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A. In this paper, we describe the structure of the negative part of a Zariski de-
composition of KX + KF for a relatively minimal foliation (X,F ) whenever KX + KF is
pseudoeffective.

1. I

For any semistable fibration f : X → P1 of genus g on a smooth algebraic surface X,
[TTZ05] gives a classical inequality

K2
f ≥ 4g − 4

where K f = c1(ωX/P1 ) is the relative canonical divisor. This inequality is essentially from
the key fact that both K f and KX + K f are nef.

Naturally, we are interested in the analogues of a foliation F on a smooth algebraic
surface X. More precisely, we hope to investigate the canonical divisor KF and the adjoint
canonical divisor KX + KF of F . More generally, one can define an ε-adjoint divisor
εKX + KF (0 < ε ≤ 1) which is studied in [SS23] for ε � 1.

In particular, one has KF = K f for a foliation F generated by the above semistable
fibration f : X → P1. In this case, both KF and KX + KF are nef. However, they are not
necessarily nef for other foliations. Therefore we need to consider the Zariski decomposi-
tions of KF and KX + KF respectively whenever they are pseudoeffective.

Miyaoka’s rationality criterion says that F is a foliation by a rational curves if KF is not
pseudoeffective (see [Miy87] or [Bru15, Theorem 7.1]). If KF is pseudoeffective, it has a
Zariski decomposition

KF
num
= P + N(1.1)

where
(1) N is a Q+-divisor and the intersection matrix of the irreducible components of N

is negative definite;
(2) P is a nef Q-divisor and PN = 0 (see [Sak84, Corollary 7.5] or [Fuj79, Theorem

1.12]). P (resp., N) is called positive (resp., negative) part.
Furthermore, if F is relative minimal, then N is a disjoint union of maximal F -chains and
the integral part bNc = 0 (see [McQ00] or [Bru15, Theorem 8.1]).

In this paper, we shall study mainly the adjoint canonical divisor KX+KF of a relatively
minimal foliation F . We assume that KX + KF is pseudoeffective and denote a Zariski
decomposition of KX + KF by

KX + KF = P + N

where P (resp., N) is the positive (resp., negative) part of KF . We hope to answer the
following problem.
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Problem 1.1. What is the structure of the negative part N?

For this purpose, we will consider a bimeromorphic morphism ρ : (X,F ) → (X0,F0)
onto a so-called relatively minimal A-D-E model F0 of F on a smooth algebraic surface X0
(see Definition 3.1). The adjoint canonical divisor KX0 + KF0 is also pseudoeffective and
has a Zariski decomposition

KX0 + KF0 = P0 + N0(1.2)

with a positive part P0 and a negative part N0. One can see easily that

P = ρ∗P0, N = ρ∗N0 + V(1.3)

where V is a Q+-divisor supported on the exceptional set of ρ (see (3.1) and Theorem 3.9
for a precise expression). Therefore it’s sufficient to determine the structure of N0.

Our main result is as follows.

Theorem 1.2. Let (X,F ) be a relative minimal foliation. If KX + KF is pseudoeffective,
then F is minimal and the negative part N of the Zariski decomposition of KX + KF can
be expressed as in (1.3) where the support of N0 is a disjoint union of maximal simple F0-
chains (see Definition 2.1) and the integral part bN0c = 0. Furthermore, ρ∗N0 is disjoint
from the exceptional set of ρ.

Remark 1.3. However, it is possible that V contains some curves which are not F -
invariant.

An interesting question is when KX + KF is pseudoeffective. The following result pro-
vide an partial answer.

Theorem 1.4. Let (X,F ) be a relatively minimal foliation with a non-zero pseudoeffective
canonical divisor KF . Set

ρ(X) :=
1
2

(KX + KF )KF .

We have
h0(KX + KF ) ≥ χ(OX) + ρ(X).

The equality holds if F is of general type, i.e., P2 > 0 (see [Bru15, Ch 8., Sec.1]).
Therefore KX + KF is pseudoeffective if it satisfies one of the following conditions:

(1) kod(X) ≥ 0;
(2) kod(X) = −∞ and ρ(X) ≥ q(X),

where q(X) is the irregularity of X.

Corollary 1.5. For any relatively minimal foliation (X,F ) of general type with h0(KF ) > 0,
we have

q(X) ≤ 1 + ρ(X).

For any foliation (Y,G) with a minimal model (X,F ), we can define some invariants of
G by the adjoint canonical divisor of F :

(1) adjoint numerical Kodaira dimension

ν̄(F ) =


0, if P num

= 0.

1, if P
num
, 0 but P

2
= 0,

2, if P
2
= 0.

In order to be complete, we also set ν̄(F ) = −∞ if KX +KF is not pseudoeffective;
(2) adjoint Kodaira dimension

k̄(F ) := lim sup
n→+∞

log h0(X, n(KX + KF ))
log n

;

(3) adjoint the first Chern numer c̄2
1(F ) := P

2
.
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Remark 1.6. [Tan23] defines a biholomorphic invariant c2
1(F ) for any foliation F and

proves that c2
1(F ) = P2 for the positive part P in (1.1) whenever F is relatively minimal.

As an application, one can investigate an algebraic foliation generated by a semistable
fibration.

Corollary 1.7. Let f : X → B be a non-trivial semistable fibration of genus g ≥ 2 over a
smooth algebraic curve B of genus b and F be the foliation induced by f . Then KX + KF
is nef and ν̄(F ) ≥ 1. We have

h0(KX + KF ) = χ f + K2
f + 3(g − 1)(b − 1)(1.4)

and

c̄2
1(F ) = 4

(
K2

f + 4(g − 1)(b − 1)
)
≥ 0(1.5)

where K f = c1(ωX/B) is the relative canonical divisor of f and

χ f = deg f∗ωX/B = χ(OX) − (g − 1)(b − 1)

is a positive invariant (cf. [AK00, pp.6] or [BHPV04, Ch. III, Theorem 18.2 ]).

In particular, if B � P1, the non-negativity of c̄2
1(F ) is equivalent to the well-known

inequality K2
f ≥ 4(g−1) in [TTZ05, Theorem 2.1]. They describe such fibrations satisfying

c̄2
1(F ) = 0 which can be rephrased in the language of foliation theory as follows.

