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Abstract. In this paper, we will give some criteria on the algebraicity of a Riccati folia-
tion.

1. Introduction

A holomorphic foliation on a smooth projective algebraic surface is said to be algebraic
if it admits a rational first integral. In [Poi91], Poincaré studied the following problem
which can be rephrased in modern terminology.

Question 1.1. Is it possible to decided if a holomorphic foliation F on P2 (alternatively, a
rational ruled surface ) is algebraic?

Some research on holomorphic foliations is motivated by this problem (see [CN91],
[Per02], [LN02], [Zam97], [Zam00], [Zam06] etc.). Painlevé [Pai74] asked the following
question:

Question 1.2. Can we recognize the genus g of an algebraic foliation from its defining
differential equation?

Lins-Neto [LN02] constructed counter-examples to show that the genus is not an in-
variant of differential equations. Therefore, one cannot define the genus for non-algebraic
foliations.

In this paper we will answer the above questions in the case of Riccati foliations. Let
F be a foliation on an algebraic surface X with a regular ruling map φ : X → B. We say
F is a Riccati foliation with respect to φ if KF F = 0 for a general fiber F of φ, i.e., F is
transverse to F ([Bru15, Ch. 4]). Let x (resp., y) be the local coordinate of B (resp., F). A
Riccati foliation can always be written locally as

ω = (q0(x)y2 + q1(x)y + q2(x))dx − p(x)dy,(1.1)

where qi’s and p are holomorphic functions. For convenience, we usually rewrite ω as in
the following form:

ω = (g0(x)y2 + g1(x)y + g2(x))dx − dy(1.2)

where gi(x) := qi
p for i = 0, 1, 2.

Up to a birational map, an algebraic Riccati foliation gives a fibration of genus g, i.e., a
holomorphic map from a smooth algebraic surface to a smooth curve such that the general
fiber is a smooth curve of genus g. Such a fibration is said to be a Riccati fibration.

First of all, a Riccati foliation F with Kodaira dimension kod(F ) = −∞ is algebraic
by Miyaoka Theorem [Miy85] (also see [Bru15, Theorem 7.1]). More precisely, such a
Riccati fibration is a family of rational curves. We can classify all such Riccati foliations
as follows.
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Theorem 1.3. A Riccati foliation F has Kodaira dimension kod(F ) = −∞ if and only if
F has a standard form (see Sec. 2.1) on P1 ×P1 which occurs in one of the following cases
by choosing a suitable coordinate:

(1) ω = dy;
(2) ω = λydx − xdy (λ ∈ Q+ and λ ≤ 1

2 );
(3) ω = (xy2 + y − λ2(x − 1))dx − 2x(x − 1)dy (λ ∈ Q+ and λ ≤ 1

2 );
(4) ω = (xy2 − 2(x − 3)y − 3(x − 1))dx − 12x(x − 1)dy;
(5) ω = (xy2 − 4(x − 3)y − 5(x − 1))dx − 24x(x − 1)dy;
(6) ω = (xy2 − 10(x − 3)y − 11(x − 1))dx − 60x(x − 1)dy;
(7) ω = (xy2 − 10(x − 3)y − 119(x − 1))dx − 60x(x − 1)dy.

For an algebraic Riccati foliation with kod(F ) ≥ 0, the corresponding Riccati fibration
has a genus g > 0. For convenience, in what follows, we assume that such an fibration is
minimal normal-crossing, i.e., each singular fiber is normal-crossing and each (−1)-curve
in these fibers passes through at least 3 intersections. We can figure out the structure of the
Riccati fibration firstly.

Theorem 1.4. Let f : X → C be a minimal normal-crossing fibration of genus g > 0 with
singular fibers F1, . . . , Fs. If f is a Riccati fibration, then f is an isotrivial fibration over
C � P1 and occurs in one of the following cases:

(A0) s = 0 (i.e., f is trivial);
(An−1) s = 2 and (γ1, γ2, d) = (n, n, n) (n ≥ 2);
(Dn+2) s = 3 and (γ1, γ2, γ3, d) = (2, 2, n, 2n) (n ≥ 2);

(E6) s = 3 and (γ1, γ2, γ3, d) = (2, 3, 3, 12);
(E7) s = 3 and (γ1, γ2, γ3, d) = (2, 3, 4, 24);
(E8) s = 3 and (γ1, γ2, γ3, d) = (2, 3, 5, 60)

where γ1 ≤ · · · ≤ γs be the orders of periodic topology monodromies of Fi’s respectively

and d is an integer satisfying
s∑

i=1
(1 − 1/γi) = 2 − 2/d.

Conversely, each isotrivial fibration f : X → C(� P1) of genus g > 1 occurring in one
of the above cases is a Riccati fibration.

Remark 1.5. Theorem 1.4 can also be rephrased as follows: f is a Riccati fibration iff f
can become a trivial fibration after a base change π : P1 → C(� P1) of degree d uniformly
ramified over s critical points of f with ramification index γ1, . . . , γs respectively. It’s well-
known that such a uniformly ramified cover over P1 is given exactly by a finite subgroup of
Aut(P1) which also corresponds with one kind of A-D-E surface singularities (see [Xia92,
Theoreom A 3.6] for instance). An algebraic Riccati foliation is said to be of type An−1
(resp., Dn, Ek ) if the corresponding Riccati fibration is of type An−1 (resp., Dn, Ek ).

Remark 1.6. In what follows, we take γ1 = γ2 = γ3 = d = 1 (if s = 0) or γ3 = 1 (if s = 2)

for convenience. The equality
s∑

i=1
(1 − 1/γi) = 2 − 2/d still holds.

The genus of the fibration induced by an algebraic Riccati foliation can be determined
by the following formula (see Lemma 4.2).

Corollary 1.7. Let F be a standard form of an algebraic Riccati foliation w.r.t. a regular
ruling map φ : X → B and f : X → P1 be the fibration of genus g induced by F . Let
F1, · · · , Fl be the F -invariant fibers of φ and F′ be a general fiber of f . Assume that Fi is
of type I mi

ni
(see Sec. 2.1) where ni > 1 and gcd(mi, ni) = 1 for i = 1, · · · , l. We have

2g − 2
d
= 2g(B) − 2 +

l∑
i=1

(
1 −

1
ni

)
where d := FF′.
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From the above results, one can classify precisely all Riccati fibrations of g = 1 as well
as their Riccati foliations.

Theorem 1.8. A Riccati foliation F with kod(F ) = 0 is algebraic iff F is induced by an
isotrivial elliptic fibration f : X → C, up to a suitable coordinate, occurring in one of the
following cases:

(1) f is the second projection pr2 : X = E × P1 → P1 for some smooth elliptic curve
E and hence F is a Riccati foliation of type A0 w.r.t pr1 : X → E;

(2) f is an elliptic fibration over P1 with two singular fibers of nI0 (see Lemma 2.12)
and hence F is a suspension of the corresponding monodromy ρ : π1(Alb(X)) →
Aut(P1) w.r.t. the Albanese morphism Alb : X → E where E is a smooth elliptic
curve (see [Bru15, Ch. 7, Proposition 6]);

(3) f is one of the following families from the Riccati foliation F w.r.t. the projection
pr1 : X = P1 × P1 → P1.

