ON THE POINCARE PROBLEM FOR RICCATI FOLIATIONS

CHENG GONG, JUN LU, AND SHENG-LI TAN

Dedicated to the memory of Professor Gang Xiao

Abstract. In this paper, we will give some criteria on the algebraicity of a Riccati foliation.

1. Introduction

A holomorphic foliation on a smooth projective algebraic surface is said to be algebraic if it admits a rational first integral. In [Poi91], Poincaré studied the following problem which can be rephrased in modern terminology.
Question 1.1. Is it possible to decided if a holomorphic foliation \mathcal{F} on \mathbb{P}^{2} (alternatively, a rational ruled surface) is algebraic?

Some research on holomorphic foliations is motivated by this problem (see [CN91], [Per02], [LN02], [Zam97], [Zam00], [Zam06] etc.). Painlevé [Pai74] asked the following question:
Question 1.2. Can we recognize the genus g of an algebraic foliation from its defining differential equation?

Lins-Neto [LN02] constructed counter-examples to show that the genus is not an invariant of differential equations. Therefore, one cannot define the genus for non-algebraic foliations.

In this paper we will answer the above questions in the case of Riccati foliations. Let \mathcal{F} be a foliation on an algebraic surface X with a regular ruling map $\varphi: X \rightarrow B$. We say \mathcal{F} is a Riccati foliation with respect to φ if $K_{\mathcal{F}} F=0$ for a general fiber F of φ, i.e., F is transverse to \mathcal{F} ([Bru15, Ch. 4]). Let x (resp., y) be the local coordinate of B (resp., F). A Riccati foliation can always be written locally as

$$
\begin{equation*}
\omega=\left(q_{0}(x) y^{2}+q_{1}(x) y+q_{2}(x)\right) d x-p(x) d y \tag{1.1}
\end{equation*}
$$

where q_{i} 's and p are holomorphic functions. For convenience, we usually rewrite ω as in the following form:

$$
\begin{equation*}
\omega=\left(g_{0}(x) y^{2}+g_{1}(x) y+g_{2}(x)\right) d x-d y \tag{1.2}
\end{equation*}
$$

where $g_{i}(x):=\frac{q_{i}}{p}$ for $i=0,1,2$.
Up to a birational map, an algebraic Riccati foliation gives a fibration of genus g, i.e., a holomorphic map from a smooth algebraic surface to a smooth curve such that the general fiber is a smooth curve of genus g. Such a fibration is said to be a Riccati fibration.

First of all, a Riccati foliation \mathcal{F} with Kodaira dimension $\operatorname{kod}(\mathcal{F})=-\infty$ is algebraic by Miyaoka Theorem [Miy85] (also see [Bru15, Theorem 7.1]). More precisely, such a Riccati fibration is a family of rational curves. We can classify all such Riccati foliations as follows.

[^0]Theorem 1.3. A Riccati foliation \mathcal{F} has Kodaira dimension $\operatorname{kod}(\mathcal{F})=-\infty$ if and only if \mathcal{F} has a standard form (see Sec. 2.1) on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which occurs in one of the following cases by choosing a suitable coordinate:
(1) $\omega=d y$;
(2) $\omega=\lambda y d x-x d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;
(3) $\omega=\left(x y^{2}+y-\lambda^{2}(x-1)\right) d x-2 x(x-1) d y\left(\lambda \in \mathbb{Q}^{+}\right.$and $\left.\lambda \leq \frac{1}{2}\right)$;
(4) $\omega=\left(x y^{2}-2(x-3) y-3(x-1)\right) d x-12 x(x-1) d y$;
(5) $\omega=\left(x y^{2}-4(x-3) y-5(x-1)\right) d x-24 x(x-1) d y$;
(6) $\omega=\left(x y^{2}-10(x-3) y-11(x-1)\right) d x-60 x(x-1) d y$;
(7) $\omega=\left(x y^{2}-10(x-3) y-119(x-1)\right) d x-60 x(x-1) d y$.

For an algebraic Riccati foliation with $\operatorname{kod}(\mathcal{F}) \geq 0$, the corresponding Riccati fibration has a genus $g>0$. For convenience, in what follows, we assume that such an fibration is minimal normal-crossing, i.e., each singular fiber is normal-crossing and each (-1)-curve in these fibers passes through at least 3 intersections. We can figure out the structure of the Riccati fibration firstly.

Theorem 1.4. Let $f: X \rightarrow C$ be a minimal normal-crossing fibration of genus $g>0$ with singular fibers F_{1}, \ldots, F_{s}. If f is a Riccati fibration, then f is an isotrivial fibration over $C \cong \mathbb{P}^{1}$ and occurs in one of the following cases:
$\left(A_{0}\right) s=0$ (i.e., f is trivial);
$\left(A_{n-1}\right) s=2$ and $\left(\gamma_{1}, \gamma_{2}, d\right)=(n, n, n)(n \geq 2)$;
$\left(D_{n+2}\right) s=3$ and $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, d\right)=(2,2, n, 2 n)(n \geq 2)$;
$\left(E_{6}\right) s=3$ and $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, d\right)=(2,3,3,12)$;
$\left(E_{7}\right) s=3$ and $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, d\right)=(2,3,4,24)$;
$\left(E_{8}\right) s=3$ and $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, d\right)=(2,3,5,60)$
where $\gamma_{1} \leq \cdots \leq \gamma_{s}$ be the orders of periodic topology monodromies of F_{i} 's respectively and d is an integer satisfying $\sum_{i=1}^{s}\left(1-1 / \gamma_{i}\right)=2-2 / d$.

Conversely, each isotrivial fibration $f: X \rightarrow C\left(\cong \mathbb{P}^{1}\right)$ of genus $g>1$ occurring in one of the above cases is a Riccati fibration.
Remark 1.5. Theorem 1.4 can also be rephrased as follows: f is a Riccati fibration iff f can become a trivial fibration after a base change $\pi: \mathbb{P}^{1} \rightarrow C\left(\cong \mathbb{P}^{1}\right)$ of degree d uniformly ramified over s critical points of f with ramification index $\gamma_{1}, \ldots, \gamma_{s}$ respectively. It's wellknown that such a uniformly ramified cover over \mathbb{P}^{1} is given exactly by a finite subgroup of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ which also corresponds with one kind of $A-D-E$ surface singularities (see [Xia92, Theoreom A 3.6] for instance). An algebraic Riccati foliation is said to be of type A_{n-1} (resp., D_{n}, E_{k}) if the corresponding Riccati fibration is of type A_{n-1} (resp., D_{n}, E_{k}).

Remark 1.6. In what follows, we take $\gamma_{1}=\gamma_{2}=\gamma_{3}=d=1$ (if $s=0$) or $\gamma_{3}=1$ (if $s=2$) for convenience. The equality $\sum_{i=1}^{s}\left(1-1 / \gamma_{i}\right)=2-2 / d$ still holds.

The genus of the fibration induced by an algebraic Riccati foliation can be determined by the following formula (see Lemma 4.2).
Corollary 1.7. Let \mathcal{F} be a standard form of an algebraic Riccati foliation w.r.t. a regular ruling map $\varphi: X \rightarrow B$ and $f: X \rightarrow \mathbb{P}^{1}$ be the fibration of genus g induced by \mathcal{F}. Let F_{1}, \cdots, F_{l} be the \mathcal{F}-invariant fibers of φ and F^{\prime} be a general fiber of f. Assume that F_{i} is of type $\frac{m_{m_{i}}}{n_{i}}$ (see Sec. 2.1) where $n_{i}>1$ and $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$ for $i=1, \cdots, l$. We have

$$
\frac{2 g-2}{d}=2 g(B)-2+\sum_{i=1}^{l}\left(1-\frac{1}{n_{i}}\right)
$$

where $d:=F F^{\prime}$.

From the above results, one can classify precisely all Riccati fibrations of $g=1$ as well as their Riccati foliations.

Theorem 1.8. A Riccati foliation \mathcal{F} with $\operatorname{kod}(\mathcal{F})=0$ is algebraic iff \mathcal{F} is induced by an isotrivial elliptic fibration $f: X \rightarrow C$, up to a suitable coordinate, occurring in one of the following cases:
(1) f is the second projection $p r_{2}: X=E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for some smooth elliptic curve E and hence \mathcal{F} is a Riccati foliation of type A_{0} w.r.t $p r_{1}: X \rightarrow E$;
(2) f is an elliptic fibration over \mathbb{P}^{1} with two singular fibers of $n I_{0}$ (see Lemma 2.12) and hence \mathcal{F} is a suspension of the corresponding monodromy $\rho: \pi_{1}(\operatorname{Alb}(X)) \rightarrow$ $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ w.r.t. the Albanese morphism Alb $: X \rightarrow E$ where E is a smooth elliptic curve (see [Bru15, Ch. 7, Proposition 6]);
(3) f is one of the following families from the Riccati foliation \mathcal{F} w.r.t. the projection $p r_{1}: X=\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

Type	Riccati foliations	Families	Singular fibers
A_{1}	$\left(3 x^{2}+1\right) y d x-2\left(x^{3}+x+c\right) d y$	$y^{2}=t\left(x^{3}+x+c\right)$	$\mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}$
	$3 x^{2} y d x-2\left(x^{3}+1\right) d y$	$y^{2}=t\left(x^{3}+1\right)$	
A_{2}	$(2 x-1) y d x-3 x(x-1) d y$	$y^{3}=t x(x-1)$	IV, IV*
A_{3}	$(2 x-1) y d x-4 x(x-1) d y$	$y^{4}=t x(x-1)$	III, III*
A_{5}	$(3 x-2) y d x-6 x(x-1) d y$	$y^{6}=t x^{2}(x-1)$	II, II*
E_{6}	$\left(3 y^{2}-2 x y-1\right) d x-6\left(x^{2}-1\right) d y$	$z^{3}=t\left(x^{2}-1\right)$	IV, $\mathrm{IV}^{*}, 2 \mathrm{I}_{0}$
D_{n+2}	$\frac{\psi^{\prime}}{\psi(\psi-1)}\left(y^{2}+n(\psi-1) y-\psi\right) d x-2 n d y$	$\left(\frac{y+\sqrt{\psi}}{y-\sqrt{\psi}}\right)^{n}=t\left(\frac{\sqrt{\psi}+1}{\sqrt{\psi}-1}\right)$	$\mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}, \mathrm{nI}_{0}$

where $c \in \mathbb{C}$ satisfies $4+27 c^{3} \neq 0$,

$$
z:=\frac{\left(4 x^{2}-3\right) y^{4}-4 x y^{3}+6 y^{2}-4 x y+1}{3 y^{4}-8 x y^{3}+6 y^{2}-1}
$$

and $\psi=\frac{x f^{2}}{(x-1)(x-\lambda) g^{2}}(f, g \in \mathbb{C}[x])$ satisfies

$$
\begin{equation*}
x f^{2}-(x-1)(x-\lambda) g^{2}=h^{n} \tag{1.3}
\end{equation*}
$$

for some $\lambda \in \mathbb{C} \backslash\{0,1\}$ and $h \in \mathbb{C}[x]$ (see Example 6.2).
In this paper, we consider the case that \mathcal{F} is a Riccati foliation with respect to a Hirzebruch surface $\varphi: \mathbb{F}_{e} \rightarrow \mathbb{P}^{1}$ of degree e. In this case, g_{i} 's in (1.2) are rational functions in $\mathbb{C}[x]$ (see Lemma 3.4). For convenience, the tautological section Γ_{∞} of φ with $\Gamma_{\infty}^{2}=-e$ is defined by $y=\infty$ in what follows.

One can define the discriminant of ω as follows:

$$
\begin{equation*}
\Delta(\omega)=\frac{1}{2}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{\prime}-\frac{1}{4}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right)^{2}+g_{0} g_{2} . \tag{1.4}
\end{equation*}
$$

whenever $g_{0} \neq 0 . \Delta(\omega)$ is an invariant of \mathcal{F} under any affine transformation

$$
\begin{equation*}
y=a(x) \bar{y}+b(x) \tag{1.5}
\end{equation*}
$$

where $a, b \in \mathbb{C}(x)$ and $a \neq 0$ (Lemma 3.5).
Now our main results can be stated as follows.
Theorem 1.9. Assume that $g_{0} \neq 0$. The following conditions are equivalent:
(1) \mathcal{F} is algebraic;
(2) by choosing a proper affine transformation (1.5), g_{i} 's in (1.2) can be taken as $g_{0}=\frac{1}{d} \cdot \frac{\psi^{\prime}}{(\psi-1)}, \quad g_{2}=\frac{1}{\gamma_{2}} \cdot \frac{\psi^{\prime}}{(\psi-1)}-\left(1-\frac{1}{\gamma_{1}}\right) \frac{\psi^{\prime}}{\psi}, \quad g_{2}=\left(\frac{1}{d}-\frac{1}{\gamma_{3}}\right) \frac{\psi^{\prime}}{\psi}$
where $\psi \in \mathbb{C}(x)$, γ_{i} 's and d are as in Theorem 1.4 and Remark 1.6;
(3) there is a rational function $\psi \in \mathbb{C}(x)$ satisfying

$$
\begin{aligned}
\Delta(\omega)= & \frac{1}{2}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{\prime}-\frac{1}{4}\left(\frac{\psi^{\prime \prime}}{\psi^{\prime}}\right)^{2}+\frac{1}{4}\left(1-\frac{1}{\gamma_{1}^{2}}\right)\left(\frac{\psi^{\prime}}{\psi}\right)^{2}+\frac{1}{4}\left(1-\frac{1}{\gamma_{2}^{2}}\right)\left(\frac{\psi^{\prime}}{\psi-1}\right)^{2} \\
& +\frac{1}{4}\left(\frac{1}{\gamma_{1}^{2}}+\frac{1}{\gamma_{2}^{2}}-\frac{1}{\gamma_{3}^{2}}-1\right)\left(\frac{\psi^{\prime}}{\psi}\right)\left(\frac{\psi^{\prime}}{\psi-1}\right)
\end{aligned}
$$

(4) there is a Riccati foliation \mathcal{F}_{0} with $\operatorname{kod}\left(\mathcal{F}_{0}\right)=-\infty$ w.r.t. a rational ruled surface $\varphi_{0}: X_{0} \rightarrow \mathbb{P}^{1}$ such that \mathcal{F} is the pulling-back foliation of \mathcal{F}_{0} after a base change $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ and a birational map $\sigma: X \rightarrow X_{1}$ as in the following commutative diagram,

where $\varphi: X \rightarrow \mathbb{P}^{1}$ (resp., $\varphi_{1}: X_{1} \rightarrow \mathbb{P}^{1}$) is the ruling map adapted to \mathcal{F} (resp., $\left.\psi^{*} \mathcal{F}_{0}\right)$.