Corollary 1.8. Let (X,F , f ) be as in Corollary 1.7. Then ν̄(F ) = 1 iff B � P1 and X is
the minimal resolution of the singularities of a double covering surface π : Z → P1 × C
ramified over a curve of numerical type 2F1+(2g+2−4g(C))F2, and fibration f is induced
by the first projection pr1 : P1 ×C → P1 where Fi is a fiber of the i-th projection of P1 ×C.

We will give an example for an algebraic foliation F with ν̄(F ) = 0 in Sec. 5.
There are some open problem on the adjoint canonical divisor KX + KF .

Problem 1.9. When is KX + KF pseudoeffective for a minimal foliation F ?

Problem 1.10. Is there a foliation F satisfying ν̄(F ) , k̄(F )?

Problem 1.11. What is the relation between c2
1(F ) and c̄2

1(F )?

Problem 1.12. How to give a classification of all foliations with adjoint numerical Kodaira
dimensions ≤ 1?

Problem 1.13. Given a foliation F generated by a non-semistable fibration f : X → P1.
Is there an inequality similar to the classical inequality in [TTZ05, Theorem 2.1] by the
non-negativity of c2

1(F ) and c̄2
1(F )?

Problem 1.14. When does a minimal foliation has a unique relatively minimal A-D-E
model up to a biholomorphic morphism?

2. P

2.1. F -invariant curves and singularities of a foliation F . We recall some definitions
and basic facts about foliations on a surface (see [Bru15] or [CF18, Sec. 2] for more
details).

Let X be a smooth algebraic surface with a tangent bundle TX . A foliation F on X is
given by a short exact sequence

0 −→ TF −→ TX −→ IZ ⊗ NF −→ 0

where TF and NF are line bundles and IZ is an ideal sheaf supported on a finite set.
KF := c1(T ∗

F
) is called the canonical divisor of F .

A curve C ⊆ X is said to be F -invariant if the inclusion TF |C → TX |C factors through
TC where TC is the tangent bundle of C.
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An F -chain Θ is a Hirzebruch-Jung string Θ = Γ1 + · · · + Γl consisting of F -invariant
curves Γi’s satisfying that

(1) all singularities of F on Θ are reduced and non-degenerated;
(2) there is only one singularity of F , says pl(∈ Γl), on Θ − {p1, . . . , pl−1} where

pi = Γi ∩ Γi+1 (i = 1, . . . , l − 1);
(3) Γ1 has only one singularity p1.

For convenience, Γ1 is said to be the first component of Θ. More details can be found in
[Bru15, Ch.8, Sec.2].

Definition 2.1. A simple F -chain is an F -chain consisting of F -invariant (−2)-curves.
We say a simple F -chain is maximal if it can not be contained other simple F -chains.

However, it’s possible that a maximal simple F -chain is contained in an F -chain.
An F -invariant (−1)-curve C is said to be F -exceptional if the contraction of C to a

point p produces a new foliation which has at p a regular point or a reduced singular point.
F is said to be reduced if all singularities of F are reduced. Furthermore, a reduced

foliation is called relatively minimal if it has no F -exceptional curve. Each foliation has
a relatively minimal model (see [Bru15, Proposition 5.1]). A relatively minimal foliation
(X,F ) is said to be minimal if any bimeromorphic map f : (X,F ) d (Y,G) sending F to
a relatively minimal foliation G is in fact a biholomorphic map.

Consider a blowing-up σ : (X̃, F̃ , E) → (X,F , p) centered at a singularity p of F with
an exceptional curve E ⊂ X̃ and a pulling-back foliation F̃ . Let a(p) be the vanishing order
of F at p. One has

K
F̃
= σ∗KF + (1 − l(p)) E(2.1)

where l(p) is the order of F at p defined by

l(p) =
{

a(p), if E is F -invariant,
a(p) + 1, otherwise.

See [Bru15, Ch. 2, Sec. 3] for more details.
Let U be a neighborhood in X with a local coordinate (x, y) and

v = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
(a, b ∈ C{x, y})(2.2)

be a local generator of F at a singularity p = (0, 0). Let B be an F -invariant branch passing
through p. We take a minimal Puiseux’s parametrization of B at p:

ϕ : D→ B, t → (ϕx(t), ϕy(t))(2.3)

where ϕx, ϕy ∈ C{t} and D is a disk centered at 0 ∈ C. The multiplicity µp(F , B) of F at B
is defined by the order of ϕ∗(B) at t = 0. More precisely, one has

µp(F , B) =
{
ν0(a(ϕx(t), ϕy(t))) − ν0(ϕx(t)) + 1 if ϕx(t) , 0,
ν0(b(ϕx(t), ϕy(t))) − ν0(ϕy(t)) + 1 if ϕy(t) , 0,(2.4)

where a, b are as in (2.2) and ν0(h) is the order of the zero t = 0 of h ∈ C{t} (see [Car94]).
µp(F , B) ≥ 0 the equality holds iff p is not a singularity of F .

Remark 2.2. For a smooth point p of B, µp(F , B) = Z(F , B, p) where Z(F , B, p) is the
Gomez-Mont-Seade-Verjovsky index (cf. [Bru15, Bru97, GSV91]). If B is a smooth irre-
ducible F -invariant curve, we denote the sum of µp(F , B)’s for all p ∈ B by Z(F , B).

Let σ : X̃ → X be a blowing-up centered at p ∈ B with an exceptional curve E and B̃
be the strict transform of B with the only one point p̃ := E ∩ B̃. From [Car94], one has

µp(F , B) = µp̃(F̃ , B̃) + mp(B)(l(p) − 1)(2.5)

where mp(B) is the multiplicity of B at p and F̃ is the pulling-back foliation of F .
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Lemma 2.3. µp(F , B) = 1 iff either p has a nonzero eigenvalue or p is a saddle-node with
a strong separatrix B.

In particular, in this case, if mp(B) ≥ 2, then p is a dicritical singularity with a local
generator v = x ∂

∂x + λy
∂
∂y for λ ∈ Q+ by choosing a proper coordinate.

Proof. Firstly, we consider the case for mp(B) = 1. By choosing a suitable coordinate, we
can take the minimal parametrization (2.3) as ϕ(t) = (t, 0). Thus the local generator (2.2)
of F can be taken as

v = (xmw(x) + yu(x, y))
∂

∂x
+ yv(x, y)

∂

∂y
, u, v ∈ C{x, y}, w ∈ C{x}, w(0) , 0.