Type Riccati foliations Families Singular fibers
A1 (3x2 + 1)ydx − 2(x3 + x + c)dy y2 = t(x3 + x + c) I∗0, I

∗
0

3x2ydx − 2(x3 + 1)dy y2 = t(x3 + 1)
A2 (2x − 1)ydx − 3x(x − 1)dy y3 = tx(x − 1) IV, IV∗

A3 (2x − 1)ydx − 4x(x − 1)dy y4 = tx(x − 1) III, III∗

A5 (3x − 2)ydx − 6x(x − 1)dy y6 = tx2(x − 1) II, II∗

E6 (3y2 − 2xy − 1)dx − 6(x2 − 1)dy z3 = t(x2 − 1) IV, IV∗, 2I0

Dn+2
ψ′

ψ(ψ−1) (y2 + n(ψ − 1)y − ψ)dx − 2ndy
(

y+
√
ψ

y−
√
ψ

)n
= t

( √
ψ+1
√
ψ−1

)
I∗0, I

∗
0, nI0

where c ∈ C satisfies 4 + 27c3 , 0,

z :=
(4x2 − 3)y4 − 4xy3 + 6y2 − 4xy + 1

3y4 − 8xy3 + 6y2 − 1

and ψ = x f 2

(x−1)(x−λ)g2 ( f , g ∈ C[x] ) satisfies

x f 2 − (x − 1)(x − λ)g2 = hn(1.3)

for some λ ∈ C \ {0, 1} and h ∈ C[x] (see Example 6.2).

In this paper, we consider the case that F is a Riccati foliation with respect to a Hirze-
bruch surface φ : Fe → P

1 of degree e. In this case, gi’s in (1.2) are rational functions in
C[x] ( see Lemma 3.4). For convenience, the tautological section Γ∞ of φ with Γ2

∞ = −e is
defined by y = ∞ in what follows.

One can define the discriminant of ω as follows:

∆(ω) =
1
2

(
g1 +

g′0
g0

)′
−

1
4

(
g1 +

g′0
g0

)2

+ g0g2.(1.4)

whenever g0 , 0. ∆(ω) is an invariant of F under any affine transformation

y = a(x)ȳ + b(x)(1.5)

where a, b ∈ C(x) and a , 0 (Lemma 3.5).
Now our main results can be stated as follows.

Theorem 1.9. Assume that g0 , 0. The following conditions are equivalent:
(1) F is algebraic;
(2) by choosing a proper affine transformation (1.5), gi’s in (1.2) can be taken as

g0 =
1
d
·

ψ′

(ψ − 1)
, g2 =

1
γ2
·

ψ′

(ψ − 1)
−

(
1 −

1
γ1

)
ψ′

ψ
, g2 =

(
1
d
−

1
γ3

)
ψ′

ψ

where ψ ∈ C(x), γi’s and d are as in Theorem 1.4 and Remark 1.6;
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(3) there is a rational function ψ ∈ C(x) satisfying

∆(ω) =
1
2

(
ψ′′

ψ′

)′
−

1
4

(
ψ′′

ψ′

)2

+
1
4

1 − 1
γ2

1

 (ψ′
ψ

)2

+
1
4

1 − 1
γ2

2

 ( ψ′

ψ − 1

)2

+
1
4

 1
γ2

1

+
1
γ2

2

−
1
γ2

3

− 1
 (ψ′
ψ

) (
ψ′

ψ − 1

)
;

(4) there is a Riccati foliation F0 with kod(F0) = −∞ w.r.t. a rational ruled surface
φ0 : X0 → P

1 such that F is the pulling-back foliation of F0 after a base change
ψ : P1 → P1 and a birational map σ : X d X1 as in the following commutative
diagram,

(F , X) σ //

φ

%%

(ψ∗F0, X1)

φ1

��

// (F0, X0)

φ0

��
P1 ψ // P1

where φ : X → P1 (resp., φ1 : X1 → P
1) is the ruling map adapted to F (resp.,

ψ∗F0).

Theorem 1.10. Assume that g0 = 0. The following conditions are equivalent:

(1) F is algebraic;
(2) F is of type An−1 (n ≥ 1);
(3) there is an F -invariant section Γ of φ except the tautological section y = ∞;
(4) by choosing a proper affine transformation (1.5), we can take

g1 =
ψ′

nψ
, g2 = 0 (n ≥ 1)

for some ψ ∈ C(x);
(5) F is the pulling-back foliation of F0 defined by ω0 = ydx − nxdx after a base

change and a birational map as in the commutative diagram in Theorem 1.9 (4).

Remark 1.11. g0 = 0 iff the tautological section Γ∞ is G-invariant (see Lemma 3.4).

Remark 1.12. Theorem 1.9 and Theorem 1.10 also hold for the Riccati foliations with Ko-
daira dimension −∞. So we can also classify them according to ADE types (see Example
6.1).

Based on the above theorems, we can get some criteria for the algebraicity or transcen-
dency of a Riccati foliation F w.r.t. a rational fibration. For convenience, in what follows,
we assume F is a standard form w.r.t. φ : X(= Fe)→ B(= P1) and each singularity of F is
a non-degenerated one with a rational eigenvalue (see Sec. 2.1) .

Corollary 1.13. Under our assumptions, the following conditions are equivalent:

(1) F is an algebraic foliation of type An−1;
(2) F has two disjoint F -invariant sections of φ.
(3) F occurs in one of the following cases:

(i) g0 = 0 and g1 f + g2 = f ′ for some f (x) ∈ C[x] with deg f ≤ e;
(ii) g0 , 0, e = 0, g1 = c1g0 and g2 = c2g0 for some c1, c2 ∈ C satisfying

c2
1 − 4c2 , 0.

Theorem 1.4 and Corollary 1.13 provide a new viewpoint for a fibration f : X → P1

with two singular fibers.

Corollary 1.14. A fibration f : X → P1 with two singular fibers is a Riccati fibration of
type An−1. Furthermore, if X is a rational surface, then f can be obtained by a pencil as
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follows:

yn = t
ℓ∏

i=1

(x − ai)mi , ∀t ∈ P1

where n and mi’s are positive integers.

Remark 1.15. It is well-known that if f : S → P1 is non-trivial (resp. non-isotrivial),
then s ≥ 2 (resp. 3, see [Bea81]). For a fibration over P1 with two singular fibers, each
singular fiber is dual to each other and hence they have the same order of periodic topology
monodromy (see [GLT16, Theorem 1.1]). Furthermore, the authors in [GLT16] classify all
such fibrations of genus 2 .