Theorem 1.10. Assume that $g_{0}=0$. The following conditions are equivalent:
(1) \mathcal{F} is algebraic;
(2) \mathcal{F} is of type $A_{n-1}(n \geq 1)$;
(3) there is an \mathcal{F}-invariant section Γ of φ except the tautological section $y=\infty$;
(4) by choosing a proper affine transformation (1.5), we can take

$$
g_{1}=\frac{\psi^{\prime}}{n \psi}, \quad g_{2}=0(n \geq 1)
$$

for some $\psi \in \mathbb{C}(x)$;
(5) \mathcal{F} is the pulling-back foliation of \mathcal{F}_{0} defined by $\omega_{0}=y d x-n x d x$ after a base change and a birational map as in the commutative diagram in Theorem 1.9 (4).

Remark 1.11. $g_{0}=0$ iff the tautological section Γ_{∞} is \mathcal{G}-invariant (see Lemma 3.4).
Remark 1.12. Theorem 1.9 and Theorem 1.10 also hold for the Riccati foliations with Kodaira dimension $-\infty$. So we can also classify them according to $A D E$ types (see Example 6.1).

Based on the above theorems, we can get some criteria for the algebraicity or transcendency of a Riccati foliation \mathcal{F} w.r.t. a rational fibration. For convenience, in what follows, we assume \mathcal{F} is a standard form w.r.t. $\varphi: X\left(=\mathbb{F}_{e}\right) \rightarrow B\left(=\mathbb{P}^{1}\right)$ and each singularity of \mathcal{F} is a non-degenerated one with a rational eigenvalue (see Sec. 2.1).

Corollary 1.13. Under our assumptions, the following conditions are equivalent:
(1) \mathcal{F} is an algebraic foliation of type A_{n-1};
(2) \mathcal{F} has two disjoint \mathcal{F}-invariant sections of φ.
(3) \mathcal{F} occurs in one of the following cases:
(i) $g_{0}=0$ and $g_{1} f+g_{2}=f^{\prime}$ for some $f(x) \in \mathbb{C}[x]$ with $\operatorname{deg} f \leq e$;
(ii) $g_{0} \neq 0, e=0, g_{1}=c_{1} g_{0}$ and $g_{2}=c_{2} g_{0}$ for some $c_{1}, c_{2} \in \mathbb{C}$ satisfying $c_{1}^{2}-4 c_{2} \neq 0$.
Theorem 1.4 and Corollary 1.13 provide a new viewpoint for a fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers.

Corollary 1.14. A fibration $f: X \rightarrow \mathbb{P}^{1}$ with two singular fibers is a Riccati fibration of type A_{n-1}. Furthermore, if X is a rational surface, then f can be obtained by a pencil as
follows:

$$
y^{n}=t \prod_{i=1}^{\ell}\left(x-a_{i}\right)^{m_{i}}, \quad \forall t \in \mathbb{P}^{1}
$$

where n and m_{i} 's are positive integers.
Remark 1.15. It is well-known that if $f: S \rightarrow \mathbb{P}^{1}$ is non-trivial (resp. non-isotrivial), then $s \geq 2$ (resp. 3, see [Bea81]). For a fibration over \mathbb{P}^{1} with two singular fibers, each singular fiber is dual to each other and hence they have the same order of periodic topology monodromy (see [GLT16, Theorem 1.1]). Furthermore, the authors in [GLT16] classify all such fibrations of genus 2 .

Corollary 1.16. Under our assumptions, \mathcal{F} is an algebraic foliation of type D_{n+2} iff it satisfies the following conditions:
(1) there is a horizontal irreducible \mathcal{F}-invariant curve Γ defined by

$$
(y+a)^{2}-\mu=0, \quad \text { for some } a, \mu \in \mathbb{C}(x)
$$

(2) $g_{0} \neq 0$ and $\tilde{\omega}:=\left(n g_{0} y^{2}+\frac{\mu^{\prime}}{2 \mu} y-n g_{0} \mu\right) d x-d y$ gives an algebraic Riccati foliation of type A_{n-1}.
Corollary 1.17. If there is a singularity p of \mathcal{F} with eigenvalue $\lambda_{p}=\frac{m}{n}(n>1$ and $\operatorname{gcd}(m, n)=1)$ satisfying $n \geq 6$, then \mathcal{F} occurs in one of the following cases:
(1) \mathcal{F} is of type A or D;
(2) \mathcal{F} is not an algebraic Riccati foliation.

2. Preliminaries

2.1. Riccati foliations. Let (X, \mathcal{F}) be a Riccati foliation w.r.t. a minimal rational fibration $\varphi_{0}: X \rightarrow B$. A fiber of φ_{0} is \mathcal{F}-invariant if and only if it contains the singularities of \mathcal{F}. Note that $K_{\mathcal{F}} \sim r F$, where F is a fiber of φ_{0}. We call r the degree of \mathcal{F}, and denote it by $\operatorname{deg} \mathcal{F}=r$.

By choosing proper flipping maps, one can get a standard form (Y, \mathcal{G}) of (X, \mathcal{F}) where Y admits a minimal rational fibration $\varphi: Y \rightarrow B$ (see [Bru15, Ch. 4, Prop. 4.2]) and each \mathcal{G}-invariant fiber F is of the following form:
(I_{a}) F admits two singular points with nonzero eigenvalues $\pm a$ along F, where $0 \leq$ $\operatorname{Re} a \leq \frac{1}{2}$.
(II) F admits a saddle-node of multiplicity two, whose weak separatrix is contained in F.
(III) F admits two saddle-nodes of the same multiplicity, whose strong separatrices are contained in F.
(IV) F admits only one nilpotent singularity.
and that its reduced standard form $\rho:(\widetilde{Y}, \widetilde{\mathcal{G}}) \rightarrow(Y, \mathcal{G})$ is relatively minimal.
An algebraic Riccati foliation has at most singularities of type $I_{a}\left(a \in \mathbb{Q}^{+}\right.$and $\left.a \leq \frac{1}{2}\right)$. In this paper, our main goal is to answer Poincare problem on the algebraicity of the Riccati foliation. So we impose that following condition on a Riccati foliation to simplify our discussion in what follows.

Assumption. All \mathcal{G}-invariant fibers of \mathcal{G} are type $I_{a}\left(a \in \mathbb{Q}^{+}\right.$and $\left.a \leq \frac{1}{2}\right)$.
In this case, ρ restricted on a fiber F is exactly a resolution of the singularity with positive eigenvalue in F.

For a given \mathcal{G}-invariant fiber F of type $\mathrm{I}_{a}\left(a=\frac{m}{n},(m, n)=1\right)$, we denote by $n_{F}=n$. We have the following facts for such a Riccati foliation (see [HLT20]). The total transform of F under ρ is

$$
\begin{equation*}
\rho^{*} F=n_{F}\left(\Theta_{F}+N_{F}+N_{F}^{\prime}\right), \tag{2.1}
\end{equation*}
$$

where Θ_{F} is a (-1) curve, N_{F} and N_{F}^{\prime} are \mathbb{Q}^{+}-divisors. There is a Zariski decomposition

$$
\begin{equation*}
K_{\widetilde{\mathcal{G}}}=\rho^{*} K_{\mathcal{G}}-\sum_{F} \Theta_{F} \sim\left(\operatorname{deg} \mathcal{G}-\sum_{F} \frac{1}{n_{F}}\right) \rho^{*} F_{0}+\sum_{F}\left(N_{F}+N_{F}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

whenever $\operatorname{deg} \mathcal{G} \geq \sum_{F} \frac{1}{n_{F}}$, where F runs over all \mathcal{G}-invariant fibers and F_{0} is a general fiber of φ.

Remark 2.1. From (2.2), the Kodaira dimension $\operatorname{Kod}(\widetilde{\mathcal{G}}) \leq 1$. Furthermore, for any relatively minimal Riccati foliation \mathcal{F}, its Kodaira dimension $\operatorname{Kod}(\mathcal{F})$ is consistent with the numerical Kodaira dimension $v(\mathcal{F})$ (cf. [Bru15, Ch.9, Sec. 5]). So $\operatorname{Kod}(\mathcal{F})=-\infty$ iff $K_{\mathcal{F}}$ is not pseudo-effective.

Remark 2.2. The support of N_{F} (resp., N_{F}^{\prime}) in (2.1) is a $\widetilde{\mathcal{G}}$-chains, i,e., a Hirzebruch-Jung string $C=C_{1}+\cdots+C_{r}$ consisting of $\widetilde{\mathcal{G}}$-curves C_{i} 's satisfying that
(1) all singularities of $\widetilde{\mathcal{G}}$ on C are reduced and non-degenerated;
(2) there is only one singularity of $\widetilde{\mathcal{G}}$, says $p_{r}\left(\in C_{r}\right)$, on $C-\left\{p_{1}, \ldots, p_{r-1}\right\}$ where $p_{i}=C_{i} \cap C_{i+1}(i=1, \ldots, r-1)$.
In particular, there is at most one $\widetilde{\mathcal{G}}$-curve meeting transversely with C.
One can write $N_{F}=\sum_{i=1}^{r} \frac{\mu_{i}}{n_{F}} C_{i}$ where $1=\mu_{r}<\mu_{r-1}<\cdots<\mu_{1}<n_{F} . N_{F}$ satisfies that $N_{F} C_{1}=-1$ and $N C_{i}=0$ for else i. All μ_{i} 's can be determined uniquely by these equalities. More details can be found in [Bru15, Ch.8, Sec.2].

The following Lemmas are useful.
Lemma 2.3. Let Γ be a section of $\tilde{\varphi}=\varphi \rho: \widetilde{Y} \rightarrow B$. Then $\Theta_{F} \Gamma=0$. Moreover, Γ meets transversely with one of N_{F}, N_{F}^{\prime} at some singularity and disjoints from another.

In particular, there are at most two $\widetilde{\mathcal{G}}$-invariant sections of $\tilde{\varphi}$ whenever there is a \mathcal{G} invariant F.

Proof. If $\Theta_{F} \Gamma>0$, then (2.1) implies that $\rho^{*} F \cdot \Gamma \geq n_{F}>1$, a contradiction. So $\Theta_{F} \Gamma=0$. Thus one has $\Gamma N_{F}>0$ or $\Gamma N_{F}^{\prime}>0$.

Without loss of generality, we assume $\Gamma N_{F}>0$. Note that $n_{F} N_{F}$ and $n_{F} N_{F}^{\prime}$ are \mathbb{Z}-divisor (Remark 2.2). Therefore we have $n_{F} N_{F} \Gamma=1$ and $N_{F}^{\prime} \Gamma=0$ from $\rho^{*} F \cdot \Gamma=1$. Namely, Γ meets transversely with an irreducible component of N_{F} at some singularity and disjoints from N_{F}^{\prime}.

The latter part is from Remark 2.2.
Corollary 2.4. Let D_{1}, D_{2} are the \mathcal{G}-invariant sections of $\varphi: Y \rightarrow B$. Then D_{1}, D_{2} are disjoint. In particular, if $\varphi: Y\left(=\mathbb{F}_{e}\right) \rightarrow B\left(=\mathbb{P}^{1}\right)$ is a Hirzebruch surface of degree e $e>0$, then one of D_{i} 's is a tautological section (i.e., a section with self-intersection number $(-e)$).

Proof. Suppose that D_{1}, D_{2} have an intersection p. Let F be the fiber passing through p. Since D_{1}, D_{2} and F are \mathcal{G}-invariant, p has an eigenvalue $\lambda_{p}>0$.

Let q be another singularity in F^{\prime} with eigenvalue $\lambda_{q}<0$. Since $D_{1} F^{\prime}=D_{2} F^{\prime}=1, q$ is a reduced non-degenerated singularity outside of D_{1}, D_{2}.

Let Γ_{i} be the inverse image of D_{i} under $\rho: \widetilde{Y} \rightarrow Y(i=1,2)$. From Lemma 2.3, we can assume that Γ_{1} (resp., Γ_{2}) meets transversely with N_{F} (resp., N_{F}^{\prime}) at some singularity \tilde{p}_{1} (resp., \tilde{p}_{2}) and disjoints from N_{F}^{\prime} (resp., N_{F}).

Note that only one of \tilde{p}_{i} 's is exactly the inverse image of q. Thus only one of D_{i} 's passes through q, a contradiction.

The latter part is from the well-known facts of a rational ruled surface.
Let F_{1}, \ldots, F_{l} be the \mathcal{G}-invariant fibers of φ with $n_{1} \leq \cdots \leq n_{l}$ respectively where $n_{i}:=n_{F_{i}}(i=1, \ldots, l)$.

Lemma 2.5. We have $\operatorname{deg} \mathcal{G}=2 g(B)-2+l$. Furthermore, $\operatorname{Kod}(\widetilde{\mathcal{G}})=-\infty$ iff $B \cong \mathbb{P}^{1}$ and $\sum_{1 \leq i \leq l}\left(1-\frac{1}{n_{i}}\right)<2$. In this case, \mathcal{G} is algebraic and n_{i} 's satisfy one of the following conditions:
(1) $l \leq 2$;
(2) $l=3, n_{1}=n_{2}=2$;
(3) $l=3, n_{1}=2, n_{2}=3, n_{3} \leq 5$.