By (2.4), we get µp(F , B) = m. In particular, µp(F .B) = 1 iff either the eigenvalue of p is
nonzero or p is a saddle-node with a strong separatrix B.

So it’s enough to consider the case for mp(B) ≥ 2 from the above discussion.
(⇐=) Since mp(B) ≥ 2, p is a singularity of F with a local generator v = x ∂

∂x + λy
∂
∂y

for λ ∈ Q+ by choosing a proper coordinate (see [Bru15, pp. 7-8]). Thus (2.4) gives
µp(F , B) = 1.

(=⇒) If l(p) ≥ 2, then (2.5) implies that l(p) = 2 and mp(B) = 1, a contradiction. So
l(p) = 1. If the eigenvalue of p is nonzero, the proof is finished. If p is a saddle-node, then
B is a strong separatrix by [Bru15, pp. 31] and so mp(B) = 1, a contradiction.

In what follows, we assume p is a nilpotent singularity. By choosing a suitable coordi-
nate, the local generator of F can be written as

v = (y + u(x, y))
∂

∂x
+ v(x, y)

∂

∂y

where u, v are holomorphic functions which vanish at (0, 0) up to order 2. Consider the
minimal parametrization (2.3) of B at p. In this case, ϕxϕy , 0. From (2.4), one has

ν0(ϕy(t) + u(ϕx(t), ϕy(t))) = ν0(ϕx(t)), ν0(v(ϕx(t), ϕy(t))) = ν0(ϕy(t)).

Hence
ν0(ϕy(t)) = ν0(ϕx(t)), 2ν0(ϕx(t)) ≤ ν0(ϕy(t)).

It implies that ν0(ϕx(t)) = ν0(ϕy(t)) = 0, a contradiction.
This proof is completed. �

Due to Camacho-Lins Neto-Sad’s formula in nondicritical case ([CLS84, Theorem 1]),
we have a modified version which can be rephrased as follows.

Lemma 2.4 (Camacho-Lins Neto-Sad’s formula). Consider a sequence of blowing ups

Xr
σr
−→ (Xr−1, pr−1)

σr−1
−→ · · · (X1, p1)

σ1
−→ (X0, p0) := (X, p)

where σi+1 is a blowing-up centered at a point pi ∈ Xi and (Xr, F̃ ) is the pulling-back
foliation of (X,F ). Let Ei (resp., Ei) in Xr be the strict (resp., total) transform of the

exceptional curve of σi. Write E1 =
r∑

i=1
niEi.

If each Ei is F̃ -invariant, then the order l(p) of the singularity p satisfies

1 + l(p) =
r∑

i=1

∑
q∈Ei

ni

(
µq(F̃ , Ei) − µq(E1)

)
(2.6)

where µq(E1) is the Milnor’s number of the support of E1 at q, namely,

µq(E1) =
{

1, if q is a corner,
0, else.

Proof. It’s similar to the proof of [CLS84, Theorem 1]. �
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Recall the notation in Remark 2.2. We set

Z(F̃ , Ei) :=
∑
q∈Ei

µq(F̃ , Ei).

The formula (2.6) is equivalent to

1 + l(p) =
r∑

i=1

ni(Z(F̃ , Ei) − ki)(2.7)

where ki is the number of irreducible components of E1 meeting transversely with Ei.

2.2. Cerveau-Lins Neto’s formula. Due to Cerveau-Lins Neto formula for a foliation on
P2 (see [CLN91, pp. 885]), we have a generalized result as follows.

Lemma 2.5 (Cerveau-Lins Neto formula). For any irreducible F -invariant curve C, we
have

2 − 2g(C) + KFC =
∑
p∈C

∑
B∈C(p)

µp(F , B)

where C(p) is the set of analytic branches of C passing through p and g(C) is the geometric
genus of C.

Proof. Let σ : X̃ → X be a blowing-up centered at p ∈ C with an exceptional curve E. Let
C(p) = {B1, . . . , Bk} and B̃i be the strict transform of Bi with the only one point p̃i := E∩B̃i.
By (2.5),

µp(F , Bi) = µp̃i (F̃ , B̃i) + mi(l(p) − 1)

where mi is the multiplicity of Bi at p and F̃ is the pulling-back foliation of F .

Let C̃ be the strict transform of C. By (2.1) and σ∗C = C̃ + (
k∑

i=1
mi)E, we get

KFC = K
F̃

C̃ +

 k∑
i=1

mi

 (l(p) − 1).

So ∑
p∈C

∑
B∈C(p)

µp(F , B) − KFC =
∑
p̃∈C̃

∑
B̃∈C̃(p̃)

µp̃(F̃ , B̃) − K
F̃

C̃.

Therefore, it’s enough to consider the case that F is reduced and C is smooth. In this
case, C(p) = {C} and µp(F ,C) = Z(F ,C, p) for each singularity p of F . From [Bru15,
Ch. 2, Proposition 3],

2 − 2g(C) + KFC =
∑
p∈C

Z(F ,C, p) =
∑
p∈C

µp(F ,C).

This proof is finished. �

As the applications of Cerveau-Lins Neto formula, one can obtain the following conse-
quences which are essentially due to [McQ08, Lemma II. 3.2, Proposition III.1.2, Theorem
IV.1.1].

Corollary 2.6. For any irreducible F -invariant curve C, we have KFC ≥ −2. The equality
holds iff

(1) C � P1 and C2 = 0;
(2) there is no singularity of F on C;
(3) KF is not pseudo-effective and hence F is a foliation by rational curves.
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Proof. From Lemma 2.5, KFC ≥ 2g(C) − 2 ≥ −2. If KFC = −2, then g(C) = 0 and
µp(F , B) = 0 for each p ∈ C and B ∈ C(p). So C contains no singularity of F and hence
C is smooth. Thus C � P1. By Camacho-Sad formula ( [CS82, Suw98]), C2 = 0 and so
C is nef. Thus KFC < 0 implies that KF is not pseudo-effective. From [Miy87], F is a
foliation induced by a family of rational curves.

Conversely, for an irreducible F -invariant curve satisfying the above conditions (1) and
(2), one can get KFC = −2 by Cerveau-Lins Neto formula. �

Corollary 2.7. Assume that KF is pseudo-effective. We have KFC ≥ −1 for any irre-
ducible F -invariant curve C. The equality holds iff one of the following cases occurs.