Corollary 1.16. Under our assumptions, F is an algebraic foliation of type Dn+2 iff it
satisfies the following conditions:

(1) there is a horizontal irreducible F -invariant curve Γ defined by

(y + a)2 − µ = 0, for some a, µ ∈ C(x);

(2) g0 , 0 and ω̃ :=
(
ng0y2 +

µ′

2µy − ng0µ
)

dx− dy gives an algebraic Riccati foliation
of type An−1.

Corollary 1.17. If there is a singularity p of F with eigenvalue λp =
m
n (n > 1 and

gcd(m, n) = 1) satisfying n ≥ 6, then F occurs in one of the following cases:
(1) F is of type A or D;
(2) F is not an algebraic Riccati foliation.

2. Preliminaries

2.1. Riccati foliations. Let (X,F ) be a Riccati foliation w.r.t. a minimal rational fibration
φ0 : X → B. A fiber of φ0 is F -invariant if and only if it contains the singularities of F .
Note that KF ∼ rF, where F is a fiber of φ0. We call r the degree of F , and denote it by
degF = r.

By choosing proper flipping maps, one can get a standard form (Y,G) of (X,F ) where
Y admits a minimal rational fibration φ : Y → B (see [Bru15, Ch. 4, Prop. 4.2]) and each
G-invariant fiber F is of the following form:

(Ia) F admits two singular points with nonzero eigenvalues ±a along F, where 0 ≤
Re a ≤ 1

2 .
(II) F admits a saddle-node of multiplicity two, whose weak separatrix is contained in

F.
(III) F admits two saddle-nodes of the same multiplicity, whose strong separatrices are

contained in F.
(IV) F admits only one nilpotent singularity.

and that its reduced standard form ρ : (Ỹ , G̃)→ (Y,G) is relatively minimal.
An algebraic Riccati foliation has at most singularities of type Ia (a ∈ Q+ and a ≤ 1

2 ). In
this paper, our main goal is to answer Poincare problem on the algebraicity of the Riccati
foliation. So we impose that following condition on a Riccati foliation to simplify our
discussion in what follows.

Assumption. All G-invariant fibers of G are type Ia (a ∈ Q+ and a ≤ 1
2 ).

In this case, ρ restricted on a fiber F is exactly a resolution of the singularity with
positive eigenvalue in F.

For a given G-invariant fiber F of type Ia (a = m
n , (m, n) = 1) , we denote by nF = n. We

have the following facts for such a Riccati foliation (see [HLT20]). The total transform of
F under ρ is

(2.1) ρ∗F = nF(ΘF + NF + N′F),
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where ΘF is a (−1) curve, NF and N′F are Q+-divisors. There is a Zariski decomposition

(2.2) K
G̃
= ρ∗KG −

∑
F

ΘF ∼
(

degG −
∑

F

1
nF

)
ρ∗F0 +

∑
F

(NF + N′F)

whenever degG ≥
∑
F

1
nF

, where F runs over all G-invariant fibers and F0 is a general fiber

of φ.

Remark 2.1. From (2.2), the Kodaira dimension Kod(G̃) ≤ 1. Furthermore, for any rel-
atively minimal Riccati foliation F , its Kodaira dimension Kod(F ) is consistent with the
numerical Kodaira dimension ν(F ) (cf. [Bru15, Ch.9, Sec. 5]). So Kod(F ) = −∞ iff KF
is not pseudo-effective.

Remark 2.2. The support of NF (resp., N′F) in (2.1) is a G̃-chains, i,e., a Hirzebruch-Jung
string C = C1 + · · · +Cr consisting of G̃-curves Ci’s satisfying that

(1) all singularities of G̃ on C are reduced and non-degenerated;
(2) there is only one singularity of G̃, says pr(∈ Cr), on C − {p1, . . . , pr−1} where

pi = Ci ∩Ci+1 (i = 1, . . . , r − 1).

In particular, there is at most one G̃-curve meeting transversely with C.

One can write NF =
r∑

i=1

µi
nF

Ci where 1 = µr < µr−1 < · · · < µ1 < nF . NF satisfies that

NFC1 = −1 and NCi = 0 for else i. All µi’s can be determined uniquely by these equalities.
More details can be found in [Bru15, Ch.8, Sec.2].

The following Lemmas are useful.

Lemma 2.3. Let Γ be a section of φ̃ = φρ : Ỹ → B. Then ΘFΓ = 0. Moreover, Γ meets
transversely with one of NF ,N′F at some singularity and disjoints from another.

In particular, there are at most two G̃-invariant sections of φ̃ whenever there is a G-
invariant F.

Proof. If ΘFΓ > 0, then (2.1) implies that ρ∗F · Γ ≥ nF > 1, a contradiction. So ΘFΓ = 0.
Thus one has ΓNF > 0 or ΓN′F > 0.

Without loss of generality, we assume ΓNF > 0. Note that nF NF and nF N′F are Z-divisor
(Remark 2.2). Therefore we have nF NFΓ = 1 and N′FΓ = 0 from ρ∗F · Γ = 1. Namely, Γ
meets transversely with an irreducible component of NF at some singularity and disjoints
from N′F .

The latter part is from Remark 2.2. □

Corollary 2.4. Let D1,D2 are the G-invariant sections of φ : Y → B. Then D1,D2 are
disjoint. In particular, if φ : Y(= Fe) → B(= P1) is a Hirzebruch surface of degree e > 0,
then one of Di’s is a tautological section (i.e., a section with self-intersection number (−e)).

Proof. Suppose that D1,D2 have an intersection p. Let F be the fiber passing through p.
Since D1,D2 and F are G-invariant, p has an eigenvalue λp > 0.

Let q be another singularity in F′ with eigenvalue λq < 0. Since D1F′ = D2F′ = 1, q is
a reduced non-degenerated singularity outside of D1,D2.

Let Γi be the inverse image of Di under ρ : Ỹ → Y (i = 1, 2). From Lemma 2.3, we
can assume that Γ1 (resp., Γ2) meets transversely with NF (resp., N′F) at some singularity
p̃1 (resp., p̃2) and disjoints from N′F (resp., NF).

Note that only one of p̃i’s is exactly the inverse image of q. Thus only one of Di’s passes
through q, a contradiction.

The latter part is from the well-known facts of a rational ruled surface. □

Let F1, . . . , Fl be the G-invariant fibers of φ with n1 ≤ · · · ≤ nl respectively where
ni := nFi (i = 1, . . . , l).
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Lemma 2.5. We have degG = 2g(B) − 2 + l. Furthermore, Kod(G̃) = −∞ iff B � P1

and
∑

1≤i≤l

(
1 − 1

ni

)
< 2. In this case, G is algebraic and ni’s satisfy one of the following

conditions:
(1) l ≤ 2;
(2) l = 3, n1 = n2 = 2;
(3) l = 3, n1 = 2, n2 = 3, n3 ≤ 5.