Proof. Let $m(\mathcal{G})$ be the sum of the multiplicities of the singularities of \mathcal{G}. From [Bru15, Proposition 2.1], one has

$$
m(\mathcal{G})=K_{\mathcal{G}}^{2}-K_{\mathcal{G}} K_{Y}+c_{2}(Y)=2 \operatorname{deg} \mathcal{G}+4-4 g(B)
$$

Under our assumption, we have also $m(\mathcal{G})=2 l$. Thus

$$
\operatorname{deg} \mathcal{G}=2 g(B)-2+l
$$

From (2.2), $K_{\widetilde{\mathcal{G}}}$ is not pseudo-effective iff $\operatorname{deg} \mathcal{G}<\sum_{1 \leq i \leq l} \frac{1}{n_{i}}$, that is,

$$
2 g(B)-2+\sum_{1 \leq i \leq l}\left(1-\frac{1}{n_{i}}\right)<0 .
$$

The above inequality holds iff $g(B)=0$ and $\sum_{1 \leq i \leq l}\left(1-\frac{1}{n_{i}}\right)<2$. In this case, it's algebraic from Miyaoka Theorem [Miy85].

The latter consequence is from a straightforwards computation.
Similarly, one can get the following result.
Lemma 2.6. The Kodaira dimension $\operatorname{kod}(\widetilde{\mathcal{G}})=0$ iff either
(I) B is a smooth elliptic curve and \mathcal{G} is a suspension of a representation $\mu: \pi_{1}(B) \rightarrow$ $\operatorname{Aut}\left(\mathbb{P}^{1}\right)($ see $[\operatorname{Bru} 15$, Proposition 6.6]) or
(II) $B \cong \mathbb{P}^{1}$ and one of the following cases occurs:
(1) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(3,3,3)$;
(2) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(2,4,4)$;
(3) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(2,3,6)$;
(4) $l=4$ and $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(2,2,2,2)$.
2.2. Foliations induced by fibrations. Let $f: X \rightarrow C$ be a minimal normal-crossing fibration of genus $g \geq 1$ with singular fibers F_{1}, \ldots, F_{s}. From [Bru15, p.21, p.62], f gives a relative minimal foliation \mathcal{F} with a canonical divisor

$$
\begin{equation*}
K_{\mathcal{F}}=K_{X / C}-\sum_{i=1}^{s}\left(F_{i}-F_{i, \text { red }}\right) \tag{2.3}
\end{equation*}
$$

where $F_{i, \text { red }}$ is the reduce part of F_{i}. Since $g \geq 1, K_{\mathcal{F}}$ is pseudoeffective (see [Bru15, Theorem 7.1]). $K_{\mathcal{F}}$ gives a Zariski decomposition $K_{\mathcal{F}}=P+N$ where N consists of some Hirzebruch-Jung branches lying the fibers of f ([Ser92, Theorem 3.4]).

The fibration f is said to be isotrivial if all smooth fibers are isomorphic to a fixed smooth curve. By [Ser92] or [Bru15, § 9.2], one has

Lemma 2.7. Let f, \mathcal{F} be as above and $\operatorname{kod}(\mathcal{F})$ be the Kodaira dimension.
(1) $\operatorname{kod}(\mathcal{F})=0$ iff f is an isotrivial elliptic fibration;
(2) $\operatorname{kod}(\mathcal{F})=1$ iff f is either non-isotrivial $(g=1)$ or isotrivial $(g>1)$.
(3) $\operatorname{kod}(\mathcal{F})=2$ iff f is a non-isotrivial fibration of genus $g>1$.

Corollary 2.8. If $\operatorname{kod}(\mathcal{F})=1$, then $|m P|($ for $m \gg 0)$ as a base point free linear system gives a fibration $\varphi: X \rightarrow B$ with $P \sim \gamma F^{\prime}\left(\gamma \in \mathbb{Q}^{+}\right)$for a general fiber F^{\prime} of φ.

Furthermore, f coincides with φ if and only if $g=1$.

Proof. The first part of this corollary is trivial.
From [Ser92, Theorem 3.4], N consists of Hirzebruch-Jung branches in all singular fibers of f. So $N F=0$ for a general fiber F of f. By (2.3), one gets

$$
P F=K_{\mathcal{F}} F=2 g-2 .
$$

If $g>1$, then $P F>0$. So F is a horizontal curve in the fibration $\varphi: X \rightarrow B$. If $g=1$, then $P F=0$ implies that $F^{\prime} F=0$, i.e., $\varphi=f$.

For an isotrivial fibration f, each singular fiber F can be written as follows

$$
\begin{equation*}
F=\gamma\left(\Gamma+\sum_{i=1}^{b} \Theta_{i}\right) \tag{2.4}
\end{equation*}
$$

where Θ_{i} 's are disjoint Hirzebruch-Jung branches, Γ is a smooth curve of genus g^{\prime} meeting transversely with each Θ_{i} at one point, $\gamma(>1)$ is the order of the topology monodromy of the fiber germ (f, F) (see [GLT16, p. 88]). The component Γ is said to be principal (see [Xia90, p. 383]).

Let F_{1}, \ldots, F_{s} be the singular fibers of f with principal components $\Gamma_{1}, \ldots, \Gamma_{s}$ and the orders of topology monodromy $\gamma_{1}, \cdots \gamma_{s}$ respectively. Set $d=F F^{\prime}$.

Corollary 2.9. Under the notations and assumptions in Corollary 2.8, one has

$$
\frac{2 g\left(F^{\prime}\right)-2}{d}=2 g(C)-2+\sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right)
$$

whenever $g>1$.
Proof. From Corollary 2.8, $P \sim \gamma F^{\prime}\left(\gamma \in \mathbb{Q}^{+}\right)$and hence $P F^{\prime}=0$. Since $P N=0$, one has $F^{\prime} N=0$. So $F^{\prime} K_{\mathcal{F}}=P F^{\prime}+N F^{\prime}=0$.

By (2.4), the support of $F_{i}-\gamma_{i} \Gamma_{i}$ consists of some Hirzebruch-Jung branches of F_{i}. Since all Hirzebruch-Jung branches lie in N and $N F^{\prime}=0$, one gets $\left(F_{i}-\gamma_{i} \Gamma_{i}\right) F^{\prime}=0$, i.e., $F_{i} F^{\prime}=\gamma_{i} \Gamma_{i} F^{\prime}$. Similarly, one has also $F_{i, \text { red }} F^{\prime}=\Gamma_{i} F^{\prime}$.

Thus we obtain

$$
\begin{equation*}
\sum_{i=1}^{s}\left(F_{i}-F_{i, \mathrm{red}}\right) F^{\prime}=d \sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right) . \tag{2.5}
\end{equation*}
$$

Since $K_{X} F^{\prime}=2 g\left(F^{\prime}\right)-2$, one has

$$
\begin{equation*}
K_{X / C} F^{\prime}=2 g\left(F^{\prime}\right)-2-(2 g(C)-2) F F^{\prime} \tag{2.6}
\end{equation*}
$$

Combining (2.3), (2.5), (2.6) and $K_{\mathcal{F}} F^{\prime}=0$, one gets (4.1).
Corollary 2.10. The isotrivial fibration $f: X \rightarrow \mathbb{P}^{1}$ of genus $g>1$ satisfying $\sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right)<$ 2 (i.e., the conditions in Lemma 2.5) is a Riccati fibration.
Proof. By Corollary $2.9, F^{\prime} \cong \mathbb{P}^{1}$, i.e., $\varphi: X \rightarrow B$ in Corollary 2.8 is a ruled surface. So $K_{\mathcal{F}} F^{\prime}=0$, namely, \mathcal{F} is a Riccati foliation.

For an elliptic fibration on a birationally ruled surface, we have the following wellknown result (see [Xia92, Theorem 3.2.4] or [FM94, Proposition 3.23]).

Lemma 2.11. Let $f: X \rightarrow C$ be an elliptic fibration with $\operatorname{kod}(X)=-\infty$ and F_{1}, \ldots, F_{k} be the multiple fibers with the multiplicities $m_{1} \leq \cdots \leq m_{k}$ respectively. Then $C \cong \mathbb{P}^{1}$ and one of the following cases holds:
(1) $\chi\left(O_{X}\right)=0$ (i.e., all singular fibers of f are multiple fibers), $k=0$ or $k=2$ and $m_{1}=m_{2}$. In this case, X is a minimal elliptic ruled surface.
(2) $\chi\left(O_{X}\right)=1, k \leq 1$. In this case, X is a rational surface. In particular, if $k=1$ and f is relatively minimal, then $F_{1} \equiv_{\text {linear }}-m_{1} K_{X}$.

A fibration $f: X \rightarrow \mathbb{P}^{1}$ with 2 singular fibers is isotrivial from [Bea81] (also see [GLT16]). In particular, such an elliptic fibration can be classified as follows (see [Tan10, Theorem 3.2], [Hir85] or [MP86]).
Lemma 2.12. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic fibration with 2 singular fibers. Then f is isomorphic to one of the following families.
(I) $X=\left(E \times \mathbb{P}^{1}\right) / \mathbb{Z}_{n}$ where E is an elliptic curve and the n-cyclic group $\mathbb{Z}_{n}=\left\{\sigma^{k}\right\}$ acts on $E \times \mathbb{P}^{1}$ by $\sigma^{k}(p,[x, y])=\left(p+k \delta,\left[x, \xi^{k} y\right]\right)$;
(I*) $y^{2}=\lambda\left(x^{3}+x+c\right)\left(4+27 c^{2} \neq 0\right)$ or $y^{2}=\lambda\left(x^{3}+1\right)$;
(II) $y^{2}=x^{3}+\lambda$;
(III) $y^{2}=x^{3}+\lambda x$;
(IV) $y^{3}=x^{3}+\lambda x$.

The types of the singular fibers are respectively $\left(n I_{0}, n I_{0}\right),\left(I_{0}^{*}, I_{0}^{*}\right),\left(I I, I I^{*}\right),\left(I I I, I I I^{*}\right)$, (IV,IV*).

Remark 2.13. In case (I) of Lemma $2.12, X$ is a minimal elliptic ruled surface by Lemma 2.11. So the foliation \mathcal{F} induced by f is a Riccati foliation w.r.t. the ruling map. It has no singularity and is a non-trivial holomorphic vector field with $\operatorname{kod}(\mathcal{F})=0$. By [Bru15, Theorem 6.6], \mathcal{F} is a suspension of a representation $\rho: \pi_{1}(\operatorname{Alb}(X)) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{1}\right)$.

3. Riccati foliations on a rational surface

All notations and assumptions in Sec. 2.1 are adopted. In this section, we consider the case that X is a rational surface, i.e., $\varphi: Y\left(=\mathbb{F}_{e}\right) \rightarrow B\left(=\mathbb{P}^{1}\right)$ is a Hirzebruch surface of degree e. In this case, $\operatorname{deg} \mathcal{G}=l-2$ by Lemma 2.5 .

Let Γ_{∞} be a tautological section with $\Gamma_{\infty}^{2}=-e$ and F be a general fiber of φ. Let x (resp., y) be the coordinate of B (resp., F). We assume that Γ_{∞} is defined by $y=\infty$. Let F_{1}, \ldots, F_{l} be the \mathcal{G}-invariant fiber of φ. Without loss of generality, we assume $F_{l}=\varphi^{-1}(\infty)$ whenever $l>0$.

Remark 3.1. The birational map $\sigma:(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ can be realized as a Möbius transformation

$$
y=\frac{a \bar{y}+b}{c \bar{y}+d}, \quad a, b, c, d \in \mathbb{C}(x), a d-b c \neq 0
$$

where \bar{y} is the coordinate of a general fiber of $\varphi_{0}: X \rightarrow B$. Moreover, it can be decomposed into more simple transformations: $y=(x-r)^{ \pm 1} \cdot \bar{y}$ (i.e., flipping map), $y=s \bar{y}+r$ and $y=\frac{1}{\bar{y}}$ ($r, s \in \mathbb{C}, s \neq 0$).

3.1. Discriminant of a Riccati foliation.

Lemma 3.2. Under our assumptions, we have
(1) if Γ_{∞} is not \mathcal{G}-invariant, then $l \geq 2+e$ and the equality holds iff Γ_{∞} transverses to \mathcal{G};
(2) if Γ_{∞} is \mathcal{G}-invariant, then $l \geq 2 e$ and the equality holds iff either $l=e=0$ or each singularity $p_{i}=\Gamma_{i} \cap F_{i}$ has an eigenvalue $-\frac{1}{2}(i=1, \ldots, l)$.
Moreover, we have always $l \neq 1$.
Proof. (1) By Lemma 2.5, $K_{\mathcal{G}} \Gamma_{\infty}=\operatorname{deg} \mathcal{G}=l-2$. If Γ_{∞} is not \mathcal{G}-invariant, then

$$
\begin{equation*}
K_{\mathcal{G}} \Gamma_{\infty}=\operatorname{tang}\left(\mathcal{G}, \Gamma_{\infty}\right)+e \geq e, \tag{3.1}
\end{equation*}
$$

i.e., $l \geq 2+e \geq 2$, and the first equality holds iff Γ_{∞} transverse to \mathcal{G} from [Bru15, Proposition 2.2].
(2) Assume that $l>0$. If Γ_{∞} is \mathcal{G}-invariant, then

$$
\begin{equation*}
-e=\sum_{1 \leq i \leq l} \frac{m_{i}}{n_{i}} \tag{3.2}
\end{equation*}
$$

where $\frac{m_{i}}{n_{i}}$ is the eigenvalue of the singularity $p_{i}=F_{i} \cap \Gamma_{\infty}(i=1, \ldots, l)$ from Camacho-Sad formula ([CS82, Suw98]). Note that $\left|\frac{m_{i}}{n_{i}}\right| \leq \frac{1}{2}$. Thus $e \leq \frac{l}{2}$ and the equality holds iff each $\frac{m_{i}}{n_{i}}=-\frac{1}{2}$. If $l=1, e=-\frac{m_{1}}{n_{1}}$ is not an integer, a contradiction. So $l \neq 1$.

Similarly, in case of $l=0$, the Camacho-Sad formula implies $e=0$.
Corollary 3.3. If $l=0$, then \mathcal{G} is defined by $\omega=d y$ w.r.t. the first projection

$$
\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \quad(x, y) \rightarrow x
$$

Proof. From Lemma 3.2, $e=0$ and Γ_{∞} is \mathcal{G}-invariant. Since $l=0, \mathcal{G}$ is algebraic (Lemma 2.5). In this case, the Riccati fibration $f: Y \rightarrow C$ induced by \mathcal{G} is smooth.