(1) C is the first component of an F -chain ;
(2) C is an F -exceptional curve with only one singularity.

Proof. By Corollary 2.6, KFC ≥ −1. Assume that KFC = −1. From Lemma 2.5, g(C) = 0
and C has only one singularity p of F with µp(F , B) = 1 where B is a unique branch of C
passing through p. Since KF is pseudo-effective, C2 < 0.

If C is smooth at p, then C � P1 by g(C) = 0. From Camacho-Sad formula, one can see
that p is a reduced singularity with an eigenvalue λ = C2 < 0. Namely, C occurs in one of
the above cases.

It’s enough to claim that C is smooth at p. If not, the local generator of F at p can be
taken as v = x ∂

∂x +λy
∂
∂y (λ ∈ Q+) by Lemma 2.3. Consider the resolution of p as in [Bru15,

pp. 7-8], denoted by π̂ : (X̂, F̂ ) → (X,F ). Let Ĉ be the strict transform of C under π̂.
One can see that Ĉ has no singularity of F̂ . So K

F̂
Ĉ = −2 by Cerveau-Lins Neto formula.

Corollary 2.6 implies that Ĉ2 = 0. So C2 ≥ 0, a contradiction.
Conversely, any F -invariant curve C in case (1) or (2) satisfies KFC = −1 from

Cerveau-Lins Neto formula. �

3. A-D-E   

3.1. Relatively minimal A-D-E model of a foliation. Let p be a singularity of F in a
neighborhood U. From [Sei68] or [Bru15, Theorem 1.1], one has a minimal resolution of
the singularity p:

(Ur,Fr)
σr
−→ (Ur−1,Fr−1, pr−1)

σr−1
−→ · · · (U1,F1, p1)

σ1
−→ (U0,F0, p0) := (U,F , p)

where σi+1 is a blowing-up of a neighborhood Ui at the non-reduced singularity pi of Fi

with order li, Fi+1 = σ
∗
i+1Fi is the pulling-back of the foliation Fi and (Ur,Fr) has at worst

reduced singularities (i = 0, . . . , r − 1).

Definition 3.1. For a given positive integer k, p is said to be a k-simple singularity of F
if li ≤ k for i = 0, 1 . . . , r − 1. For convenience, a 2-simple singularity is also called an
A-D-E singularity of F .

We say F is an A-D-E foliation if each singularity of F is an A-D-E singularity. (X,F )
is said to be a relatively minimal A-D-E foliation if it’s an A-D-E foliation and any bimero-
morphic morphism (X,F ) → (Y,G) onto an A-D-E foliation (Y,G) is in fact a biholomor-
phism.

Example 3.2. A 1-simple singularity p occurs in one of the following cases:

(1) p is a reduced singularity;
(2) p has a Poincaré-Dulac form xdy− (ny+ xn)dx by choosing a suitable local coor-

dinate.

We will classify all A-D-E singularities of a foliation in Sec. 3.2. Here are some classi-
cal examples.
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Example 3.3. Take v = ∂ f
∂y
∂
∂x −

∂ f
∂x
∂
∂y in (2.2) for a given function f ∈ C{x, y}. The branch

B defined by f = 0 is F -invariant. In this case, p is an A-D-E singularity of F iff it is a
simple singularity of the curve B (see [BHPV04, Ch. II, Sec. 8]).

Example 3.4. If p is a reduced singularity or a singularity whose eigenvalues are positive
rational numbers, then it is an A-D-E singularity (see [Bru15, pp. 7-8]).

Lemma 3.5. Let (X, F) be a reduced foliation.
(1) There is a bimeromorphic morphism ρ : (X,F ) → (X0,F0) onto a relatively min-

imal A-D-E foliation (X0,F0). Therefore each foliation has a relatively minimal
A-D-E model.

(2) KX +KF = ρ∗(KX0 +KF0 )+V for some Q+-divisor V supported on the exceptional
set of ρ.

(3) KX + KF is pseudoeffective iff KX0 + KF0 is pseudoeffective.
(4) For any (−1)-curve E ⊂ X0, one has KF0 E ≥ 2.

Proof. (1) It’s obvious that (X,F ) is an A-D-E foliation from Example 3.2. If it is not
a relatively minimal A-D-E foliation, then we can find a (−1)-curve whose contraction
produces a new A-D-E foliation. One can iterate the contraction procedure and must stop
it after finite steps because the rank of the Néron-Severi group of the surface is strictly
monotonic decreasing. Thus we get a relatively minimal A-D-E foliation (X0,F0) with a
bimeromorphic morphism ρ : (X,F )→ (X0,F0).

(2) By the above discussion, ρ factorizes through some blowing-ups :

(X,F ) := (Xr,Fr)
σr
−→ (Xr−1,Fr−1)

σr−1
−→ · · · (X1,F1)

σ1
−→ (X0,F0).

Let Ei ⊂ Xi be the exceptional curve of the blowing-up σi centred at a point pi−1 ∈ Xi−1
and Ei be the total transform of Ei in X (i = 1, . . . , r). By (2.1), one gets KX + KF =
ρ∗(KX0 + KF0 ) + V where

V =
r∑

i=1

(2 − l(pi−1))Ei.(3.1)

Note that each pi−1 is an A-D-E singularity and hence l(pi−1) ≤ 2. So V is a Q+-divisor.
(3) (=⇒) Assume that KX + KF is pseudoeffective. For any ample divisor H0 in X0,

ρ∗H0 is nef. So one has

(KX0 + KF0 )H0 = (KX + KF )ρ∗H0 ≥ 0.

(⇐=) Assume that KX0 + KF0 is pseudoeffective. Consider the Zariski decomposition
(1.2) of KX0 + KF0 . Thus we have

KX + KF = ρ∗(P0) + (ρ∗N0 + V).

For any ample divisor H ⊂ X, one can see that

(KX + KF )H ≥ ρ∗P0 · H ≥ 0

from ρ∗P0 is nef.
(4) Let E ⊂ X0 be a (−1)-curve. Consider a contraction σ : (X0,F0, E) → (Y,G, p)

sending E to a point p = σ(E). It produces a new foliation G with a singularity p with
order l. The minimality of the A-D-E foliation F0 implies that l ≥ 3. By (2.1), one has
KF0 E = l − 1 ≥ 2. �

Remark 3.6. However the relatively minimal A-D-E model of a foliation is not necessarily
unique. For example, we consider a Riccati foliation Fλ on X = P1 × P1, defined by
x ∂
∂x + λy

∂
∂y (λ ∈ C and λ , 0), with respect to a ruling map

pr1 : P1 × P1 → P1, (x, y)→ y.