Proof. Let m(G) be the sum of the multiplicities of the singularities of G. From [Bru15,
Proposition 2.1], one has

m(G) = K2
G − KGKY + c2(Y) = 2 degG + 4 − 4g(B).

Under our assumption, we have also m(G) = 2l. Thus

degG = 2g(B) − 2 + l.

From (2.2), K
G̃

is not pseudo-effective iff degG <
∑

1≤i≤l

1
ni

, that is,

2g(B) − 2 +
∑
1≤i≤l

(
1 −

1
ni

)
< 0.

The above inequality holds iff g(B) = 0 and
∑

1≤i≤l

(
1 − 1

ni

)
< 2. In this case, it’s algebraic

from Miyaoka Theorem [Miy85].
The latter consequence is from a straightforwards computation. □

Similarly, one can get the following result.

Lemma 2.6. The Kodaira dimension kod(G̃) = 0 iff either
(I) B is a smooth elliptic curve and G is a suspension of a representation µ : π1(B)→

Aut(P1) (see [Bru15, Proposition 6.6]) or
(II) B � P1 and one of the following cases occurs:

(1) l = 3 and (n1, n2, n3) = (3, 3, 3);
(2) l = 3 and (n1, n2, n3) = (2, 4, 4);
(3) l = 3 and (n1, n2, n3) = (2, 3, 6);
(4) l = 4 and (n1, n2, n3, n4) = (2, 2, 2, 2).

2.2. Foliations induced by fibrations. Let f : X → C be a minimal normal-crossing
fibration of genus g ≥ 1 with singular fibers F1, . . . , Fs. From [Bru15, p.21, p.62], f gives
a relative minimal foliation F with a canonical divisor

KF = KX/C −

s∑
i=1

(
Fi − Fi,red

)
(2.3)

where Fi,red is the reduce part of Fi. Since g ≥ 1, KF is pseudoeffective (see [Bru15,
Theorem 7.1]). KF gives a Zariski decomposition KF = P + N where N consists of some
Hirzebruch-Jung branches lying the fibers of f ([Ser92, Theorem 3.4]).

The fibration f is said to be isotrivial if all smooth fibers are isomorphic to a fixed
smooth curve. By [Ser92] or [Bru15, § 9.2], one has

Lemma 2.7. Let f ,F be as above and kod(F ) be the Kodaira dimension.
(1) kod(F ) = 0 iff f is an isotrivial elliptic fibration;
(2) kod(F ) = 1 iff f is either non-isotrivial (g = 1) or isotrivial (g > 1).
(3) kod(F ) = 2 iff f is a non-isotrivial fibration of genus g > 1.

Corollary 2.8. If kod(F ) = 1, then |mP| (for m ≫ 0) as a base point free linear system
gives a fibration φ : X → B with P ∼ γF′ (γ ∈ Q+) for a general fiber F′ of φ.

Furthermore, f coincides with φ if and only if g = 1.
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Proof. The first part of this corollary is trivial.
From [Ser92, Theorem 3.4], N consists of Hirzebruch-Jung branches in all singular

fibers of f . So NF = 0 for a general fiber F of f . By (2.3), one gets

PF = KF F = 2g − 2.

If g > 1, then PF > 0. So F is a horizontal curve in the fibration φ : X → B. If g = 1,
then PF = 0 implies that F′F = 0, i.e., φ = f . □

For an isotrivial fibration f , each singular fiber F can be written as follows

F = γ

Γ + b∑
i=1

Θi

(2.4)

where Θi’s are disjoint Hirzebruch-Jung branches, Γ is a smooth curve of genus g′ meeting
transversely with each Θi at one point, γ (> 1) is the order of the topology monodromy of
the fiber germ ( f , F) (see [GLT16, p. 88]). The component Γ is said to be principal (see
[Xia90, p. 383]).

Let F1, . . . , Fs be the singular fibers of f with principal components Γ1, . . . ,Γs and the
orders of topology monodromy γ1, · · · γs respectively. Set d = FF′.

Corollary 2.9. Under the notations and assumptions in Corollary 2.8, one has

2g(F′) − 2
d

= 2g(C) − 2 +
s∑

i=1

(
1 −

1
γi

)
whenever g > 1.

Proof. From Corollary 2.8, P ∼ γF′ (γ ∈ Q+) and hence PF′ = 0. Since PN = 0, one has
F′N = 0. So F′KF = PF′ + NF′ = 0.

By (2.4), the support of Fi − γiΓi consists of some Hirzebruch-Jung branches of Fi.
Since all Hirzebruch-Jung branches lie in N and NF′ = 0, one gets (Fi − γiΓi)F′ = 0, i.e.,
FiF′ = γiΓiF′. Similarly, one has also Fi,redF′ = ΓiF′.

Thus we obtain
s∑

i=1

(
Fi − Fi,red

)
F′ = d

s∑
i=1

(
1 −

1
γi

)
.(2.5)

Since KXF′ = 2g(F′) − 2, one has

KX/C F′ = 2g(F′) − 2 − (2g(C) − 2)FF′.(2.6)

Combining (2.3), (2.5), (2.6) and KF F′ = 0, one gets (4.1). □

Corollary 2.10. The isotrivial fibration f : X → P1 of genus g > 1 satisfying
s∑

i=1

(
1 − 1

γi

)
<

2 (i.e., the conditions in Lemma 2.5) is a Riccati fibration.

Proof. By Corollary 2.9, F′ � P1, i.e., φ : X → B in Corollary 2.8 is a ruled surface. So
KF F′ = 0, namely, F is a Riccati foliation. □

For an elliptic fibration on a birationally ruled surface, we have the following well-
known result (see [Xia92, Theorem 3.2.4] or [FM94, Proposition 3.23]).

Lemma 2.11. Let f : X → C be an elliptic fibration with kod(X) = −∞ and F1, . . . , Fk be
the multiple fibers with the multiplicities m1 ≤ · · · ≤ mk respectively. Then C � P1 and one
of the following cases holds:

(1) χ(OX) = 0 (i.e., all singular fibers of f are multiple fibers), k = 0 or k = 2 and
m1 = m2. In this case, X is a minimal elliptic ruled surface.

(2) χ(OX) = 1, k ≤ 1. In this case, X is a rational surface. In particular, if k = 1 and
f is relatively minimal, then F1 ≡linear −m1KX .



ON THE POINCARE PROBLEM FOR RICCATI FOLIATIONS 9

A fibration f : X → P1 with 2 singular fibers is isotrivial from [Bea81] (also see
[GLT16]). In particular, such an elliptic fibration can be classified as follows (see [Tan10,
Theorem 3.2], [Hir85] or [MP86]).

Lemma 2.12. Let f : X → P1 be an elliptic fibration with 2 singular fibers. Then f is
isomorphic to one of the following families.