For any irreducible \mathcal{G}-invariant component $\Gamma\left(\neq \Gamma_{\infty}\right)$, one can claim that $\Gamma_{\infty} \Gamma=0$. If not, their intersections give at least one singularity of \mathcal{G} and hence there is a \mathcal{G}-invariant fiber of φ passing through it, a contradiction. So Γ is defined by $y=c$ for some $c \in \mathbb{C}$.

Therefore f is exactly the second projection

$$
f: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \quad(x, y) \rightarrow y .
$$

Namely, \mathcal{G} can be defined by $\omega=d y$.
In what follows, we assume that $l \geq 2$. From Lemma 3.2, we have always $l \geq e+1$.
Lemma 3.4. Each Riccati foliation \mathcal{F} has an expression (1.1) or (1.2) satisfying
(1) $p, q_{i} \in \mathbb{C}[x]$ (i.e., $g_{i} \in \mathbb{C}(x)$) for $i=0,1,2$;
(2) Γ_{∞} is \mathcal{G}-invariant iff $q_{0}=0$ (i.e., $g_{0}=0$);
(3) if \mathcal{F} is a standard form, then p has no multiple root (i.e., the order of each pole of $g_{i} '$'s on $\mathbb{P}^{1}-\{\infty\}$ is 1) and $\operatorname{deg} q_{i}<\operatorname{deg} p+(i-1) e$ (i.e., $\operatorname{deg} g_{i}:=\operatorname{deg} q_{i}-\operatorname{deg} p<$ ($i-1$) e for $i=0,1,2$).

Proof. From Remark 3.1, it's enough to consider the standard form \mathcal{G}.
It's well known that ω is a section of $V:=H^{0}\left(Y, \Omega_{Y} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)$ where

$$
N_{\mathcal{G}}:=K_{\mathcal{G}}-K_{Y}=2 \Gamma_{\infty}+(l+e) F
$$

is the normal bundle of \mathcal{G} (see [Bru15]). One can constructs a subspace V^{\prime} of V consisting of the following differential forms

$$
\omega=\sum_{i=0}^{2} q_{i}(x) y^{2-i} d x-p(x) d y+c x^{l-1}(e y d x-x d y), \quad q_{i}, p \in \mathbb{C}[x], c \in \mathbb{C}
$$

where $\operatorname{deg} q_{i} \leq l-2+(i-1) e(i=0,1,2)$ and $\operatorname{deg} p \leq l-1$. It's easy to see that $\operatorname{dim} V^{\prime}=4 l-2$.

We will claim $V=V^{\prime}$. For this purpose, we need compute $\operatorname{dim} V$. Consider the exact sequence

$$
0 \longrightarrow \varphi^{*} \Omega_{B} \otimes O_{Y}\left(N_{\mathcal{G}}\right) \longrightarrow \Omega_{Y} \otimes O_{Y}\left(N_{\mathcal{G}}\right) \longrightarrow \Omega_{Y / B} \otimes O_{Y}\left(N_{\mathcal{G}}\right) \longrightarrow 0
$$

where $\Omega_{Y / B}=O_{Y}\left(-2 \Gamma_{\infty}-e F\right)$ be the relatively canonical sheaf of φ.
By Leray spectral sequence and $R^{1} \varphi_{*} O_{Y}\left(2 \Gamma_{\infty}\right)=0$, one has

$$
h^{k}\left(Y, \varphi^{*} \Omega_{B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)=h^{k}\left(B, \varphi_{*} O_{Y}\left(2 \Gamma_{\infty}\right) \otimes O_{B}(l+e-2)\right), k=0,1 .
$$

Since $\varphi_{*} O_{Y}\left(2 \Gamma_{\infty}\right)=O_{B} \oplus O_{B}(-e) \oplus O_{B}(-2 e)$ and $l \geq e+1$, we get

$$
h^{1}\left(Y, \varphi^{*} \Omega_{B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)=0, \quad h^{0}\left(Y, \varphi^{*} \Omega_{B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)=3 l-3 .
$$

Note $h^{0}\left(\Omega_{Y \mid B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)=h^{0}\left(Y, O_{Y}(l F)\right)=l+1$, we obtain

$$
\operatorname{dim} V=h^{0}\left(Y, \varphi^{*} \Omega_{B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)+h^{0}\left(\Omega_{Y / B} \otimes O_{Y}\left(N_{\mathcal{G}}\right)\right)=4 l-2
$$

Now we investigate the neighbourhood near by $F_{l}=\varphi^{-1}(\infty)$. Take a coordinate transformation $(x, y)=\left(\frac{1}{t}, \frac{u}{t^{e}}\right)$. We get the expression of ω in the neighbourhood as follows:

$$
\tilde{\omega}=-\sum_{i=0}^{2} \tilde{q}_{i} y^{2-i} d t+\tilde{p}(e u d t-t d u)-c d u
$$

where $\tilde{q}_{i}:=q_{i} t^{l-2+(i-1) e}(i=0,1,2)$ and $\tilde{p}:=p t^{l-1}$ are still polynomials in $\mathbb{C}[x]$. Note that \mathcal{G}-invariant fiber F_{l} is defined by $t=0$. So $c=0$. Thus we get the expression (1.1) with coefficients $q_{i}, p \in \mathbb{C}[x]$ (i.e., g_{i} 's are in $\mathbb{C}(x)$).

Let $x=a_{i}$ be the equation of $F_{i}(i=1, \ldots, l-1)$. Since F_{i} 's are \mathcal{G}-invariant, $x=$ a_{1}, \ldots, a_{l-1} are the roots of p. Note that $\operatorname{deg} p \leq l-1$. So $\operatorname{deg} p=l-1$ and p has no multiple root.

Take $y=\frac{1}{v}$. One get the differential form

$$
\tilde{\omega}=\sum_{i=0}^{2} q_{i} v^{i} d t+p d v
$$

Note that Γ_{∞} is defined by $v=0$. Thus Γ_{∞} is \mathcal{G}-invariant iff $v \mid q_{0}(x)$ (i.e., $q_{0}=0$).
For convenience, we usually replace the expression (1.1) by (1.2). We define the discriminant of ω as in (1.4). Let $(\bar{X}, \overline{\mathcal{F}})$ be a Riccati foliation w.r.t. $\bar{\varphi}: \bar{X} \rightarrow \mathbb{P}^{1}$ and

$$
\bar{\omega}=\left(\bar{g}_{0} \bar{y}^{2}+\bar{g}_{1} \bar{y}+\bar{g}_{0}\right) d x-d \bar{y}
$$

be the differential form of $\overline{\mathcal{F}}$.
Lemma 3.5. Assume that $g_{0} \bar{g}_{0} \neq 0$. Then $\Delta(\omega)=\Delta(\bar{\omega})$ iff there is a birational map $\sigma:(\bar{X}, \overline{\mathcal{F}}) \cdots(X, \mathcal{F})$ defined by an affine transformation as in (1.5).

Proof. (\Rightarrow) By a transform

$$
y=\frac{z}{g_{0}}-\frac{1}{2 g_{0}}\left(g_{1}+\frac{g_{0}^{\prime}}{g_{0}}\right) \quad\left(\text { resp., } \bar{y}=\frac{z}{\bar{g}_{0}}-\frac{1}{2 \bar{g}_{0}}\left(\bar{g}_{1}+\frac{\bar{g}_{0}^{\prime}}{\bar{g}_{0}}\right)\right),
$$

one gets a Riccati foliation defined by

$$
\omega^{\prime}=\left(z^{2}+\Delta\right) d x-d z
$$

where $\Delta:=\Delta(\omega)=\Delta(\tilde{\omega})$. Hence a birational map $\sigma:(\bar{X}, \overline{\mathcal{F}}) \rightarrow(X, \mathcal{F})$ can be obtained by the transformation

$$
y=\frac{\bar{g}_{0}}{g_{0}} \bar{y}-\frac{1}{2 g_{0}}\left(g_{1}-\bar{g}_{1}+\frac{g_{0}^{\prime}}{g_{0}}-\frac{\bar{g}_{0}^{\prime}}{\bar{g}_{0}}\right) .
$$

(\Leftarrow) By Remark 3.1, it's enough to consider the transformations: $y=(x-r)^{ \pm 1} \bar{y}$ and $y=s \bar{y}+r(s, r \in \mathbb{C}, s \neq 0)$.

Take a transformation $y=(x-r) \bar{y}$. One has

$$
\bar{g}_{0}=g_{0}(x-r), \quad \bar{g}_{1}=g_{1}-\frac{1}{x-r}, \quad \bar{g}_{2}=\frac{g_{2}}{x-r} .
$$

From a straightforwards computation, we get $\Delta(\bar{\omega})=\Delta(\omega)$. The other cases can also be checked similarly.

Example 3.6. Consider a standard form \mathcal{F} w.r.t. $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ with three \mathcal{F}-invariant fibers. By choosing a proper coordinate, we can assume that
(1) F_{1}, F_{2} and F_{3} are defined by $x=0, x=1$ and $x=\infty$ respectively;
(2) $p_{1}=(0, \infty), p_{2}=(1,0)$ are singularities of \mathcal{G} with eigenvalues λ_{1}, λ_{2} respectively.

Firstly, we consider the case that the sections $\Gamma_{\infty}: y=\infty$ and $\Gamma_{0}: y=0$ passe through both singularities on F_{3}. In this case, both sections are \mathcal{G}-invariant. If not, $1=K_{\mathcal{G}} \Gamma=$ $\operatorname{tang}(\mathcal{G}, \Gamma) \geq 2$ for $\Gamma=\Gamma_{\infty}$ or Γ_{0}, a contradiction. So

$$
\begin{equation*}
\omega=\left(\frac{-\lambda_{1}}{x}+\frac{\lambda_{2}}{x-1}\right) y d x-d y \tag{3.3}
\end{equation*}
$$

and the eigenvalue λ_{3} of the singularity $p_{3}=\Gamma_{\infty} \cap F_{3}$ satisfies $\lambda_{1}-\lambda_{2}+\lambda_{3}=0$ by Camacho-Sad formula. In particular, the foliation is an algebraic one of type A.

In what follows, we assume there is a singularity on F_{3}, says p_{3}, outside of Γ_{∞} and Γ_{0}. By choosing a proper coordinate, we can take $p_{3}=(\infty,-1)$ with eigenvalue λ_{3}. From Lemma 3.4, we get

$$
\begin{equation*}
\omega=\left(\frac{\lambda_{2}-\lambda_{1}+\lambda_{3}}{2(x-1)} y^{2}+\left(\frac{-\lambda_{1}}{x}+\frac{\lambda_{2}}{x-1}\right) y+\frac{\lambda_{2}-\lambda_{1}-\lambda_{3}}{2 x}\right) d x-d y . \tag{3.4}
\end{equation*}
$$

Hence

$$
\Delta(\omega)=\frac{1}{4}\left(\frac{1-\left(\lambda_{1}-1\right)^{2}}{x^{2}}+\frac{1-\lambda_{2}^{2}}{(x-1)^{2}}+\frac{\left(\lambda_{1}-1\right)^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-1}{x(x-1)}\right)
$$

3.2. Riccati foliations with Kodaira dimension $-\infty$. Let \mathcal{F} be a Riccati foliation with $\operatorname{kod}(\mathcal{F})=-\infty$. In this case, it's algebraic from Miyaoka Theorem [Miy85]. By Lemma 2.5 , the rational fibration $\varphi: Y\left(=\mathbb{F}_{e}\right) \rightarrow B\left(=\mathbb{P}^{1}\right)$ adapted to the standard form \mathcal{G} is a Hirzebruch surface of degree e.

Lemma 3.7. We have e \leq. Furthermore, up to a flipping map, we can assume always that $e=0$.

Proof. It's easy to see that $e \leq 1$ and $l \leq 3$ from Lemma 2.5 and Lemma 3.2.
Now we consider the case of $e=1$. We hope to find a singularity with eigenvalue $\frac{1}{2}$ outside Γ_{∞}. Then we can make a flipping map by blowing-up the singularity with eigenvalue $\frac{1}{2}$ and get a new standard form of \mathcal{F} w.r.t. the projection $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. For this purpose, we consider the following two cases.

Case 1. Γ_{∞} is not \mathcal{G}-invariant.
From Lemma 3.2, $l=3$ and Γ_{∞} transverses to \mathcal{G}. In this case, there is a \mathcal{G}-invariant fiber of type $I_{\frac{1}{2}}$ by Lemma 2.5. Hence Γ_{∞} doesn't pass through both singularities in such an fiber.

Case 2. Γ_{∞} is \mathcal{G}-invariant.
Lemma 3.2 implies $l=2$ and Γ_{∞} passes through two singularities with eigenvalues $-\frac{1}{2}$ precisely. Namely, the singularities with eigenvalues $\frac{1}{2}$ are outside Γ_{∞}.

In what follows, we assume that $e=0$, i.e., $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is a projection satisfying $\varphi(x, y)=x$ where (x, y) is the coordinate of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Let Γ_{∞} (resp., Γ_{0}) be the section of φ defined by $y=\infty$ (resp., $y=0$).

Corollary 3.8. If $l=2$, then \mathcal{G} can be defined by $\omega=\lambda y d x-d y$ up to a suitable coordinate .
Proof. One can choose a suitable coordinate such that the \mathcal{G}-invariant fibers of φ, says F_{0}, F_{∞}, are defined by $x=0, \infty$ respectively. Furthermore, we can also assume that Γ_{∞} and Γ_{0} passes through the singularities in F_{0} respectively.

We claim that Γ_{∞} is \mathcal{G}-invariant. If not, one has $\operatorname{tang}\left(\mathcal{G}, \Gamma_{\infty}\right) \geq 1$ by our assumption. So (3.1) implies $l \geq 3$, a contradiction. Similarly, Γ_{0} is also \mathcal{G}-invariant. Thus we get $\omega=\lambda y d x-x d y$ from Lemma 3.4.

