and $E_{2 i-1} E_{2 i}=1$. The pulling-back foliation $\mathcal{F}=\rho^{*} \mathcal{F}_{0}$ is relatively minimal.

In fact, \mathcal{F} gives a minimal normal-crossing fibration $f: X \rightarrow \mathbb{P}^{1}$ of genus $g=3$ with four singular fibers $F_{t}=\rho^{*} C_{t}-\sum_{i=1}^{16} E_{i}(t=-2,-1,2, \infty)$:
(1) F_{-2} is a reduce nodal curve consisting of four (-3)-curves;
(2) F_{-1} is reduce nodal curve consisting of two (-4)-curves;
(3) $F_{2}=2 \Gamma+\sum_{i=1}^{8} E_{2 i-1}$ where Γ is a (-4)-curve meeting transversely with each $E_{2 i-1}$;
(4) F_{∞} is a irreducible nodal curve with three nodes.

We have $K_{\mathcal{F}_{0}}=3 L, K_{X_{0}}=-3 L$ where L is a line in \mathbb{P}^{2}. Hence

$$
K_{X}+K_{\mathcal{F}}=\rho^{*}\left(K_{X_{0}}+K_{\mathcal{F}_{0}}\right)+\sum_{i=1}^{16} E_{i}=\sum_{i=1}^{16} E_{i} .
$$

So $\bar{v}(\mathcal{F})=0$ and $h^{0}\left(K_{X}+K_{\mathcal{F}}\right)=1$.
Note that $C_{2}=2 \Gamma_{0}$ where Γ_{0} is a conic curve. One has

$$
2 \rho^{*} L \equiv \rho^{*} \Gamma_{0} \equiv \Gamma+\sum_{i=1}^{16} E_{i}
$$

Therefore

$$
K_{\mathcal{F}}=K_{f}-\Gamma \equiv \rho^{*} L+\Gamma+\sum_{i=1}^{8} E_{2 i-1} .
$$

The positive and negative parts of a Zariski decomposition of $K_{\mathcal{F}}$ are

$$
P=\rho^{*} L+\Gamma+\frac{1}{2} \sum_{i=1}^{8} E_{2 i-1}, \quad N=\frac{1}{2} \sum_{i=1}^{8} E_{2 i-1}
$$

respectively. Moreover, we have $c_{1}^{2}(\mathcal{F})=5, K_{f}^{2}=9$ and $\chi_{f}=3$.
Acknowledgements The authors would like to give their thanks to professor Sheng-Li Tan, professor Xiaolei Liu and professor Hao Lin for many useful discussions on foliations and fibrations.

References

[AK00] T. Ashikaga and K. Konno: Global and local properties of pencils of algebraic curves, Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Mathematics, 36 (2000),1-49.
[BHPV04] W. Barth, K. Hulek, C. Peters, A. Van de ven: Compact complex surfaces (Second Edition), Springer Verlag, Berlin etc. (2004).
[Bru15] M. Brunella, Birational geometry of foliations, IMPA Monographs 1, Springer, Cham (2015).
[Bru97] M. Brunella: Some remarks on indices of holomorphic vector fields,Publicacions matematiques, 41(2) (1997), 527-544
[Car94] Manuel M. Carnicer:The Poincaré problem in the nondicritical case, Annals of mathematics, 140(2) (1994), 289-294.
[Cam88] C. Camacho: Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann., 282 (1988), 177-184.
[CF18] P. Cascini, E. Floris, On invariance of plurigenera for foliations on surfaces, Journal für die reine und angewandte Mathematik (Crelles Journal), 744 (2018), 201-236.
[CS82] C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann.of Math., 115 (3) (1982), 579-595.
[CLS84] C. Camacho, A. Lins Neto, P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Diff. Geom.,20 (1984), 143-174.
[CLN91] D. Cerveau, A. Lins Neto, Holomorphic foliations in $\mathbb{C P}(2)$ having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883-903.
[GSV91] X. Gomez-Mont, J. Seade, A. Verjovsky: The index of a holomorphic flow with an isolated singularity, Math. Ann., 291 (1991), 737-751.
[Fuj79] T. Fujita, On Zariski problem, Proc. Japan Acad. Series A, Math. Sci., 55 (3) (1979), 106-110.
[McQ00] M. Mcquillan, Noncommutative Mori theory, preprint, IHES M/00/15 (2000).
[McQ08] M. Mcquillan, Canonical models of foliations, Pure Appl. Math. Q. 4 (2008), no. 3, part 2, 877-1012.
[Miy87] Y. Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic Geometry Bowdoin 1985, Proc. Symp. Pure Math. 46 (1985), 245-268.
[Per05] J. V. Pereira, On the height of foliated surfaces with vanishing Kodaira dimension,Publicacions Matemàtiques (2005), 363-373.
[Sak84] F. Sakai, Weil divisors on normal surfaces, Duke Math. J. 51 (4) (1984), 877-887.
[Sei68] A. Seidenberg, Reduction of singularities of the differential equation Ady $=B d x$, Amer. J. Math. 89 (1968), 248-269.
[SS23] C. Spicer, R. Svaldi,Effective generation for foliated surfaces: results and applications,J. reine angew. Math. 795 (2023), 45-84.
[Suw98] T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques (1998).
[Tan23] S.-L.Tan, Poincaré problem and Painlevé problem Chern numbers of a holomorphic foliation, to appear.
[TTZ05] S.-L. Tan, Y.-P. Tu, and A.-G. Zamora, On complex surfaces with 5 or 6 semistable singular fibers over \mathbb{P}^{1}, Math. Zeit., 249 (2005), 427-438.

Address of Jun Lu: School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Dongchuan RD 500, Shanghai 200241, P. R. of China

E-mail address: jlu@math.ecnu.edu.cn
Address of Xiao-Hang Wu: College Of Science, Wuhan University Of Science And Technology, Wuhan

430065,P. R. of China

E-mail address: wuxiaoh001@foxmail.com

[^0]: ${ }^{1}$ This work is supported by NSFC, Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014).
 ${ }^{2} 2020$ Mathematics Subject Classification. 14C21, 14D06, 14H10, 32S65, 37F75
 ${ }^{3}$ Key words and phrases. foliation, fibration, canonical divisor, Chern number, Zariski decomposition.