(I) X = (E × P1)/Zn where E is an elliptic curve and the n-cyclic group Zn = {σ
k}

acts on E × P1 by σk(p, [x, y]) = (p + kδ, [x, ξky]);
(I∗) y2 = λ(x3 + x + c) ( 4 + 27c2 , 0) or y2 = λ(x3 + 1);
(II) y2 = x3 + λ;

(III) y2 = x3 + λx;
(IV) y3 = x3 + λx.

The types of the singular fibers are respectively (nI0, nI0), (I∗0 , I
∗
0), (II, II∗), (III, III∗),

(IV, IV∗).

Remark 2.13. In case (I) of Lemma 2.12 , X is a minimal elliptic ruled surface by Lemma
2.11. So the foliation F induced by f is a Riccati foliation w.r.t. the ruling map. It has
no singularity and is a non-trivial holomorphic vector field with kod(F ) = 0. By [Bru15,
Theorem 6.6], F is a suspension of a representation ρ : π1(Alb(X))→ Aut(P1).

3. Riccati foliations on a rational surface

All notations and assumptions in Sec. 2.1 are adopted. In this section, we consider the
case that X is a rational surface, i.e., φ : Y(= Fe) → B(= P1) is a Hirzebruch surface of
degree e. In this case, degG = l − 2 by Lemma 2.5 .

Let Γ∞ be a tautological section with Γ2
∞ = −e and F be a general fiber of φ. Let x

(resp., y) be the coordinate of B (resp., F). We assume that Γ∞ is defined by y = ∞. Let
F1, . . . , Fl be theG-invariant fiber of φ. Without loss of generality, we assume Fl = φ

−1(∞)
whenever l > 0.

Remark 3.1. The birational map σ : (X,F ) d (Y,G) can be realized as a Möbius trans-
formation

y =
aȳ + b
cȳ + d

, a, b, c, d ∈ C(x), ad − bc , 0,

where ȳ is the coordinate of a general fiber of φ0 : X → B. Moreover, it can be decomposed
into more simple transformations: y = (x− r)±1 · ȳ (i.e., flipping map), y = sȳ+ r and y = 1

ȳ
(r, s ∈ C, s , 0).

3.1. Discriminant of a Riccati foliation.

Lemma 3.2. Under our assumptions, we have
(1) if Γ∞ is not G-invariant, then l ≥ 2 + e and the equality holds iff Γ∞ transverses to
G;

(2) if Γ∞ is G-invariant, then l ≥ 2e and the equality holds iff either l = e = 0 or each
singularity pi = Γi ∩ Fi has an eigenvalue − 1

2 (i = 1, . . . , l).
Moreover, we have always l , 1.

Proof. (1) By Lemma 2.5, KGΓ∞ = degG = l − 2. If Γ∞ is not G-invariant, then

KGΓ∞ = tang(G,Γ∞) + e ≥ e,(3.1)

i.e., l ≥ 2 + e ≥ 2, and the first equality holds iff Γ∞ transverse to G from [Bru15, Proposi-
tion 2.2].

(2) Assume that l > 0. If Γ∞ is G-invariant, then

−e =
∑
1≤i≤l

mi

ni
(3.2)
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where mi
ni

is the eigenvalue of the singularity pi = Fi∩Γ∞ (i = 1, . . . , l) from Camacho-Sad
formula ( [CS82, Suw98]). Note that |mi

ni
| ≤ 1

2 . Thus e ≤ l
2 and the equality holds iff each

mi
ni
= − 1

2 . If l = 1, e = −m1
n1

is not an integer, a contradiction. So l , 1.
Similarly, in case of l = 0, the Camacho-Sad formula implies e = 0. □

Corollary 3.3. If l = 0, then G is defined by ω = dy w.r.t. the first projection

φ : P1 × P1 → P1, (x, y)→ x.

Proof. From Lemma 3.2, e = 0 and Γ∞ is G-invariant. Since l = 0, G is algebraic (Lemma
2.5). In this case, the Riccati fibration f : Y → C induced by G is smooth.

For any irreducible G-invariant component Γ(, Γ∞), one can claim that Γ∞Γ = 0. If
not, their intersections give at least one singularity of G and hence there is a G-invariant
fiber of φ passing through it, a contradiction. So Γ is defined by y = c for some c ∈ C.

Therefore f is exactly the second projection

f : P1 × P1 → P1, (x, y)→ y.

Namely, G can be defined by ω = dy. □

In what follows, we assume that l ≥ 2. From Lemma 3.2, we have always l ≥ e + 1.

Lemma 3.4. Each Riccati foliation F has an expression (1.1) or (1.2) satisfying

(1) p, qi ∈ C[x] (i.e., gi ∈ C(x)) for i = 0, 1, 2;
(2) Γ∞ is G-invariant iff q0 = 0 (i.e., g0 = 0);
(3) if F is a standard form, then p has no multiple root (i.e., the order of each pole of

gi’s on P1 − {∞} is 1) and deg qi < deg p + (i − 1)e (i.e., deg gi := deg qi − deg p <
(i − 1)e for i = 0, 1, 2).

Proof. From Remark 3.1, it’s enough to consider the standard form G.
It’s well known that ω is a section of V := H0(Y,ΩY ⊗ OY (NG)) where

NG := KG − KY = 2Γ∞ + (l + e)F

is the normal bundle of G (see [Bru15]). One can constructs a subspace V ′ of V consisting
of the following differential forms

ω =

2∑
i=0

qi(x)y2−idx − p(x)dy + cxl−1(eydx − xdy), qi, p ∈ C[x], c ∈ C,

where deg qi ≤ l − 2 + (i − 1)e (i = 0, 1, 2) and deg p ≤ l − 1. It’s easy to see that
dim V ′ = 4l − 2.

We will claim V = V ′. For this purpose , we need compute dim V . Consider the exact
sequence

0 −→ φ∗ΩB ⊗ OY (NG) −→ ΩY ⊗ OY (NG) −→ ΩY/B ⊗ OY (NG) −→ 0

where ΩY/B = OY (−2Γ∞ − eF) be the relatively canonical sheaf of φ.
By Leray spectral sequence and R1φ∗OY (2Γ∞) = 0, one has

hk(Y, φ∗ΩB ⊗ OY (NG)) = hk(B, φ∗OY (2Γ∞) ⊗ OB(l + e − 2)), k = 0, 1.

Since φ∗OY (2Γ∞) = OB ⊕ OB(−e) ⊕ OB(−2e) and l ≥ e + 1, we get

h1(Y, φ∗ΩB ⊗ OY (NG)) = 0, h0(Y, φ∗ΩB ⊗ OY (NG)) = 3l − 3.