Proof of Theorem 1.3.The case for $l \leq 2$ is from Corollary 3.3 and Corollary 3.8.
In what follows, we assume that $l=3$. In this case, $\left(n_{1}, n_{2}, n_{3}\right)$ satisfies Lemma 2.5 and so $n_{1}=2$. One can find that Γ_{∞} (resp., Γ_{0}) is not \mathcal{G}-invariant and passes at most one singularity of \mathcal{G} from (3.1) and (3.2).

By choosing a suitable coordinate, one can assume that \mathcal{F} has a differential form ω as in Example 3.6 with $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(\frac{1}{2}, \frac{1}{n_{2}}, \frac{m}{n_{3}}\right)$ where $0<m \leq \frac{n_{3}}{2}$ and $\left(m, n_{3}\right)=1$.

If $n_{2}=2$, then

$$
\omega=\left(\lambda_{3} x y^{2}+y-\lambda_{3}(x-1)\right) d x-2 x(x-1) d y .
$$

By replaceing y by $\frac{y}{\lambda_{3}}$, one gets an expression as in Theorem 1.3 (3). If $n_{2}=3$, then ω is as in Theorem 1.3 (4)-(7).

4. Singular fibers of a Riccati fibration of genus $g \geq 1$

Let $f: X \rightarrow C$ be a Riccati fibration of genus $g \geq 1$ and \mathcal{F} be the Riccati foliation induced by f with respect to a rational fibration. Without loss of generality, we assume that f is a minimal normal-crossing fibration whose singular fibers are F_{1}, \ldots, F_{s} with principal components $\Gamma_{1}, \ldots, \Gamma_{s}$ respectively.

Let (Y, \mathcal{G}) be the standard form of (X, \mathcal{F}) w.r.t. a minimal rational fibration $\varphi: Y \rightarrow B$ and $\rho:(\widetilde{Y}, \widetilde{\mathcal{G}}) \rightarrow(Y, \mathcal{G})$ be the relatively minimal standard form w.r.t. a rational fibration $\tilde{\varphi}=\varphi \rho: \widetilde{Y} \rightarrow B$ as in Sec. 2.1. Under our assumption, $(\widetilde{Y}, \widetilde{\mathcal{G}})=(X, \mathcal{F})$. Since $g \geq 1$, there is a Zariski decomposition $K_{\widetilde{\mathcal{G}}}=P+N$.

Let $F_{1}^{\prime}, \ldots, F_{l}^{\prime}$ be the \mathcal{G}-invariant fibers of \mathcal{G} and take $n_{i}=n_{F_{i}^{\prime}}(i=1, \ldots, l)$ where $n_{F_{i}^{\prime}}$ is defined as in Sec 2.1. We set $d=F F^{\prime}$.

4.1. Proof of Theorem 1.4.

Lemma 4.1. Any Riccati fibration is isotrivial. Furthermore, the rational fibration $\tilde{\varphi}$ coincides with the fibration given by $|m P|$ as in Corollary 2.8 whenever $g>1$.
Proof. It's enough to consider the case of $\operatorname{kod}(\widetilde{\mathcal{G}})=1$ by Lemma 2.7 and $\operatorname{kod}(\widetilde{\mathcal{G}}) \leq 1$.
Let $\varphi^{\prime}: \widetilde{Y} \rightarrow B$ be the fibration given by $|m P|$ and F^{\prime} be a general fiber of φ^{\prime}. Take a general fiber \widetilde{F} of $\tilde{\varphi}$. One has $K_{\widetilde{\mathcal{G}}} \widetilde{F}=0$ since $\widetilde{\mathcal{G}}$ is a Riccati foliation. Noting that both P and \widetilde{F} are nef, it implies that $P \widetilde{F}=N \widetilde{F}=0$. Hence $\widetilde{F} F^{\prime}=0$ for any fiber F^{\prime} of φ^{\prime} by Corollary 2.8. So $\tilde{\varphi}=\varphi^{\prime}$. It implies that $g>1$ by Corollary 2.8 again. Therefore f is isotrivial from Lemma 2.7

Let γ_{i} be the order of topology monodromy of $F_{i}(i=1, \ldots, s)$.
Lemma 4.2. Take a general fiber $F^{\prime}($ resp., F) of $\tilde{\varphi}($ resp., f). We have

$$
\begin{align*}
-\frac{2}{d} & =2 g(C)-2+\sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right), \tag{4.1}\\
\frac{2 g-2}{d} & =2 g(B)-2+\sum_{i=1}^{l}\left(1-\frac{1}{n_{i}}\right) . \tag{4.2}
\end{align*}
$$

In particular, the first equality implies that $C \cong \mathbb{P}^{1}$ and $\sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right)=2-\frac{2}{d}<2$.
Proof. If $g>1$, then (4.1) is from Lemma 4.1, Corollary 2.9 and $g\left(F^{\prime}\right)=0$. Now we investigate the case of $g=1$. Since f is isotrivial, one has $P=0$ by Lemma 2.7. So $N F^{\prime}=K_{\mathcal{F}} F^{\prime}=0$. Thus one can get (4.1) by a similar proof of Corollary 2.9.

From (2.3), $K_{\widetilde{G}} F=2 g-2$. Combining (2.2), Lemma 2.5 and $N F=0$, one gets

$$
K_{\widetilde{\mathcal{G}}} F=\left(2 g(B)-2+\sum_{i=1}^{l}\left(1-\frac{1}{n_{i}}\right)\right) F F^{\prime} .
$$

Thus (4.2) is obtained.
Proof of Theorem 1.4. Assume that f is a Riccati fibration. By Lemma 4.2, we have $\sum_{i=1}^{s}\left(1-\frac{1}{\gamma_{i}}\right)<2$. It implies that f occurs in one of the cases in Theorem 1.4 by a computation as in Lemma 2.5.

Conversely, for any isotrivial fibration $f: S \rightarrow C\left(\cong \mathbb{P}^{1}\right)$ of genus $g>1$ occurring in one of the cases in Theorem 1.4, Corollary 2.10 implies that it is a Riccati fibration.

From the proof of Lemma 4.2, we have
Corollary 4.3. Each principal components Γ_{i} of $F_{i}(i=1, \ldots, s)$ satisfies $\Gamma_{i} F^{\prime}=\frac{d}{\gamma_{i}}$. In particular, for a Riccati fibration of type A_{n}, both Γ_{i} 's are sections of $\tilde{\varphi}$. Conversely, if a principal component of a Riccati fibration is a section of the corresponding ruling map, then it is of type A_{n}.

Similarly, $\Theta_{F_{i}^{\prime}} F=\frac{d}{n_{i}}$ where $\Theta_{F_{i}^{\prime}}$ is the (-1)-curve as in (2.1). Therefore we have always $\gamma_{i} \mid d$ and $n_{i} \mid d$.
4.2. Algebraic Riccati Foliation with Kodaira Dimension Zero. In this section, we will consider the case of algebraic Riccati foliation with Kodaira Dimension Zero (i.e., $\operatorname{kod}(\widetilde{\mathcal{G}})=0)$. From Lemma 2.7 and Theorem 1.4, $f: X \rightarrow C\left(\cong \mathbb{P}^{1}\right)$ is an isotrivial elliptic fibration occurring in one of the cases in Theorem 1.4.

If $s=0, f$ is trivial, i.e., $f: X=E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. If $s=2$, then f occurs in one of the cases in Lemma 2.12.

In what follows, we assume that $s=3$. In this case, the rational fibration $\varphi: Y \rightarrow B$ adapted to \mathcal{G} gives s a rational ruled surface (namely, $B \cong \mathbb{P}^{1}$ and $Y=\mathbb{F}_{e}$) by Lemma 2.11. Therefore \mathcal{G} occurs in one of the cases in Lemma 2.6 (II):
(1) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(3,3,3)$;
(2) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(2,4,4)$;
(3) $l=3$ and $\left(n_{1}, n_{2}, n_{3}\right)=(2,3,6)$;
(4) $l=4$ and $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(2,2,2,2)$.

We exclude the case (2) firstly. Since $n_{1}=4$, the eigenvalues of the singularities on F_{1}^{\prime} are $\pm \frac{1}{4}$. So F_{1}^{\prime} gives two $\widetilde{\mathcal{G}}$-chains: a (-4)-curve and a Hirzebruch-Jung chain consisting of four (-2 -curves. It implies that f contains two singular fibers of type $I I I$ and $I I I^{*}$ respectively (cf. [BHPV04, Ch. V, Sec. 7]). Thus $\gamma_{1}=\gamma_{2}=4$, a contradiction to Lemma 4.2. So the case (2) doesn't occur.

Similarly, one can also exclude the case (3).
Lemma 4.4. In case (1), up to a proper coordinate, \mathcal{G} can be determined uniquely by a differential form

$$
\begin{equation*}
\omega=\left(3 y^{2}-2 x y-1\right) d x-6\left(x^{2}-1\right) d y \tag{4.3}
\end{equation*}
$$

on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
Proof. Let (x, y) be the coordinate of $Y=\mathbb{F}_{e}$ such that $y=\infty$ is a tautological section Γ_{∞} of φ with $\Gamma_{\infty}^{2}=-e$ and $x= \pm 1, \infty$ are all \mathcal{G}-invariant fibers. Furthermore, we assume that $(x, y)=(\infty, 0)$ is a singularity with eigenvalue $\frac{1}{3}$.

By our assumption and Corollary 4.3, Γ_{∞} is not \mathcal{G}-invariant. So $e \leq 1$ by Lemma 3.2. We will exclude the case for $e=1$. Suppose that $e=1$. By choosing a suitable coordinate, we can assume $(x, y)=(1,0)$ is another singularity with eigenvalue $\frac{1}{3}$. From Lemma 3.4 and our assumptions, one has

$$
\omega=\left(a y^{2}+4 x y+b(x-1)\right) d x-6\left(x^{2}-1\right) d y
$$

for some $a, b \in \mathbb{C}(a \neq 0)$. Since the eigenvalues of both singularities on the fiber $x=-1$ are $\pm \frac{1}{3}$, one gets that $b=0$. So $y=0$ defines a \mathcal{G}-invariant section, a contradiction. Thus we have $e=0$.

Without loss of generality, we can choose a suitable coordinate y on a general fibe rof φ such that $(x, y)=(\infty, \infty),(\infty, 0),(1,1)$ are singularities of \mathcal{G} with eigenvalues $-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ respectively. Thus one gets (4.3) by Lemma 3.4.

Now we investigate the case (4). In this case, $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=(2,2, n)$. More precisely, the singular fibers of f are type I_{0}^{*}, I_{0}^{*} and $n I_{0}$ respectively. For the surface $Y=\mathbb{F}_{e}$, one has $e \leq 2$ by Lemma 3.2. By choosing some proper flipping maps, we can always assume that $e=0$. Furthermore, we can assume that the \mathcal{G}-invariant fibers are $x=0,1, \lambda, \infty(\lambda \neq 0,1)$.

We state the following result which will be proved in Sec.5.3.
Lemma 4.5. In case (4), up to a suitable coordinate and an affine transform (1.5), \mathcal{F} can be determined by a differential form

$$
\omega=\frac{\psi^{\prime}}{\psi(\psi-1)}\left(y^{2}+n(\psi-1) y-\psi\right) d x-2 n d y
$$

where $\psi=\frac{x f^{2}}{(x-1)(x-\lambda) g^{2}}(f, g \in \mathbb{C}[x])$ satisfies

$$
x f^{2}-(x-1)(x-\lambda) g^{2}=h^{n}
$$

for some $h \in \mathbb{C}[x]$.
Proof of Theorem 1.8. It's from the above discussions, Lemma 4.4 and Lemma 4.5.

5. Riccati fibrations on a rational surface.

In this section, we investigate a Riccati fibration $f: X \rightarrow C$ on a rational ruled surface $\varphi_{0}: X \rightarrow B\left(=\mathbb{P}^{1}\right)$. We adopt all notations and assumptions in Sec. 4.

Let Γ_{∞} be a tautological section of the Hirzebruch surface $\varphi: Y\left(=\mathbb{F}_{e}\right) \rightarrow B\left(=\mathbb{P}^{1}\right)$ of degree e with $\Gamma_{\infty}^{2}=-e$ and F^{\prime} be a general fiber of $\tilde{\varphi}$. Take a general fiber F of f and $d=F F^{\prime}$.

Let x (resp., y) be the coordinate of $B=\mathbb{P}^{1}$ (resp., F^{\prime}). We assume that Γ_{∞} is defined by $y=\infty$ and Γ_{0} is a section defined by $y=0$. Each \mathcal{G}-invariant fiber $F_{i}^{\prime}(i=1, \ldots, l)$ is of type $\mathrm{I}_{\frac{m_{i}}{n_{i}}}\left(0<\frac{m_{i}}{n_{i}} \leq \frac{1}{2}\right.$) and is defined by $x=a_{i}$ (for $i<l$) or $x=\infty$ (for $i=l$) respectively.

Let $D_{i}=\rho\left(\Gamma_{i}\right)$ where Γ_{i} is the principal component of the singular fiber F_{i} of f with the order γ_{i} of periodic topology monodromy $(i=1, \ldots, s)$. Let $f_{i} \in \mathbb{C}[x, y]$ be the local equation of $D_{i}=\operatorname{div}\left(f_{i}\right)$ in $Y(i=1, \ldots, s)$.
5.1. Some lemmas. Note that $\rho\left(F_{i}\right)$ is a sum of D_{i} and some \mathcal{G}-invariant fibers of φ, that is, $\rho_{*} F_{i}=\operatorname{div}\left(u_{i} f_{i}^{\gamma_{i}}\right)$ for some $u_{i} \in \mathbb{C}[x]$. Since $f: X \rightarrow \mathbb{P}^{1}$ is a pencil of curves, f is determined by the family of the curves on Y.

$$
C_{t}: u_{1} f_{1}^{\gamma_{i}}-t u_{2} f_{2}^{\gamma_{2}}=0, \quad \forall t \in \mathbb{P}^{1}
$$

Without loss of generality, we can assume that $C_{1}=\rho_{*} F_{3}$ whenever $s=3$. Thus one gets the relation between f_{i} 's:

$$
\begin{equation*}
u_{1} f_{1}^{\gamma_{1}}-u_{2} f_{2}^{\gamma_{2}}=u_{3} f_{3}^{\gamma_{3}} \tag{5.1}
\end{equation*}
$$

Set $f_{i}=v_{i} h_{i}(i=1, \ldots, s)$ where $v_{i} \in \mathbb{C}[x]$ and $h_{i} \in K[y](K:=\mathbb{C}(x))$ with the leading coefficient 1 as a polynomial of y. Take $\psi:=\frac{u_{1} v_{1}^{\gamma_{1}}}{u_{2} v_{2}^{\gamma_{2}}}$. Thus the above relation can be rephrase as follows.

$$
\begin{equation*}
\psi h_{1}^{\gamma_{1}}-h_{2}^{\gamma_{2}}=(\psi-1) h_{3}^{\gamma_{3}}, \quad \psi \in K \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1} v_{1}^{\gamma_{1}}-u_{2} v_{2}^{\gamma_{2}}=u_{3} v_{3}^{\gamma_{3}} . \tag{5.3}
\end{equation*}
$$

Since Γ_{i} is irreducible, $h_{i} \in K[y]$ is irreducible. Moreover, by Corollary 4.3, one has $\operatorname{deg}_{y} h_{i}=\frac{d}{\gamma_{i}}$ and $\operatorname{gcd}\left(h_{i}, h_{j}\right)=1$ in $K[y](i \neq j)$.