Fλ is a relatively minimal A-D-E foliation.
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We have a bimeromorphic map σ : (X,Fλ−1)d (X,Fλ) sending (x, y) to (x, xy) for each
λ , 0, 1.

Corollary 3.7. Given a bimeromorphic map σ : (Y,G) d (X0,F0) from a relatively mini-
mal A-D-E foliation (Y,G). KX0 + KF0 is pseudoeffective iff KY + KG is pseudoeffective.

Proof. We may find a reduced foliation (Y0,G0) associated with two bimeromorphic mor-
phisms ρ : (Y0,G0) → (X0,F0) and τ : (Y0,G0) → (Y,G) satisfying ρ = στ. By Lemma
3.5, KX0 + KF0 (resp., KY + KG) is pseudoeffective iff KY0 + KG0 is pseudoeffective. �

Lemma 3.8. Let (X,F ) be a relatively minimal foliation. If KX + KF is pseudoeffective,
then F is minimal.

Proof. Suppose that F be not minimal. We will get a contradiction.
From [Bru15, Theorem 5.1], F is biholomorphic to one of the following foliations:
(1) rational fibrations;
(2) nontrivial Riccati foliations;
(3) the very special foliation.

In case (1), we have (KX + KF )F = −4 for a general fiber F of the rational fibration
generating F . Hence KX + KF is not pseudoeffective, a contradiction.

In case (2), we have (KX + KF )F = −2 for a general fiber F of the rational fibration
adapted to the Riccati foliation F . We get a contradiction again.

In case (3), from [Per05, Sec. 5], (X,F ) has a relatively minimal A-D-E model (P2,F0)
induced by a homogeneous one-form on P2

Ω := Z(−Y2 − XZ + 2XY)dX + 3XZ(Y − X)dY + X(XZ − 2Y2 + XY)dZ,

One has KP2 + KF0 = −2L for a general line L in P2, a contradiction. �

3.2. Classification of A-D-E singularities of foliations. For convenience, we assume that
(X,F ) is relatively minimal. Let (X0,F0) be the relatively minimal A-D-E model of (X,F )
with a bimeromorphic morphism ρ : (X,F )→ (X0,F0).

The morphism ρ can factorize through a bimeromorphic morphism ρ′ : (X,F ) →
(X′,F ′) onto a foliation (X′,F ′) satisfying

(1) each singularity of (X′,F ′) has an eigenvalue, namely, it is either a reduced sin-
gularity or a singularity whose eigenvalues are positive rational numbers;

(2) σ : (X′,F ′)→ (X0,F0) consists of blowing-ups and satisfies ρ = σρ′;

(X,F )
ρ

%%KKKKKKKKKK

ρ′

��
(X′,F ′) σ // (X0,F0)

(3) for any (−1)-curve E ⊂ X′ in the exceptional set of σ, the contraction of E to
a point p produces a new foliation (Y,G) which has at p a singularity without
eigenvalue.

Let p0 be an A-D-E singularity of F0 without eigenvalue in a neighbourhood U0. From
the above discussion, σ gives a partial resolution of p0:

(X′,F ′)
σr
−→ (Ur−1,Fr−1, pr−1)

σr−1
−→ · · · (U1,F1, p1)

σ1
−→ (U0,F0, p0)

where σi+1 is a blowing-up of a neighborhood Ui at the A-D-E singularity pi of Fi without
eigenvalue, Fi+1 = σ

∗
i+1Fi is the pulling-back of the foliation Fi.

Let Ei be the exceptional curve of σi and Ei be the total transform of Ei in X′. For
convenience, we also denote the strict transform of Ei in X′ by Ei. One can see that each
Ei ⊂ X′ is F ′-invariant. If not, pi−1 is a singularity with an eigenvalue 1, a contradiction.
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Theorem 3.9. The singularity p0 is an A-D-E one without eigenvalue iff each irreducible
components of E1 is an F̃ -invariant rational curve and one of the following cases occurs
(we denote a (−2)-curve by ◦ and the other curve by •):

(A2) E1 = E1 + E2 + 2E3 (r = 3) where E1 (resp., E2, E3) is a (−3)-curve (resp.,
(−2)-curve, (−1)-curve) with Z(F ′, E1) = 1 (resp., Z(F ′, E2) = 1, Z(F ′, E3) = 3).cs s

E1 E3 E2

(A2n+1) E1 = E1 + · · ·+ En + En+1 (r = n+ 1 ≥ 2) where E1 + · · ·+ En is a maximal simple
F ′-chain with Z(F ′, E1) = 1 and En+1 is a (−1)-curve with Z(F ′, En+1) = 3.c c c c s. . .

E1 E2 En−1 En En+1

(A2n) E1 = E1 + · · · + En + En+1 + 2En+2 (r = n + 2 ≥ 4) where E1 + · · · + En−1 (resp.,
En+1) is a maximal simple F ′-chain with Z(F ′, E1) = 1 (resp., Z(F ′, En+1) = 1)
and En (resp., En+2) is a (−3)-curve (resp., (−1)-curve) with Z(F ′, En) = 2 (resp.,
Z(F ′, En+2) = 3). c c c cs s. . .

E1 E2 En−1 En En+2 En+1

(D4) E1 = E1 (r = 1) where E1 is a (−1)-curve with Z(F ′, E1) = 3.s
E1

(D5) E1 = E1 + E2 + 2E3 (r = 3) where E1 (resp., E2, E3) is a (−3)-curve (resp.,
(−2)-curve, (−1)-curve) with Z(F ′, E1) = 2 (resp., Z(F ′, E2) = 1, Z(F ′, E3) = 3).cs s

E1 E3 E2

(D2n+2) E1 = E1 + · · ·+ En−1 + En (r = n ≥ 2) where Ei is a (−2)-curve with Z(F ′, Ei) = 2
(i = 1, . . . , n − 1) and En is a (−1)-curve with Z(F ′, En) = 3.c c c cs. . .