Note h0(ΩY/B ⊗ OY (NG)) = h0(Y,OY (lF)) = l + 1, we obtain

dim V = h0(Y, φ∗ΩB ⊗ OY (NG)) + h0(ΩY/B ⊗ OY (NG)) = 4l − 2.
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Now we investigate the neighbourhood near by Fl = φ
−1(∞). Take a coordinate trans-

formation (x, y) = ( 1
t ,

u
te ). We get the expression of ω in the neighbourhood as follows:

ω̃ = −

2∑
i=0

q̃iy2−idt + p̃(eudt − tdu) − cdu,

where q̃i := qitl−2+(i−1)e (i = 0, 1, 2) and p̃ := ptl−1 are still polynomials in C[x]. Note that
G-invariant fiber Fl is defined by t = 0. So c = 0. Thus we get the expression (1.1) with
coefficients qi, p ∈ C[x] (i.e., gi’s are in C(x)).

Let x = ai be the equation of Fi (i = 1, . . . , l − 1). Since Fi’s are G-invariant, x =
a1, . . . , al−1 are the roots of p. Note that deg p ≤ l − 1. So deg p = l − 1 and p has no
multiple root.

Take y = 1
v . One get the differential form

ω̃ =

2∑
i=0

qividt + pdv.

Note that Γ∞ is defined by v = 0. Thus Γ∞ is G-invariant iff v | q0(x) (i.e., q0 = 0). □

For convenience, we usually replace the expression (1.1) by (1.2). We define the dis-
criminant of ω as in (1.4). Let (X,F ) be a Riccati foliation w.r.t. φ̄ : X → P1 and

ω̄ = (ḡ0ȳ2 + ḡ1ȳ + ḡ0)dx − dȳ

be the differential form of F .

Lemma 3.5. Assume that g0ḡ0 , 0. Then ∆(ω) = ∆(ω̄) iff there is a birational map
σ : (X,F )d (X,F ) defined by an affine transformation as in (1.5).

Proof. (⇒) By a transform

y =
z

g0
−

1
2g0

(
g1 +

g′0
g0

) (
resp., ȳ =

z
ḡ0
−

1
2ḡ0

(
ḡ1 +

ḡ′0
ḡ0

) )
,

one gets a Riccati foliation defined by

ω′ = (z2 + ∆)dx − dz

where ∆ := ∆(ω) = ∆(ω̃). Hence a birational map σ : (X,F )d (X,F ) can be obtained by
the transformation

y =
ḡ0

g0
ȳ −

1
2g0

(
g1 − ḡ1 +

g′0
g0
−

ḡ′0
ḡ0

)
.

(⇐) By Remark 3.1, it’s enough to consider the transformations: y = (x − r)±1ȳ and
y = sȳ + r (s, r ∈ C, s , 0).

Take a transformation y = (x − r)ȳ. One has

ḡ0 = g0(x − r), ḡ1 = g1 −
1

x − r
, ḡ2 =

g2

x − r
.

From a straightforwards computation, we get ∆(ω̄) = ∆(ω). The other cases can also be
checked similarly. □

Example 3.6. Consider a standard form F w.r.t. φ : P1 × P1 → P1 with three F -invariant
fibers. By choosing a proper coordinate, we can assume that

(1) F1, F2 and F3 are defined by x = 0, x = 1 and x = ∞ respectively;
(2) p1 = (0,∞), p2 = (1, 0) are singularities of G with eigenvalues λ1, λ2 respectively.

Firstly, we consider the case that the sections Γ∞ : y = ∞ and Γ0 : y = 0 passe through
both singularities on F3. In this case, both sections are G-invariant. If not, 1 = KGΓ =
tang(G,Γ) ≥ 2 for Γ = Γ∞ or Γ0, a contradiction. So

ω =
(
−λ1

x
+

λ2

x − 1

)
ydx − dy(3.3)



12 CHENG GONG, JUN LU, AND SHENG-LI TAN

and the eigenvalue λ3 of the singularity p3 = Γ∞ ∩ F3 satisfies λ1 − λ2 + λ3 = 0 by
Camacho-Sad formula. In particular, the foliation is an algebraic one of type A.

In what follows, we assume there is a singularity on F3, says p3, outside of Γ∞ and
Γ0. By choosing a proper coordinate, we can take p3 = (∞,−1) with eigenvalue λ3. From
Lemma 3.4, we get

ω =

(
λ2 − λ1 + λ3

2(x − 1)
y2 +

(
−λ1

x
+

λ2

x − 1

)
y +

λ2 − λ1 − λ3

2x

)
dx − dy.(3.4)

Hence

∆(ω) =
1
4

1 − (λ1 − 1)2

x2 +
1 − λ2

2

(x − 1)2 +
(λ1 − 1)2 + λ2

2 − λ
2
3 − 1

x(x − 1)

 .
3.2. Riccati foliations with Kodaira dimension −∞. Let F be a Riccati foliation with
kod(F ) = −∞. In this case, it’s algebraic from Miyaoka Theorem [Miy85]. By Lemma
2.5, the rational fibration φ : Y(= Fe) → B(= P1) adapted to the standard form G is a
Hirzebruch surface of degree e.

Lemma 3.7. We have e ≤ 1. Furthermore, up to a flipping map, we can assume always
that e = 0.

Proof. It’s easy to see that e ≤ 1 and l ≤ 3 from Lemma 2.5 and Lemma 3.2.
Now we consider the case of e = 1. We hope to find a singularity with eigenvalue 1

2
outside Γ∞. Then we can make a flipping map by blowing-up the singularity with eigen-
value 1

2 and get a new standard form of F w.r.t. the projection φ : P1 × P1 → P1. For this
purpose, we consider the following two cases.

Case 1. Γ∞ is not G-invariant.
From Lemma 3.2, l = 3 and Γ∞ transverses to G. In this case, there is a G-invariant

fiber of type I 1
2

by Lemma 2.5. Hence Γ∞ doesn’t pass through both singularities in such
an fiber.

Case 2. Γ∞ is G-invariant.
Lemma 3.2 implies l = 2 and Γ∞ passes through two singularities with eigenvalues − 1

2
precisely. Namely, the singularities with eigenvalues 1

2 are outside Γ∞. □

In what follows, we assume that e = 0, i.e., φ : P1 × P1 → P1 is a projection satisfying
φ(x, y) = x where (x, y) is the coordinate of P1 × P1. Let Γ∞ (resp., Γ0) be the section of φ
defined by y = ∞ (resp., y = 0).

Corollary 3.8. If l = 2, thenG can be defined byω = λydx−dy up to a suitable coordinate.

Proof. One can choose a suitable coordinate such that the G-invariant fibers of φ, says
F0, F∞, are defined by x = 0,∞ respectively. Furthermore, we can also assume that Γ∞
and Γ0 passes through the singularities in F0 respectively.

We claim that Γ∞ is G-invariant. If not, one has tang(G,Γ∞) ≥ 1 by our assumption.
So (3.1) implies l ≥ 3, a contradiction. Similarly, Γ0 is also G-invariant. Thus we get
ω = λydx − xdy from Lemma 3.4. □

Proof of Theorem 1.3.The case for l ≤ 2 is from Corollary 3.3 and Corollary 3.8.
In what follows, we assume that l = 3. In this case, (n1, n2, n3) satisfies Lemma 2.5

and so n1 = 2. One can find that Γ∞ (resp., Γ0) is not G-invariant and passes at most one
singularity of G from (3.1) and (3.2).