It's easy to see that the differential form ω of \mathcal{G} is from differential form $d\left(\frac{\psi h_{1}^{\gamma_{1}}}{h_{2}^{\gamma_{2}}}\right)$ (or $d\left(\frac{(\psi-1) h_{3}^{\gamma_{3}}}{h_{2}^{\gamma_{2}}}\right)$, etc. $)$.

In what follows, we consider the case for $s=3$. We assume $2=\gamma_{1} \leq \gamma_{2} \leq \gamma_{3}$.
Lemma 5.1. There is $a u \in \mathbb{C}(x)$ such that

$$
\begin{align*}
\gamma_{1} \psi u h_{1}^{\gamma_{1}-1} & =\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y} \tag{5.4}\\
\gamma_{2} u h_{2}^{\gamma_{2}-1} & =\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{1}}{\partial y}-\frac{h_{1}}{\gamma_{1}} \frac{\partial h_{3}}{\partial y} \tag{5.5}\\
\gamma_{3}(\psi-1) u h_{3}^{\gamma_{3}-1} & =\frac{h_{1}}{\gamma_{1}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{1}}{\partial y} . \tag{5.6}
\end{align*}
$$

Proof. From (5.2), we have

$$
\psi \frac{h_{1}^{\gamma_{1}}}{h_{3}^{\gamma_{3}}}=\frac{h_{2}^{\gamma_{2}}}{h_{3}^{\gamma_{3}}}+\psi-1 .
$$

Taking $\frac{\partial}{\partial y}$ on both sides of the above equality, we get

$$
\psi \frac{h_{1}^{\gamma_{1}}}{h_{3}^{\gamma_{3}}}\left(\frac{\gamma_{1}}{h_{1}} \frac{\partial h_{1}}{\partial y}-\frac{\gamma_{3}}{h_{3}} \frac{\partial h_{3}}{\partial y}\right)=\frac{h_{2}^{\gamma_{2}}}{h_{3}^{\gamma_{3}}}\left(\frac{\gamma_{2}}{h_{2}} \frac{\partial h_{2}}{\partial y}-\frac{\gamma_{3}}{h_{3}} \frac{\partial h_{3}}{\partial y}\right),
$$

i.e.,

$$
\begin{equation*}
\gamma_{1} \psi h_{1}^{\gamma_{1}-1}\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{1}}{\partial y}-\frac{h_{1}}{\gamma_{1}} \frac{\partial h_{3}}{\partial y}\right)=\gamma_{2} h_{2}^{\gamma_{2}-1}\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y}\right) . \tag{5.7}
\end{equation*}
$$

Since $\operatorname{gcd}\left(h_{1}, h_{2}\right)=1$, (5.7) implies that

$$
h_{1}^{\gamma_{1}-1}\left|\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y}\right), \quad h_{2}^{\gamma_{2}-1}\right|\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{1}}{\partial y}-\frac{h_{1}}{\gamma_{1}} \frac{\partial h_{3}}{\partial y}\right)
$$

in $K[y]$.
Note that $\operatorname{deg}_{y} h_{1}^{\gamma_{1}-1}=d-\frac{d}{\gamma_{1}}$ and

$$
\operatorname{deg}_{y}\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y}\right) \leq \frac{d}{\gamma_{2}}+\frac{d}{\gamma_{3}}-2=d-\frac{d}{\gamma_{1}}
$$

by (4.1). Thus

$$
w_{1} h_{1}^{\gamma_{1}-1}=\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y}\right)
$$

for some $w_{1} \in \mathbb{C}(x)$. Similarly,

$$
w_{2} h_{2}^{\gamma_{2}-1}=\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{1}}{\partial y}-\frac{h_{1}}{\gamma_{1}} \frac{\partial h_{3}}{\partial y}\right)
$$

for some $w_{2} \in \mathbb{C}(x)$ satisfying $\gamma_{1} \psi w_{2}=\gamma_{2} w_{1}$ by (5.7). Take $u=\frac{w_{1}}{\gamma_{1} \psi}=\frac{w_{2}}{\gamma_{2}}$. we get (5.4) and (5.5). The last equality (5.6) can also be obtained similarly.

Lemma 5.2. There are $\eta, \xi \in K[y]$, such that

$$
\begin{align*}
\gamma_{3} \eta h_{2} & =\left(\frac{1}{\gamma_{3}}-\frac{1}{\gamma_{2}}-\frac{1}{2}\right) \frac{\partial h_{2}}{\partial y} \frac{\partial h_{3}}{\partial y}+\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial^{2} h_{2}}{\partial y^{2}}-\frac{h_{2}}{\gamma_{2}} \frac{\partial^{2} h_{3}}{\partial y^{2}}\right), \tag{5.8}\\
\gamma_{2} \xi h_{3} & =\left(\frac{1}{\gamma_{2}}-\frac{1}{\gamma_{3}}-\frac{1}{2}\right) \frac{\partial h_{2}}{\partial y} \frac{\partial h_{3}}{\partial y}-\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial^{2} h_{2}}{\partial y^{2}}-\frac{h_{2}}{\gamma_{2}} \frac{\partial^{2} h_{3}}{\partial y^{2}}\right), \tag{5.9}\\
\eta h_{3} & =2 \gamma_{2} \psi u^{2} h_{2}^{\gamma_{2}-2}-\frac{1}{2 \gamma_{2}}\left(\frac{\partial h_{3}}{\partial y}\right)^{2}, \tag{5.10}\\
\xi h_{2} & =2 \gamma_{3} \psi(\psi-1) u^{2} h_{3}^{\gamma_{3}-2}-\frac{1}{2 \gamma_{3}}\left(\frac{\partial h_{2}}{\partial y}\right)^{2} . \tag{5.11}
\end{align*}
$$

Proof. By $\gamma_{1}=2$ and (5.4), we have

$$
h_{1}=\frac{1}{2 \psi u} \cdot\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial h_{2}}{\partial y}-\frac{h_{2}}{\gamma_{2}} \frac{\partial h_{3}}{\partial y}\right) .
$$

Applying the above equality on (5.5), we obtain

$$
\begin{aligned}
& h_{2}\left(2 \gamma_{2} \psi u^{2} h_{2}^{\gamma_{2}-2}-\frac{1}{2 \gamma_{2}}\left(\frac{\partial h_{3}}{\partial y}\right)^{2}\right) \\
& \quad=\frac{h_{3}}{\gamma_{3}}\left(\left(\frac{1}{\gamma_{3}}-\frac{1}{\gamma_{2}}-\frac{1}{2}\right) \frac{\partial h_{2}}{\partial y} \frac{\partial h_{3}}{\partial y}+\left(\frac{h_{3}}{\gamma_{3}} \frac{\partial^{2} h_{2}}{\partial y^{2}}-\frac{h_{2}}{\gamma_{2}} \frac{\partial^{2} h_{3}}{\partial y^{2}}\right)\right) .
\end{aligned}
$$

Since $\operatorname{gcd}\left(h_{2}, h_{3}\right)=1$,

$$
h_{3} \left\lvert\,\left(2 \gamma_{2} \psi u^{2} h_{2}^{\gamma_{2}-2}-\frac{1}{2 \gamma_{2}}\left(\frac{\partial h_{3}}{\partial y}\right)^{2}\right)\right.
$$

in $K[x]$. Thus we can find some $\eta \in K[y]$ satisfying (5.10) and get (5.8) by the above equality.

Both (5.9) and (5.11) can be obtained similarly by combining (5.4) and (5.6).
Lemma 5.3. We have

$$
\eta=\frac{2}{2 \gamma_{3}-2 \gamma_{2}-\gamma_{2} \gamma_{3}} \cdot \frac{\partial^{2} h_{3}}{\partial y^{2}}, \quad \xi=\frac{2}{2 \gamma_{2}-2 \gamma_{3}-\gamma_{2} \gamma_{3}} \frac{\partial^{2} h_{2}}{\partial y^{2}} .
$$

Proof. Differentiating both sides of (5.10), one has

$$
\begin{equation*}
2 \gamma_{2}\left(\gamma_{2}-2\right) \psi u^{2} h_{2}^{\gamma_{2}-3} \frac{\partial h_{2}}{\partial y}=\eta \frac{\partial h_{3}}{\partial y}+h_{3} \frac{\partial \eta}{\partial y}+\frac{1}{\gamma_{2}}\left(\frac{\partial h_{3}}{\partial y}\right)\left(\frac{\partial^{2} h_{3}}{\partial y^{2}}\right) . \tag{5.12}
\end{equation*}
$$

Note that $\gamma_{2}=2,3$. If $\gamma_{2}=2$, then $d=2 \gamma_{3}$ by Theorem 1.4 and hence $\operatorname{deg} h_{3}=2$. In this case, (5.10) implies that

$$
4 \psi u^{2}=\eta h_{3}+\frac{1}{4}\left(\frac{\partial h_{3}}{\partial y}\right)^{2} \in K .
$$

Since deg $h_{3}=2$ and its leading coefficient is 1 , one gets $\eta=-1$.
In what follows, we assume $\gamma_{2}=3$. By (5.10), (5.12) and (5.9), in $K[y]$, we have
respectively. Note that $\operatorname{gcd}\left(h_{3}, \frac{\partial h_{3}}{\partial y}\right)=1$. One gets

$$
\begin{equation*}
\left(\frac{1}{\gamma_{3}}+\frac{1}{6}\right) \eta+\frac{1}{3 \gamma_{3}} \frac{\partial^{2} h_{3}}{\partial y^{2}} \equiv 0 \quad\left(\bmod h_{3}\right) \tag{5.13}
\end{equation*}
$$

from the above equalities.
By (5.10), one can see that

$$
\operatorname{deg} \eta \leq \max \left\{\operatorname{deg} h_{2}-\operatorname{deg} h_{3}, \operatorname{deg} h_{3}-2\right\}=\frac{d}{\gamma_{3}}-2=\operatorname{deg} \frac{\partial^{2} h_{3}}{\partial y^{2}} .
$$

hence (5.13) implies that

$$
\left(\frac{1}{\gamma_{3}}+\frac{1}{6}\right) \eta+\frac{1}{3 \gamma_{3}} \frac{\partial^{2} h_{3}}{\partial y^{2}}=0
$$

i.e., $\eta=-\frac{2}{\gamma_{3}+6} \frac{\partial^{2} h_{3}}{\partial y^{2}}$.

Similarly, we can get the other equality by combining (5.9) and (5.11).
Lemma 5.4. If $\gamma_{2}=3$, then we have

$$
\begin{align*}
& h_{1}=\frac{1}{216 \psi^{2} u^{3}}\left(\frac{18 h_{3}}{\gamma_{3}+6} \cdot \frac{\partial h_{3}}{\partial y} \cdot \frac{\partial^{2} h_{3}}{\partial y^{2}}-\frac{36 h_{3}^{2}}{\gamma_{3}\left(\gamma_{3}+6\right)} \cdot \frac{\partial^{3} h_{3}}{\partial y^{3}}-\left(\frac{\partial h_{3}}{\partial y}\right)^{3}\right), \tag{5.14}\\
& h_{2}=\frac{1}{36 \psi u^{2}}\left(\left(\frac{\partial h_{3}}{\partial y}\right)^{2}-\frac{12 h_{3}}{\gamma_{3}+6} \cdot \frac{\partial^{2} h_{3}}{\partial y^{2}}\right), \tag{5.15}\\
& 0=\frac{3 \gamma_{3}}{2\left(\gamma_{3}+6\right)}\left(\frac{\partial^{2} h_{3}}{\partial y^{2}}\right)^{2}-\frac{\partial h_{3}}{\partial y} \cdot \frac{\partial^{3} h_{3}}{\partial y^{3}}+\frac{h_{3}}{\gamma_{3}-2} \cdot \frac{\partial^{4} h_{3}}{\partial y^{4}} . \tag{5.16}
\end{align*}
$$

Proof. The equality (5.15) is from (5.10) and Lemma 5.3. Furthermore, it implies that

$$
\begin{aligned}
\frac{\partial h_{2}}{\partial y} & =\frac{1}{18 \psi u^{2}\left(\gamma_{3}+6\right)}\left(\gamma_{3} \frac{\partial h_{3}}{\partial y} \cdot \frac{\partial^{2} h_{3}}{\partial y^{2}}-6 h_{3} \cdot \frac{\partial^{3} h_{3}}{\partial y^{3}}\right), \\
\frac{\partial^{2} h_{2}}{\partial y^{2}} & =\frac{1}{18 \psi u^{2}\left(\gamma_{3}+6\right)}\left(\gamma_{3}\left(\frac{\partial^{2} h_{3}}{\partial y^{2}}\right)^{2}+\left(\gamma_{3}-6\right) \frac{\partial h_{3}}{\partial y} \cdot \frac{\partial^{3} h_{3}}{\partial y^{3}}-6 h_{3} \cdot \frac{\partial^{4} h_{3}}{\partial y^{4}}\right) .
\end{aligned}
$$

Applying the above equalities on (5.8), one gets (5.16).
(5.14) is from (5.15) and (5.4).