E1 E2 En−1 En

(D2n+3) E1 = E1 + · · · + En + En+1 + 2En+2 (r = n + 2 ≥ 4) where Ei is a (−2)-curve with
Z(F ′, Ei) = 2 (i = 1, . . . , n − 1) and En (resp., En+1, En+2) is a (−3)-curve (resp.,
(−2)-curve, (−1)-curve) with Z(F ′, En) = 2 (resp., Z(F ′, En+1) = 1, Z(F ′, En+2) =
3). c c c cs s. . .

E1 E2 En−1 En En+2 En+1

(E6) E1 = E1 + E2 + 2E3 + 3E4 (r = 4) where E2 + E3 is a maximal simple F ′-chain
with Z(F ′, E2) = 1 and E1 (resp., E4) is a (−4)-curve (resp., (−1)-curve) with
Z(F ′, E1) = 1 (resp., Z(F ′, E4) = 3).
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c c s s
E2 E3 E4 E1

(E7) E1 = E1 + E2 + 2E3 (r = 3) where E1 (resp., E2, E3) is a (−3)-curve (resp.,
(−2)-curve, (−1)-curve) with Z(F ′, E1) = 1 (resp., Z(F ′, E2) = 2, Z(F ′, E3) = 3).c s s

E2 E3 E1

(E8) E1 = E1 + E2 + 2E3 + 3E4 (r = 4) where Ei is a (−3)-curves with Z(F ′, Ei) = 1
(i = 1, 2), and E3 (resp., E4) is a (−2)-curve (resp., (−1)-curve) with Z(F ′, E3) = 2
(resp., Z(F ′, E4) = 3). cs s s

E1 E3 E4 E2

Proof. (⇐=) It’s from Lemma 2.4.
(=⇒) Consider the blowing-up σ1 : (U1,F1, p1) → (U0,F0, p0). By (2.7), one has

Z(F1, E1) = 1 + l(p0) ≤ 3. Therefore one the following cases occurs.
(1) There are exactly three singularities of F1 on E1.
(2) There are two singularities of F1, says q and p1, satisfying µq(F1, E1) = 1 and
µp1 (F1, E1) = 2.

(3) There are a unique singularity p1 of F1 with µp1 (F1, E1) ≤ 3.
It’s easy to see that p0 is of type D4 in case (1).
In case (2), q has an eigenvalue by Lemma 2.3. We apply induction on the number r of

the blowing-ups and assume that p1 is of type A-D-E. If p1 has an eigenvalue, then p1 is a
saddle-node with a weak separatrix E1 ans so p0 is D4 again. If p1 of type A2n+1, then the
exceptional set of p0 in X′ is as follows.

c c c c s s. . .

E2 E3 En En+1 En+2 E1

By (2.7) again, one has

3 ≥ 1 + l(p0) ≥ (n + 1)(Z(En+2) − 2) + (Z(F ′, E1) − 1) ≥ n + 2.

So n = 1. Thus p0 is of type D5 . Similarly, p0 may also be of type Dn+2 if p1 is of type Dn.
However, p1 cannot be one of other types. If not, one can find that E1 ⊂ X1 is not smooth,
a contradiction.

By a similar discussion, in case (3), one can find that p0 may be of type An (n ≥ 2), E6,
E7 and E8. �

4. T    T  C

Let (X,F ) be a a relatively minimal foliation and (X0,F0) be the relatively minimal
A-D-E model of (X,F ) with a bimeromorphic morphism ρ : (X,F )→ (X0,F0). One has

KX + KF = ρ∗(KX0 + KF0 ) + V

where V is a Q+-divisor supported on the exceptional set of ρ.
In what follows, we assume that both KF0 and KX0 +KF0 are pseudo-effective. Consider

the Zariski decomposition of KX0 + KF0 as in (1.2).
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Lemma 4.1. For an irreducible curve C in X0, we have N0C < 0 iff C is a (−2)-curve as
the first component of some F0-chain.

Proof. (=⇒) Since N0C < 0 and N0 ≥ 0, C is a component of N0 with C2 < 0. If C is not
F0-invariant, then

N0C = (KX0 + KF0 )C = 2(pa(C) − 1 −C2) + tang(F0,C) ≥ tang(F0,C) ≥ 0,

a contradiction. Therefore C is F0-invariant.
Since (KX0 + KF0 )C < 0, one has

−1 ≤ KF0C ≤ −1 − KX0C = −2pa(C) + 1 +C2.

Thus
0 ≤ pa(C) ≤ 1 +

1
2

C2.

It implies that C is a (−2)-curve or (−1)-curve. If C is a (−1)-curve, then KF0C ≥ 2 by
Lemma 3.5, a contradiction. Thus C is a (−2)-curve and hence KF0C = −1. By Corollary
2.7, C is the first component of an F0-chain.

(⇐=) Since KX0C = 0 and KF0C = −1,

N0C ≤ P0C + N0C = (KX0 + KF0 )C = −1.

Up to now, we complete this proof. �

Lemma 4.2. These maximal simple F0-chains are disjoint. Furthermore, they are con-
tained in the support of N0. In particular, There are finite maximal A-chains.

Proof. The first part is from separatrix Theorem.
Let Θ = Γ1 + · · · + Γl be a maximal simple F0-chain with the first component Γ1 and

ΓiΓi+1 = 1 (i = 1, . . . , l − 1). By Lemma 4.1, Γ1 is in N0. Suppose that Γk be not in N0 for
some k. Without loss of generality, we assume Γk−1 is in N0. So N0Γk > 0. However one
has

0 ≥ KF0Γk = (KX0 + KF0 )Γk ≥ N0Γk > 0,
a contradiction. �

Let T be the sum of all curves in N0 which are not F0-invariant. Consider a maximal

simple F0-chain Θ =
l∑

i=1
Γi as above. Let r be the minimal number such that Γr+1 meets

with T (if C and T are disjoint, then we take r = l). We define

M(Θ) :=

 1
r+1

r∑
i=1

(r + 1 − i)Γi, if r > 0,

0, if r = 0.