By choosing a suitable coordinate, one can assume that F has a differential form ω as
in Example 3.6 with (λ1, λ2, λ3) = ( 1

2 ,
1
n2
, m

n3
) where 0 < m ≤ n3

2 and (m, n3) = 1.
If n2 = 2, then

ω = (λ3xy2 + y − λ3(x − 1))dx − 2x(x − 1)dy.

By replaceing y by y
λ3

, one gets an expression as in Theorem 1.3 (3). If n2 = 3, then ω is
as in Theorem 1.3 (4)–(7). 2
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4. Singular fibers of a Riccati fibration of genus g ≥ 1

Let f : X → C be a Riccati fibration of genus g ≥ 1 and F be the Riccati foliation
induced by f with respect to a rational fibration. Without loss of generality, we assume
that f is a minimal normal-crossing fibration whose singular fibers are F1, . . . , Fs with
principal components Γ1, . . . ,Γs respectively.

Let (Y,G) be the standard form of (X,F ) w.r.t. a minimal rational fibration φ : Y → B
and ρ : (Ỹ , G̃) → (Y,G) be the relatively minimal standard form w.r.t. a rational fibration
φ̃ = φρ : Ỹ → B as in Sec. 2.1. Under our assumption, (Ỹ , G̃) = (X,F ). Since g ≥ 1, there
is a Zariski decomposition K

G̃
= P + N.

Let F′1, . . . , F
′
l be the G-invariant fibers of G and take ni = nF′i (i = 1, . . . , l) where nF′i

is defined as in Sec 2.1. We set d = FF′.

4.1. Proof of Theorem 1.4.

Lemma 4.1. Any Riccati fibration is isotrivial. Furthermore, the rational fibration φ̃ co-
incides with the fibration given by |mP| as in Corollary 2.8 whenever g > 1.

Proof. It’s enough to consider the case of kod(G̃) = 1 by Lemma 2.7 and kod(G̃) ≤ 1.
Let φ′ : Ỹ → B be the fibration given by |mP| and F′ be a general fiber of φ′ . Take

a general fiber F̃ of φ̃. One has K
G̃

F̃ = 0 since G̃ is a Riccati foliation. Noting that both
P and F̃ are nef, it implies that PF̃ = NF̃ = 0. Hence F̃F′ = 0 for any fiber F′ of φ′ by
Corollary 2.8. So φ̃ = φ′. It implies that g > 1 by Corollary 2.8 again. Therefore f is
isotrivial from Lemma 2.7 □

Let γi be the order of topology monodromy of Fi (i = 1, . . . , s).

Lemma 4.2. Take a general fiber F′ (resp., F) of φ̃ (resp., f ). We have

−
2
d
= 2g(C) − 2 +

s∑
i=1

(
1 −

1
γi

)
,(4.1)

2g − 2
d
= 2g(B) − 2 +

l∑
i=1

(
1 −

1
ni

)
.(4.2)

In particular, the first equality implies that C � P1 and
∑s

i=1

(
1 − 1

γi

)
= 2 − 2

d < 2.

Proof. If g > 1, then (4.1) is from Lemma 4.1, Corollary 2.9 and g(F′) = 0. Now we
investigate the case of g = 1. Since f is isotrivial, one has P = 0 by Lemma 2.7. So
NF′ = KF F′ = 0. Thus one can get (4.1) by a similar proof of Corollary 2.9.

From (2.3), K
G̃

F = 2g − 2. Combining (2.2), Lemma 2.5 and NF = 0, one gets

K
G̃

F =

2g(B) − 2 +
l∑

i=1

(
1 −

1
ni

) FF′.

Thus (4.2) is obtained. □

Proof of Theorem 1.4. Assume that f is a Riccati fibration. By Lemma 4.2, we have∑s
i=1

(
1 − 1

γi

)
< 2. It implies that f occurs in one of the cases in Theorem 1.4 by a compu-

tation as in Lemma 2.5.
Conversely, for any isotrivial fibration f : S → C(� P1) of genus g > 1 occurring in

one of the cases in Theorem 1.4, Corollary 2.10 implies that it is a Riccati fibration. 2

From the proof of Lemma 4.2, we have

Corollary 4.3. Each principal components Γi of Fi (i = 1, . . . , s) satisfies ΓiF′ = d
γi

. In
particular, for a Riccati fibration of type An, both Γi’s are sections of φ̃. Conversely, if a
principal component of a Riccati fibration is a section of the corresponding ruling map,
then it is of type An.
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Similarly, ΘF′i F =
d
ni

where ΘF′i is the (−1)-curve as in (2.1). Therefore we have always
γi | d and ni | d.

4.2. Algebraic Riccati Foliation with Kodaira Dimension Zero. In this section, we
will consider the case of algebraic Riccati foliation with Kodaira Dimension Zero (i.e.,
kod(G̃) = 0). From Lemma 2.7 and Theorem 1.4, f : X → C(� P1) is an isotrivial elliptic
fibration occurring in one of the cases in Theorem 1.4.

If s = 0, f is trivial, i.e., f : X = E × P1 → P1. If s = 2, then f occurs in one of the
cases in Lemma 2.12.

In what follows, we assume that s = 3. In this case, the rational fibration φ : Y → B
adapted to G gives s a rational ruled surface (namely, B � P1 and Y = Fe) by Lemma 2.11.
Therefore G occurs in one of the cases in Lemma 2.6 (II):

(1) l = 3 and (n1, n2, n3) = (3, 3, 3);
(2) l = 3 and (n1, n2, n3) = (2, 4, 4);
(3) l = 3 and (n1, n2, n3) = (2, 3, 6);
(4) l = 4 and (n1, n2, n3, n4) = (2, 2, 2, 2).

We exclude the case (2) firstly. Since n1 = 4 , the eigenvalues of the singularities on F′1
are ± 1

4 . So F′1 gives two G̃-chains: a (−4)-curve and a Hirzebruch-Jung chain consisting
of four (−2)-curves. It implies that f contains two singular fibers of type III and III∗

respectively (cf. [BHPV04, Ch. V, Sec. 7]). Thus γ1 = γ2 = 4, a contradiction to Lemma
4.2. So the case (2) doesn’t occur.

Similarly, one can also exclude the case (3).

Lemma 4.4. In case (1), up to a proper coordinate, G can be determined uniquely by a
differential form

ω = (3y2 − 2xy − 1)dx − 6(x2 − 1)dy(4.3)

on P1 × P1.

Proof. Let (x, y) be the coordinate of Y = Fe such that y = ∞ is a tautological section Γ∞
of φ with Γ2

∞ = −e and x = ±1,∞ are all G-invariant fibers. Furthermore, we assume that
(x, y) = (∞, 0) is a singularity with eigenvalue 1

3 .
By our assumption and Corollary 4.3, Γ∞ is not G-invariant. So e ≤ 1 by Lemma 3.2.