From Lemma 5.4, it's enough to solve the equation (5.16). Set $m=\frac{d}{r_{3}}$ and

$$
\begin{equation*}
h_{3}=\sum_{i=0}^{m}\binom{m}{k} a_{k} y^{m-k}, \quad a_{0}:=1, a_{k} \in K(k=2, \ldots, m) \tag{5.17}
\end{equation*}
$$

Since both leading coefficients of h_{1}, h_{2} are 1, (5.14) and (5.15) imply that

$$
a_{2}=a_{1}^{2}-\psi\left(\frac{6 u}{m}\right)^{2}, \quad a_{3}=a_{1}^{3}-3 a_{1} \psi\left(\frac{6 u}{m}\right)^{2}+2 \psi^{2}\left(\frac{6 u}{m}\right)^{3} .
$$

Without loss of generality, we can assume $a_{1}=0$ and $u=\frac{m}{6}$ by taking an affine transformation $y=\frac{6 u \bar{y}}{m}-a$. Thus $a_{2}=\psi$ and $a_{3}=-2 \psi^{2}$. By (5.16) and a straightforwards computation, we obtain these undetermined coefficients a_{k} 's. Finally, we have

$$
\begin{equation*}
h_{3}=\sum_{k=0}^{m}(-1)^{k-1}\binom{m}{k}(k-1) \psi^{\left[\frac{k+1}{2}\right]} y^{m-k}-\frac{1}{2}\left(\gamma_{3}-3\right)(\psi-1)(4 \psi)^{\left[\frac{\gamma_{3}}{2}\right]+1} \rho_{\gamma_{3}} \tag{5.18}
\end{equation*}
$$

where $\rho_{3}=\rho_{4}:=1$ and

$$
\rho_{5}:=\psi^{3}(1424-1600 \psi)+960 \psi^{3} y-2079 \psi^{2} y^{2}+2200 \psi^{2} y^{3}-990 \psi y^{4}+165 y^{6} .
$$

Furthermore, one can get h_{1}, h_{2} by (5.14), (5.15) and (5.18).
5.2. Riccati fibrations of type A_{n-1}. We assume that f is of type A_{n-1}. The case for A_{0} has been discussed in Corollary 3.3. In what follows, we assume $n \geq 2$. In this case, $\left(\gamma_{1}, \gamma_{2}, d\right)=(n, n, n)$ by Theorem 1.4.

By Corollary 4.3, both Γ_{1}, Γ_{2} are the sections of $\tilde{\varphi}$ and hence both D_{1}, D_{2} are the sections of φ.

From Corollary 2.4, either $e=0$, or $e>0$ and $\Gamma_{\infty}=D_{i}$ for some i. In the latter case, we can assume that $D_{1}=\Gamma_{\infty}$ and $D_{2}=\Gamma_{0}$ by choosing a suitable coordinate. From Lemma 3.4, the expression (1.2) of \mathcal{G} is as follows:

$$
\begin{equation*}
\omega=g_{1} y d x-d y, \quad g_{1}=\sum_{i=1}^{l-1} \frac{\lambda_{i}}{x-a_{i}} \tag{5.19}
\end{equation*}
$$

where $\lambda_{i}:= \pm \frac{m_{i}}{n_{i}}(i=1, \ldots, l-1)$.
Note that $n \lambda_{i}$ is an integer $(i=1, \ldots, l-1)$ by Corollary 4.3. We take

$$
\begin{equation*}
\psi=\prod_{i=1}^{l-1}\left(x-a_{i}\right)^{n \lambda_{i}} \in \mathbb{C}(x) \tag{5.20}
\end{equation*}
$$

Thus $g_{1}=\frac{\psi^{\prime}}{n \psi}$.
Now we consider the case for $e=0$. If $\Gamma_{\infty}^{\prime}=D_{1}$ or D_{2}, one can get an expression of ω as above. In what follows, we assume that $\Gamma_{\infty}^{\prime} \neq D_{1}, D_{2}$. Since D_{i} 's are disjoint sections (Corollary 2.4), one can assume that D_{1} (resp., D_{2}) is defined by $y=-1$ (resp., $y=0$) by choosing a suitable coordinate. Therefore, we obtain the expression (1.2) of \mathcal{G}

$$
\begin{equation*}
\omega=\frac{\psi^{\prime}}{n \psi}\left(y^{2}+y\right) d x-d y \tag{5.21}
\end{equation*}
$$

where ψ is as in (5.20).

Conversely, (5.19) (resp., (5.21)) gives a pencil defiend by $y^{n}=t \psi$ (resp., $\left.y^{n}=t \psi(y+1)^{n}\right)$ for $t \in \mathbb{C}$. So we get a Riccati fibration of A_{n-1}.

Remark 5.5. By taking $\psi=1$ in (5.19) or (5.21), one can also get Corollary 3.3.
From the above discussions, we have
Lemma 5.6. Up to an affine transformation (1.5), an algebraic Riccati foliation of type A_{n-1} has an expression as in (5.19) or (5.21). Conversely, a Riccati foliation with such expressions for any non-zero $\psi \in \mathbb{C}(x)$ is of type A_{n-1}.
5.3. Riccati foliations of type D_{n+2}. We consider a Riccati fibration of type $D_{n+2}(n \geq 2)$ in this section. In this case, $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, d\right)=(2,2, n, 2 n), \operatorname{deg} h_{1}=\operatorname{deg} h_{2}=n$ and $\operatorname{deg} h_{3}=$ 2.

Take $\alpha=\sqrt{\psi}$ and $\bar{K}=K(\alpha)$. In $\bar{K}[y]$, (5.2) implies

$$
\begin{equation*}
\left(\alpha h_{1}+h_{2}\right)\left(\alpha h_{1}-h_{2}\right)=\left(\alpha^{2}-1\right) h_{3}^{n} \tag{5.22}
\end{equation*}
$$

Since $\bar{K}[y]$ is a Gaussian integral domain and $\operatorname{gcd}\left(\alpha h_{1}+h_{2}, \alpha h_{1}-h_{2}\right)=1$ in $\bar{K}[y]$,

$$
\alpha h_{1}+h_{2}=(\alpha+1) \eta_{1}^{n}, \quad \alpha h_{1}-h_{2}=(\alpha-1) \eta_{2}^{n}
$$

where both η_{1}, η_{2} are monic polynomials in $K[y]$ satisfying $h_{3}=\eta_{1} \eta_{2}$. So

$$
\eta_{1}=y+a+b \alpha, \quad \eta_{2}=y+a-b \alpha
$$

for some $a, b \in K$. Note that $b \neq 0$ and $\alpha \notin K$ since h_{3} is irreducible in $K[y]$.
Therefore we have

$$
\left\{\begin{array}{l}
h_{1}=\frac{1}{2 \alpha}\left((\alpha+1)(y+a+b \alpha)^{n}+(\alpha-1)(y+a-b \alpha)^{n}\right), \tag{5.23}\\
h_{2}=\frac{1}{2}\left((\alpha+1)(y+a+b \alpha)^{n}-(\alpha-1)(y+a-b \alpha)^{n}\right), \\
h_{3}=(y+a)^{2}-b^{2} \psi .
\end{array}\right.
$$

By the above equalities, we can get the differential expression of the corresponding Riccati foliation as follows:

$$
\begin{equation*}
\omega=\left(-\frac{\psi^{\prime}}{2 n b \psi(\psi-1)}(y+a)^{2}+\left(\frac{b^{\prime}}{b}+\frac{\psi^{\prime}}{2 \psi}\right)(y+a)+\frac{b \psi^{\prime}}{2 n(\psi-1)}-a^{\prime}\right) d x-d y . \tag{5.24}
\end{equation*}
$$

Without loss of generality, one can assume that $a=0$ and $b=1$ by taking an affine transformation $y=b \bar{y}-a$.

Furthermore, we set $\bar{\psi}=\frac{1}{1-\psi}$. Thus ω has a form as in Theorem 1.9 (2), that is,

$$
\begin{equation*}
\omega=\left(\frac{\bar{\psi}^{\prime}}{2 n(\bar{\psi}-1)} y^{2}+\frac{\bar{\psi}^{\prime}}{2 \bar{\psi}(\bar{\psi}-1)} y-\frac{\bar{\psi}^{\prime}}{2 n \bar{\psi}}\right) d x-d y \tag{5.25}
\end{equation*}
$$

From the above discussions, we have
Lemma 5.7. Up to a proper affine transformation (1.5), an algebraic Riccati foliation of type D_{n+2} has an expression as in (5.25). Conversely, a Riccati foliation with such an expression for any non-constant $\bar{\psi} \in \mathbb{C}(x)$ is algebraic.

Remark 5.8. If $\sqrt{\psi}=\sqrt{1-1 / \bar{\psi}} \in \mathbb{C}(x)$, then h_{3} in (5.22) is reducible and hence (5.25) gives a Riccati foliation of A_{n-1}. The fact can also be found by taking an affine transformation $y=\sqrt{\psi}(2 \bar{y}+1)$ in (5.25). Then one can get an expression (5.21). A similar result can also be got when n is even and one of $\sqrt{\bar{\psi}}, \sqrt{\bar{\psi}-1}$ is in $\mathbb{C}(x)$.

Proof of Lemma 4.5. In this case, by choosing a suitable coordinate x in $B\left(\cong \mathbb{P}^{1}\right)$, we can take $u_{1}=x, u_{2}=(x-1)(x-\lambda), u_{3}=1$ and $\psi=\frac{u_{1} v_{1}^{2}}{u_{2} v_{2}^{2}}$ satisfying (5.3). Set $f=v_{1}, g=v_{2}$ and $h=v_{3}$. Thus one has (1.3).
5.4. Riccati fibration of E_{k}. Combing (5.18) and Lemma 5.4, one can obtain h_{1} and h_{2}. The differential expression ω is from $d\left(\psi h_{1}^{2} / h_{2}^{3}\right)$. By a straightforwards computation, we have

$$
\omega=\left(\frac{\psi^{\prime}}{d \psi(\psi-1)} y^{2}+\left(\frac{\psi^{\prime}}{2 \psi}+\frac{\psi^{\prime}}{6(\psi-1)}\right) y-\left(\frac{1}{6}+\frac{1}{d}\right) \cdot \frac{\psi^{\prime}}{\psi-1}\right) d x-d y
$$

Furthermore, by taking $y=-\psi \bar{y}$ and $\bar{\psi}=\frac{\psi}{\psi-1}, \omega$ has an expression as in Theorem 1.9 (2), i.e.,

$$
\begin{equation*}
\omega=\left(\frac{\bar{\psi}^{\prime}}{d(\bar{\psi}-1)} \bar{y}^{2}+\left(\frac{\bar{\psi}^{\prime}}{3(\bar{\psi}-1)}-\frac{\bar{\psi}^{\prime}}{2 \bar{\psi}}\right) \bar{y}-\left(\frac{1}{6}+\frac{1}{d}\right) \cdot \frac{\bar{\psi}^{\prime}}{\bar{\psi}}\right) d x-d \bar{y} . \tag{5.26}
\end{equation*}
$$

Lemma 5.9. Up to a proper affine transformation as in (1.5), an algebraic Riccati foliation of type E_{k} has an expression as in Theorem 1.9 (2), i.e., (5.26). Conversely, a Riccati foliation with such an expression for any non-constant $\bar{\psi} \in \mathbb{C}(x)$ is algebraic.
Remark 5.10. If $\gamma_{3}=3$ and $\sqrt[3]{\bar{\psi}-1} \in \mathbb{C}(x)$, then h_{1} is reducible and the Riccati foliation gives a fibration of type D_{4} or A_{1}. Similarly, if $\gamma_{3}=4$ and $\sqrt{\bar{\psi}-1} \in \mathbb{C}(x)$, then the Riccati fibration is of type E_{6}, D_{4} or A_{1}.
5.5. The proves of main results. We will prove Theorem 1.9 and Theorem 1.10 firstly. Proof of Theorem 1.9.
$(1) \Longleftrightarrow(2)$ It's from Lemma 5.6, Lemma 5.7 and Lemma 5.9.
(2) $\Longleftrightarrow(3)$ It's from Lemma 3.5.
$(4) \Longrightarrow(1)$ It's obvious from Miyaoka Theorem [Miy85].
$(2) \Longrightarrow(4)$ Let \mathcal{F}_{0} be a Riccati foliation w.r.t. $p r_{1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defined by

$$
\omega_{0}=\left(x y^{2}+\left(\left(2-\frac{d}{\gamma_{3}}\right) x+\left(d-\frac{d}{\gamma_{1}}\right)\right) y+\left(1-\frac{d}{\gamma_{3}}\right)(x-1)\right) d x-d \cdot(x-1) x d y
$$

From Lemma 2.5, $\operatorname{Kod}\left(\mathcal{F}_{0}\right)=-\infty$.
Without loss of generality, we assume the differential form \mathcal{F} is as in (2). It's easy to see that \mathcal{F} is a pulling-back of \mathcal{F}_{0} by the base change $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

Up to now, this proof is completed.
Proof of Theorem 1.10. (1) $\Longleftrightarrow(2) \Longrightarrow$ (3) It's from Corollary 4.3.
$(3) \Longrightarrow(4)$ By choosing a suitable coordinate, we can assume that $y=0$ is \mathcal{G}-invariant section. Thus ω can be written as in (5.19) by Lemma 3.4.
(4) \Longleftrightarrow (5) It's obvious.
$(5) \Longrightarrow(1)$ By Theorem 1.3(2), \mathcal{F}_{0} is algebraic. So is \mathcal{F}.
Proof of Corollary 1.13.
$(1) \Longrightarrow(2)$ It's from Corollary 2.4 and Corollary 4.3.
(2) \Longrightarrow (3) Let D_{1}, D_{2} be the disjoint \mathcal{F}-invariant sections. If $e>0$, then one of the sections, says D_{1}, is the tautological section (i.e., $D_{1}^{2}=-e$) defined by $y=\infty$. Hence D_{2} is defined by $y=f(x)$ for some $f \in \mathbb{C}[x]$ with $\operatorname{deg} f \leq e$. So $g_{0}=0$ and $g_{1} f+g_{2}=f^{\prime}$.