It’s easy to see that

M(Θ)Γi =


−1, if i = 1,

1
r+1 , if i = r + 1,
0, if i , 1, r + 1

(4.1)

whenever r > 0. Thus one has

(N0 − M(Θ))Γi =

{
0, if i , r + 1,
− 1

r+1 , if i = r + 1.(4.2)

Note that the above equalities hold also in the case that r = 0.
For any irreducible F0-invariant C0 outside of Θ, either C0Θ = 0 or C0 meets trans-

versely with the last component Γl of Θ. Hence

M(Θ)C0 =

{ 1
l+1 , if r = l and C0Γl > 0,
0, otherwise.(4.3)

In particular, M(Θ)C0 ≤
1
2 .
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Let Θ1, . . . ,Θs be all maximal simple F0-chainx. Take

N0 = N0 −

s∑
i=1

M(Θi).

Lemma 4.3. N0 ≥ 0.

Proof. Write

N0 = D +
s∑

i=1

Zi

where the support of Zi is contained in Θi (i = 1, . . . , s) and the support of D contains no
irreducible component in Θi’s. Since N0 ≥ 0, we have D ≥ 0 and Zi ≥ 0 (i = 1, . . . , s).

It’s enough to prove Zi ≥ M(Θi). TakeΘ = Θi and adopt all notations as above. If r = 0,
then M(Θ) = 0 and hence Zi ≥ M(Θ). We assume that r > 0. By (4.2), one has

(Zi − M(Θ))Γ ≤ (N0 − M(Θ))Γ ≤ 0

for each irreducible component Γ of Θ. It implies that Zi − M(Θi) ≥ 0. �

Lemma 4.4. We have (N0 + T )C ≥ 0 if C occurs in one of the following cases:
(1) C is a component of T .
(2) C is an irreducible component of a maximal simple F0-chain.

Proof. (1) Let C be a component of T . One has

(N0 + T )C ≥ (N0 +C)C = (N0 +C)C = KX0C + KF0C +C2 = tang(F0,C) + KX0C.

Suppose that (N0 + T )C < 0. Note C is in N0. So C2 < 0. If KX0C < 0, then C is a
(−1)-curve and so KX0C = −1. Hence the above inequality implies that tang(F0,C) = 0.
Thus KF0C = 1. However KF0C ≥ 2 by Lemma 3.5, a contradiction.

(2) Without loss of generality, we assume C is a component of Θ1 = Γ1 + · · · + Γl, says
C = Γi. Let r be the minimal subscript such that Γr+1 meets with T . By (4.2), one has

N0Γi =

{
0, if i , r + 1,
− 1

r+1 , if i = r + 1.

Note that TΓr+1 ≥ 1 and TΓi ≥ 0 (i , r + 1). Thus one has (N0 + T )C ≥ 0. �

Lemma 4.5. N0 + T = 0.

Proof. By Lemma 4.4 and the negativity of N0 + T , we can find an F0-invariant curve C0
in N0 such that C0 is outside of Θi’s and

(N0 + T )C0 < 0(4.4)

whenever N0 + T , 0.
Let k be the number of the intersections of Θi’s and C0. Let h be the number of else

singularities of F0 on C0. By (4.3), one gets

(N0 + T )C0 = (N0 + T )C0 −

s∑
i=1

M(Θi)C0 ≥ KX0C0 + KF0C0 + TC0 −
k
2
.(4.5)

From Cerveau-Lins Neto formula, we have

KX0C0 + KF0C0 = −C2
0 + 2(pa(C0) + g(C0) − 2) +

∑
p∈C0

∑
B∈C0(p)

µ(F0, B, p).(4.6)

Combing (4.4), (4.5) and (4.6), one gets

−C2
0 + 2(pa(C0) + g(C0) − 2) + TC0 +

∑
p∈C0

∑
B∈C0(p)

µ(F0, B, p) −
k
2
< 0.(4.7)
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Claim 1. C0 � P
1.

Firstly, we claim that C0 is smooth. Suppose that C0 have a singularity p. If p ∈ Θi,
then p is not a reduced singularity of F0 on Θi, a contradiction. So any simple F0-chain
doesn’t pass through p. Thus we have

−C2
0 + 2(pa(C0) + g(C0) − 2) + TC0 + (1 + k) −

k
2
< 0.(4.8)

From (4.8) and −C2
0 ≥ 1, we get pa(C0) = 0 (i.e., C0 � P

1), a contradiction. Hence C0 is
smooth.

Therefore, by (4.7), we have

−C2
0 + 4(pa(C0) − 1) + TC0 +

k
2
< 0.

It implies that C0 � P
1 .

Let p1, . . . , ph be the singularities of F0 on C0 outside Θi’s.
Calim 2. µpi (F0,C0) = 1 for each pi and h ≤ 2.
(4.7) implies that

−C2
0 − 4 + TC0 +

k
2
+

h∑
i=1

µpi (F0,C0) < 0.(4.9)

If µpi (F0,C0) ≥ 2 for some i, then C0 is a (−1)-curve, h = 1, k ≤ 1 and µp1 (F0,C0) = 2
from (4.9). By Cerveau-Lins Neto formula,

KF0C0 = −2 + k + µp1 (F0,C0) ≤ 1.

However, KF0C0 ≥ 2 by Lemma 3.5, a contradiction. Hence µpi (F0,C0) = 1 for each pi

and h ≤ 2.
Therefore we get

−C2
0 − 4 + TC0 +

k
2
+ h < 0.(4.10)

Claim 3. h = k = 1 and C2
0 = −2.

From separatrix Theorem (see [Bru15, Theorem 3.4] or [Cam88]), one can find that
h > 0. So one can find that −C2

0 ≤ 2 by (4.10).
If k ≥ 2, then one can find two F0-invariant (−2)-curves, says Γ1,Γ2, meeting with C0

transversely. Since Γ1 + Γ2 +C0 is negative, −C2
0 ≥ 2. Thus

−C2
0 − 4 + TC0 +

k
2
+ h ≥ 0,

a contradiction. Hence k ≤ 1. By Cerveau-Lins Neto formula, KF0C0 = −2 + k + h ≤ 1.
From Lemma 3.5 and −C2

0 ≤ 2, one gets C2
0 = −2. So h = 1 and k ≤ 1.

If k = 0, then N0C0 = N0C0 ≤ (N0 +T )C0 < 0. By Lemma 4.1, C0 is contained in some
simple F0-chain, a contradiction. So k = 1.