If $e=0$, then we can defined D_{i} 's by $y=a_{1}$ and $y=a_{2}\left(a_{1}, a_{2} \in \mathbb{C} \cup\{\infty\}, a_{1} \neq a_{2}\right)$ respectively. If $a_{1}=\infty$ (resp., $a_{2}=\infty$), then $g_{0}=0$ and $g_{2}=-a_{2} g_{1}$ (resp., $g_{2}=-a_{1} g_{1}$). If $a_{1}, a_{2} \in \mathbb{C}$, then $g_{0} y^{2}+g_{1} y+g_{2}=g_{0}\left(y-a_{1}\right)\left(y-a_{2}\right)$. Namely, $g_{1}=-\left(a_{1}+a_{2}\right) g_{0}$ and $g_{2}=a_{1} a_{2} g_{0}$. Set $c_{1}=-\left(a_{1}+a_{2}\right)$ and $c_{2}=a_{1} a_{2}$. Since $a_{1} \neq a_{2}, c_{1}^{2}-4 c_{2} \neq 0$.
(3) \Longrightarrow (1) By Corollary 2.4, we can always assume that both sections are defined by $y=0$ and $y=\infty$ respectively. Thus $\omega=g_{1} y d x-d y$. So it's algebraic from Theorem 1.10.

Proof of Corollary 1.16.
$(\Longrightarrow) \mathrm{By}(5.23)$, we have a horizontal irreducible \mathcal{F}-invariant curve defiend by $h_{3}=0$, i.e.,

$$
(y+a)^{2}-\mu=0
$$

where $\mu:=b^{2} \psi$ and $b, \psi \in \mathbb{C}(x) \backslash\{0\}$.

By (5.24), $g_{0}=-\frac{\psi^{\prime}}{2 n b \psi(\psi-1)}(\neq 0)$. So one has

$$
b g_{0}=-\frac{1}{2 n} \cdot \frac{\psi^{\prime}}{\psi(\psi-1)}=\frac{1}{2 n} \cdot \frac{b\left(b \mu^{\prime}-2 b^{\prime} \mu\right)}{\mu\left(b^{2}-\mu\right)}
$$

i.e.,

$$
n g_{0} b^{2}-\frac{\mu^{\prime}}{2 \mu} \cdot b-n g_{0} \mu=-b^{\prime}
$$

Thus $y=-b,-\frac{\mu}{b}$ are the solutions of the differential equation $\tilde{\omega}=0$ where

$$
\tilde{\omega}:=\left(n g_{0} y^{2}+\frac{\mu^{\prime}}{2 \mu} y-n g_{0} \mu\right) d x-d y
$$

Namely, the Riccati foliation $\widetilde{\mathcal{F}}$ defined by $\tilde{\omega}$ has two $\widetilde{\mathcal{F}}$-invariant sections. By Corollary 1.13 and Corollary 2.4, the standard form of $\widetilde{\mathcal{F}}$ has two disjoint invariant sections and hence $\widetilde{\mathcal{F}}$ is of type A_{n}.
(\Longleftarrow) Without loss of generality, we can assume that $a=0$. Since $y^{2}-\mu=0$ is \mathcal{F} invariant, one has $g_{1}=\frac{\mu^{\prime}}{2 \mu}$ and $g_{2}=-\mu g_{0}$. Let $y=y_{1}(x) \in \mathbb{C}(x)$ be a solution of $\tilde{\omega}=0$. Take $b=-y_{1}$ and $\psi=\frac{\mu}{b^{2}}$. From a straightforwards computation, one gets

$$
g_{0}=-\frac{\psi^{\prime}}{2 n b \psi(\psi-1)}, \quad g_{1}=\frac{b^{\prime}}{b}+\frac{\psi^{\prime}}{2 \psi}, \quad g_{2}=\frac{b \psi^{\prime}}{2 n(\psi-1)}
$$

Namely, ω has an expression as in (5.24). So \mathcal{F} is of type D_{n+2}.
Proof of Corollary 1.17. We assume that \mathcal{F} is not of type A_{n-1} or D_{n+2}. Suppose that \mathcal{F} be algebraic. From Theorem Theorem 1.9, Theorem 1.10, up to a proper flipping map, \mathcal{F} is from a pulling-back of a Riccati foliation with Kodaira dimension $-\infty$ (more precisely, foliations in Theorem 1.3(4)-(7)). So $\lambda_{p} \in\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}\right\}$, i.e., $n \leq 5$, a contradiction.

6. Some examples

Example 6.1. Let \mathcal{F} be a Riccati foliations with $\operatorname{Kod}(\mathcal{F})=-\infty$. Theorem 1.9 and Theorem 1.10 are also valid for \mathcal{F}. More precisely, we can find a special Riccati foliation \mathcal{F}_{0} with $\operatorname{Kod}\left(\mathcal{F}_{0}\right)=-\infty$ such that \mathcal{F} is a pulling-back of \mathcal{F}_{0} after a base change $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ and a flipping map. Let ω_{0} be the differential form of \mathcal{F}_{0}.

$$
\begin{gathered}
\left(A_{n-1}\right) \omega=\lambda y d x-x d y\left(\lambda=\frac{m}{n} \in \mathbb{Q}^{+}\right), \omega_{0}=y d x-n d y \text { and } \psi=x^{m} ; \\
\left(D_{n+2}\right) \omega=\left(x y^{2}+y-\lambda^{2}(x-1)\right) d x-2 x(x-1) d y\left(\lambda=\frac{m}{n} \in \mathbb{Q}^{+}\right) \\
\omega_{0}=\left(x y^{2}+n y-(x-1)\right) d x-2 n x(x-1) d y, \\
\psi=(1-x)^{m-2[m / 2]} \cdot\left(\sum_{k=0}^{[m / 2]}\binom{m}{2 k}(x-1)^{[m / 2]-k} x^{k}\right)^{2} ; \\
\left(E_{6}\right) \omega=\omega_{0}=\left(x y^{2}-2(x-3) y-3(x-1)\right) d x-12 x(x-1) d y \text { and } \psi=x ; \\
\left(E_{7}\right) \omega=\omega_{0}=\left(x y^{2}-4(x-3) y-5(x-1)\right) d x-24 x(x-1) d y \text { and } \psi=x ; \\
\left(E_{8}\right) \omega=\omega_{0}=\left(x y^{2}-10(x-3) y-11(x-1)\right) d x-60 x(x-1) d y \text { and } \psi=x ; \\
\left(E_{8}^{\prime}\right) \omega=\left(x y^{2}-10(x-3) y-119(x-1)\right) d x-60 x(x-1) d y, \omega_{0} \text { is as in }\left(E_{8}\right) \text { and } \\
\\
\psi=1+\frac{(x-1)\left(2916 x^{2}-3375 x-3125\right)^{3}}{(189 x-125)^{5}} .
\end{gathered}
$$

Example 6.2. Let \mathcal{F} be an algebraic Riccati foliation of type D_{n+2} w.r.t. $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ as in Theorem 1.8 (3).

$$
\begin{aligned}
& \left(D_{4}\right) \lambda=a^{2} \text { and } \psi=-\frac{x(a-1)^{2}}{(x-1)(x-\lambda)} ; \\
& \left(D_{5}\right) \lambda=\frac{(a-1)^{3}(a+1)}{2 a-1} \text { and }
\end{aligned}
$$

$$
\psi=-\frac{x}{(x-1)(x-\lambda)} \cdot \frac{\left(x-1-a^{3}\right)^{2}}{(2 a-1)(a+1)^{2}}
$$

$$
\begin{aligned}
\left(D_{6}\right) \lambda & =\left(\frac{2 a}{a^{2}-1}\right)^{4} \text { and } \\
\psi & =-\frac{x}{(x-1)(x-\lambda)} \cdot\left(\frac{\left(x-\frac{4\left(3 a^{2}+2 a+1\right)}{\left(a^{2}-2 a+3\right)(a+1)^{4}}\right)}{\left(x-\frac{4}{(a+1)^{4}}\right)} \cdot \frac{\left(a^{2}-2 a+3\right)\left(a^{2}+2 a-1\right)}{\left(a^{2}-1\right)^{2}}\right)^{2}
\end{aligned}
$$

where $a \in \mathbb{C}$ such that $\lambda \neq 0,1, \infty$.
Example 6.3. Consider the foliation (3.4) in Example 3.6. Assume that $\operatorname{Kod}(\mathcal{F}) \geq 0$. Let $\lambda_{i}=\frac{m_{i}}{n_{i}}\left(n_{i}>1\right.$ and $\left.\operatorname{gcd}\left(m_{i}, n_{i}\right)=1\right)$. We claim that \mathcal{F} is not algebraic whenever $n_{i} \geq 6$ for some i.

By Corollary $1.13, \mathcal{F}$ is not of type A_{n-1}. We claim that \mathcal{F} is not D_{n+1}. If not, from Corollary 1.16, one can find a horizontal irreducible \mathcal{F}-invariant curve Γ defined by $(y+$ $a)^{2}-\mu=0$. Thus $\left.\varphi\right|_{\Gamma}: \Gamma \rightarrow \mathbb{P}^{1}$ gives a double cover ramified exactly over two points in $\{0,1, \infty\}$. Hence there are two \mathcal{G}-invariant fibers of type $I_{\frac{1}{2}}$. Thus one gets $g=0$ from (4.2). Namely, $\operatorname{Kod}(\mathcal{F})=-\infty$, a contradiction.

Therefore \mathcal{F} is not algebraic from Corollary 1.17.

References

[AI02] T. Ashikaga, M. Ishizaka: Classification of degenerations of curves of genus three via MatsumotoMontesinos' theorem, Tohoku Math. J., Second Series, 54 (2002), 195-226.
[AK00] T. Ashikaga, K. Konno: Global and local properties of pencils of algebraic curves, Algebraic geometry, 2000, 1-49.
[BHPV04] W. Barth, K. Hulek, C. Peters, A. Van de ven: Compact complex surfaces (Second Edition), Springer Verlag, Berlin etc., 2004.
[Bru15] M. Brunella: Birational geometry of foliations, IMPA Monographs 1, Springer, Cham 2015.
[Bea81] A. Beauville: Le nombre minimum de fibres singulières d'une courbe stable sur \mathbb{P}^{1}, Séminaire sur les pinceaux de courbes de genre au moins deux (L. Szpiro, ed.), Astérisque 86 (1981), 97-108.
[CS82] C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann.of Math., 115 (3) (1982), 579-595.
[CN91] D. Cerveau, A. Lins Neto, Holomorphic foliations in $\mathbb{C P}(2)$ having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883-903.
[FM94] R. Friedman, J.W. Morgan: Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 27, Springer-Verlag,Berlin, 1994.
[GLT16] C. Gong, J. Lu, S.-L. Tan: On families of curves over \mathbb{P}^{1} with two singular fibers, Osaka J. Math. 53 (2016), 83-99.
[Har66] W. J. Harvey: Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 17(1) (1966), 86-97.
[Hir85] U. Schmickler Hirzebruch: Elliptische fächen über $\mathbb{P}_{1} \mathbb{C}$ mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung, Universität Münster, Münster, West Germany, 1985.
[HLT20] J. Hong, J. Lu, S.-L. Tan: On the Slope of Non-algebraic Holomorphic Foliations, Proc. of AMS, 2020, 148(11), 4817-4830.
[LN02] A. Lins-Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. 35 (2002), no. 2, 231-266.
[LT13] J. Lu, S.-L. Tan: Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc., 365 (2013), 3373-3396.
[MP86] R. Miranda, U. Persson: On extremal elliptic surfaces, Math. Z., 193 (1986), 537-558
[Miy85] Y. Miyaoka: Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin (1985), 245-268.
[Nie27] J. Nielsen: Untersuchungen zur topologie der geschlossenen zweiseitigen Flächen, Acta Math., 50 (1927), 189-358.
[Pai74] P. Painlevé: "Sur les intégrales algébriques des équations différentielles du premier ordre" and "Mémoire sur les équations différentielles du premier ordre", Oeuvres de Paul Painlevé; Tome II, Éditions du Centre National de la Recherche Scientifique, 15, quai Anatole-France, 75700, Paris 1974.
[Per02] J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217-226.
[Poi91] H. Poincaré: Sur l'integration algébrique des équations différentielles du premier ordre et du premier degré I and II, Rendiconti del Circolo Matematico di Palermo 5 (1897), 193-239.
[Ser92] F. Serrano: Fibred surfaces and moduli, Duke Math. J. 67 (1992), 407-421.
[Suw98] Indices of vector fields and residues of holomorphic singular foliations,Hermann, Paris, (1998).
[Tan10] S.-L. Tan: Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Viet., 35(1), (2010), 159-172.
[Xia90] G. Xiao: On the stable reduction of pencils of curves, Math. Z., 203 (1990), 379-389.
[Xia92] G. Xiao: The fibrations of algbraic surfaces, Shanghai Scientific \& Technical Publishers, 1992 (in Chinese).
[Zam97] A. G. Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), no. 2, 357-373.
[Zam00] A. G. Zamora, Sheaves associated to holomorphic first integrals, Ann. Inst. Fourier (Grenoble) $\mathbf{5 0}$ (2000), no. 3, 909-919.
[Zam06] A. G. Zamora, Unipotent reduction and the Poincaré Problem, Internat. J. Math. 17 (2006), no. 8, 949-962.

Address of Cheng Gong: Department of Mathematics, Soochow University, Shizi RD 1, Suzhou 215006, Jiangsu, P. R. of China

Email address: cgong@suda.edu.cn
Address of Jun Lu and Sheng-Li Tan: School of Mathematical Sciences and Shanghai Key Lab. of PMMP, East China Normal University, Dongchuan RD 500, Shanghai 200241, P. R. of China

Email address: jlu@math.ecnu.edu.cn , sltan@math.ecnu.edu.cn

[^0]: ${ }^{1}$ This work is supported by NSFC, Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

 22020 Mathematics Subject Classification. 14C21, 14D06, 14H10, 32S65, 37F75
 ${ }^{3}$ Key words and phrases. Riccati foliation, isotrivial fibration, singular fiber.