Claim 4. C0 + Θ1 is a simple F0-chain.
By the above discussion, C0 has two singularities of F0: p1 and q1 = Θ1 ∩ C0. Let λp1

(resp., λq1 ) be the eigenvalue of p1 (resp., q1) along C0. More precisely, λq1 = −
l+1

l by
Camacho-Sad formula where l is the number of irreducible components of Θ1. Note that
C2

0 = −2. By Camacho-Sad formula again, one has λp1 = −
l+1
l+2 . Thus C0 + Θ1 is a simple

F0-chain. However, Θ1 is a maximal simple F0-chain, a contradiction.
Up to now, this proof is completed. �

Proof of Theorem 1.2. From Lemma 3.8, F is minimal. Lemma 4.5 implies that

N0 =
s∑

i=1
M(Θi). So bN0c = 0.
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If ρ∗N0 meets with the exceptional set E of ρ, then ρ contracts some exceptional curves
to a point, says p, on a maximal simple F0-chain. Thus p is either smooth or reduced.
However, F is relatively minimal, a contradiction. Hence ρ∗N0 is disjoint from E. 2

Proof of Theorem 1.4. Since KF is pseudoeffective, h2(KX + KF ) = h0(−KF ) = 0.
From Riemann-Roch formula, one has

h0(KX + KF ) = h1(KX + KF ) + χ(OX) + ρ(X) ≥ ρ(X) + χ(OX).(4.11)

If P is big, then h1(KX + KF ) = 0 by Kawamata-Viehweg vanishing theorem and the fact
that bNc = 0 where P is as in (1.1). Thus one gets

h0(KX + KF ) = χ(OX) + ρ(X).(4.12)

In the case that kod(X) ≥ 0, one can find that KX is pseudoeffective. If not, h0(nKX) = 0
for all n ≥ 1, namely, kod(X) = −∞, a contradiction. So KX + KF is also pseudoeffective.

In what follows, we assume that kod(X) = −∞. Note that pg(X) = 0. One has

h0(KX + KF ) ≥ ρ(X) + 1 − q(X)

from (4.11). So KX + KF is pesudoeffective whenever ρ(X) ≥ q(X). 2

Proof of Corollary 1.5. Since h0(KF ) > 0, we have

h0(KX + KF ) ≥ h0(KX) = pg(X).

From (4.12), we get q(X) ≤ 1 + ρ(X). 2

Proof of Corollary 1.7. In this case, KF = K f (see [Bru15, Ch.2, Sec.3, Example (5)]).
It’s well-known, K f is a nef and big divisor. By (4.12) and a straightforwards computation,
one gets (1.4) and (1.5).

If b ≥ 1, then (1.4) implies h0(KX + KF ) > 0. If b = 0, one gets again

h0(KX + KF ) ≥ χ f + K2
f − 3(g − 1) ≥ g − 1 > 0

from (1.4) and the equality K2
f ≥ 4g − 4 in [TTZ05, Theorem 2.1]. So KX + KF is pseudo-

effective.
Now we will claim KX + KF is nef, i.e., the negative part N = 0. We adopt all notations

and assumptions in Sec. 3.2.
Note that each singularities of F has an eigenvalue −1 from f is semistable. The key

fact implies that
(1) N0 = 0;
(2) the eigenvalue of each non-reduced singularity of (X′,F ′) is 1;
(3) the singularities of (X0,F0) is at worst of type D2n+2 from Theorem 3.9.

By (3.1), for a singularity p0 of type D2n+2, the contribution of p0 to V is exactly zero.
Hence N = 0.

Since (KX +KF )F = 4g−4 > 0 for ageneral fiber F, KX +KF .num 0, that is, ν̄(F ) ≥ 1.
2

5. A     F  ν̄(F ) = 0

Let X0 = P
2. Consider a family of curves as follows:

Ct : (X4 + Y4 + Z4) + t(X2Y2 + Y2Z2 + Z2X2) = 0, t ∈ C1

and C∞ is defined by X2Y2 + Y2Z2 + Z2X2 = 0. The family of curves induces a foliation
F0. More precisely, in the neighbourhood U0 = {[x, y, 1] | x, y ∈ C}, the generator of F0 is

ν = y(x2y2 + y2 − x4 − 1)
∂

∂x
− x(x2y2 + x2 − y4 − 1)

∂

∂y
.

The foliation F0 is an A-D-E foliation. All non-reduced singularities are as follows:

p1 = [ω,ω2, 1], p2 = [−ω,ω2, 1], p3 = [ω,−ω2, 1], p4 = [−ω,−ω2, 1],
p5 = [ω2, ω, 1], p6 = [−ω2, ω, 1], p7 = [ω2,−ω, 1], p8 = [−ω2,−ω, 1].
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Each pi has an eigenvalue 1
2 and lies in C2. Each reduced singularity of F0 has an eigen-

value −1.
Consider a minimal resolution ρ : (X,F )→ (X0,F0) of all pi’s such that the exceptional

set of pi is E2i−1 + E2i where E2i−1 (resp., E2i) is a (−2)-curve (resp., (−1)-curve) and
E2i−1E2i = 1. The pulling-back foliation F = ρ∗F0 is relatively minimal.

In fact, F gives a minimal normal-crossing fibration f : X → P1 of genus g = 3 with

four singular fibers Ft = ρ
∗Ct −

16∑
i=1

Ei (t = −2,−1, 2,∞):

(1) F−2 is a reduce nodal curve consisting of four (−3)-curves;
(2) F−1 is reduce nodal curve consisting of two (−4)-curves;

(3) F2 = 2Γ +
8∑

i=1
E2i−1 where Γ is a (−4)-curve meeting transversely with each E2i−1;

(4) F∞ is a irreducible nodal curve with three nodes.
We have KF0 = 3L, KX0 = −3L where L is a line in P2. Hence

KX + KF = ρ∗(KX0 + KF0 ) +
16∑
i=1

Ei =

16∑
i=1

Ei.

So ν̄(F ) = 0 and h0(KX + KF ) = 1.
Note that C2 = 2Γ0 where Γ0 is a conic curve. One has

2ρ∗L ≡ ρ∗Γ0 ≡ Γ +

16∑
i=1

Ei.

Therefore

KF = K f − Γ ≡ ρ
∗L + Γ +

8∑
i=1

E2i−1.

The positive and negative parts of a Zariski decomposition of KF are

P = ρ∗L + Γ +
1
2

8∑
i=1

E2i−1, N =
1
2

8∑
i=1

E2i−1

respectively. Moreover, we have c2
1(F ) = 5, K2

f = 9 and χ f = 3.
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