We will exclude the case for e = 1. Suppose that e = 1. By choosing a suitable coordinate,
we can assume (x, y) = (1, 0) is another singularity with eigenvalue 1

3 . From Lemma 3.4
and our assumptions, one has

ω = (ay2 + 4xy + b(x − 1))dx − 6(x2 − 1)dy

for some a, b ∈ C (a , 0). Since the eigenvalues of both singularities on the fiber x = −1
are ± 1

3 , one gets that b = 0. So y = 0 defines a G-invariant section, a contradiction. Thus
we have e = 0.

Without loss of generality, we can choose a suitable coordinate y on a general fibe rof
φ such that (x, y) = (∞,∞), (∞, 0), (1, 1) are singularities of G with eigenvalues − 1

3 ,
1
3 ,

1
3

respectively. Thus one gets (4.3) by Lemma 3.4. □

Now we investigate the case (4). In this case, (γ1, γ2, γ3) = (2, 2, n). More precisely, the
singular fibers of f are type I∗0 , I∗0 and nI0 respectively. For the surface Y = Fe, one has
e ≤ 2 by Lemma 3.2. By choosing some proper flipping maps, we can always assume that
e = 0. Furthermore, we can assume that the G-invariant fibers are x = 0, 1, λ,∞ (λ , 0, 1).

We state the following result which will be proved in Sec.5.3.

Lemma 4.5. In case (4), up to a suitable coordinate and an affine transform (1.5), F can
be determined by a differential form

ω =
ψ′

ψ(ψ − 1)
(y2 + n(ψ − 1)y − ψ)dx − 2ndy
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where ψ = x f 2

(x−1)(x−λ)g2 ( f , g ∈ C[x] ) satisfies

x f 2 − (x − 1)(x − λ)g2 = hn

for some h ∈ C[x].

Proof of Theorem 1.8. It’s from the above discussions, Lemma 4.4 and Lemma 4.5. 2

5. Riccati fibrations on a rational surface.

In this section, we investigate a Riccati fibration f : X → C on a rational ruled surface
φ0 : X → B(= P1). We adopt all notations and assumptions in Sec. 4.

Let Γ∞ be a tautological section of the Hirzebruch surface φ : Y(= Fe) → B(= P1) of
degree e with Γ2

∞ = −e and F′ be a general fiber of φ̃. Take a general fiber F of f and
d = FF′.

Let x (resp., y) be the coordinate of B = P1 (resp., F′). We assume that Γ∞ is defined
by y = ∞ and Γ0 is a section defined by y = 0. Each G-invariant fiber F′i (i = 1, . . . , l) is of
type I mi

ni
(0 < mi

ni
≤ 1

2 ) and is defined by x = ai (for i < l) or x = ∞ (for i = l) respectively.
Let Di = ρ(Γi) where Γi is the principal component of the singular fiber Fi of f with

the order γi of periodic topology monodromy (i = 1, . . . , s). Let fi ∈ C[x, y] be the local
equation of Di = div( fi) in Y (i = 1, . . . , s).

5.1. Some lemmas. Note that ρ(Fi) is a sum of Di and some G-invariant fibers of φ, that
is, ρ∗Fi = div(ui f γi

i ) for some ui ∈ C[x]. Since f : X → P1 is a pencil of curves, f is
determined by the family of the curves on Y .

Ct : u1 f γi
1 − tu2 f γ2

2 = 0, ∀t ∈ P1.

Without loss of generality, we can assume that C1 = ρ∗F3 whenever s = 3. Thus one gets
the relation between fi’s:

u1 f γ1
1 − u2 f γ2

2 = u3 f γ3
3 .(5.1)

Set fi = vihi (i = 1, . . . , s) where vi ∈ C[x] and hi ∈ K[y] (K := C(x)) with the leading

coefficient 1 as a polynomial of y. Take ψ := u1vγ1
1

u2vγ2
2

. Thus the above relation can be rephrase
as follows.

ψhγ1
1 − hγ2

2 = (ψ − 1)hγ3
3 , ψ ∈ K(5.2)

and

u1vγ1
1 − u2vγ2

2 = u3vγ3
3 .(5.3)

Since Γi is irreducible, hi ∈ K[y] is irreducible. Moreover, by Corollary 4.3, one has
degy hi =

d
γi

and gcd(hi, h j) = 1 in K[y] (i , j).

It’s easy to see that the differential form ω of G is from differential form d
(
ψhγ1

1

hγ2
2

)
(or

d
(

(ψ−1)hγ3
3

hγ2
2

)
, etc.).

In what follows, we consider the case for s = 3. We assume 2 = γ1 ≤ γ2 ≤ γ3.

Lemma 5.1. There is a u ∈ C(x) such that

γ1ψuhγ1−1
1 =

h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y
,(5.4)

γ2uhγ2−1
2 =

h3

γ3

∂h1

∂y
−

h1

γ1

∂h3

∂y
,(5.5)

γ3(ψ − 1)uhγ3−1
3 =

h1

γ1

∂h2

∂y
−

h2

γ2

∂h1

∂y
.(5.6)
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Proof. From (5.2), we have

ψ
hγ1

1

hγ3
3

=
hγ2

2

hγ3
3

+ ψ − 1.

Taking ∂
∂y on both sides of the above equality, we get

ψ
hγ1

1

hγ3
3

(
γ1

h1

∂h1

∂y
−
γ3

h3

∂h3

∂y

)
=

hγ2
2

hγ3
3

(
γ2

h2

∂h2

∂y
−
γ3

h3

∂h3

∂y

)
,

i.e.,

γ1ψhγ1−1
1

(
h3

γ3

∂h1

∂y
−

h1

γ1

∂h3

∂y

)
= γ2hγ2−1

2

(
h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y

)
.(5.7)

Since gcd(h1, h2) = 1, (5.7) implies that

hγ1−1
1

∣∣∣∣ (h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y

)
, hγ2−1

2

∣∣∣∣ (h3

γ3

∂h1

∂y
−

h1

γ1

∂h3

∂y

)
in K[y].

Note that degy hγ1−1
1 = d − d

γ1
and

degy

(
h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y

)
≤

d
γ2
+

d
γ3
− 2 = d −

d
γ1

by (4.1). Thus

w1hγ1−1
1 =

(
h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y

)
for some w1 ∈ C(x). Similarly,

w2hγ2−1
2 =

(
h3

γ3

∂h1

∂y
−

h1

γ1

∂h3

∂y

)
for some w2 ∈ C(x) satisfying γ1ψw2 = γ2w1 by (5.7). Take u = w1

γ1ψ
= w2

γ2
. we get (5.4)

and (5.5). The last equality (5.6) can also be obtained similarly. □

Lemma 5.2. There are η, ξ ∈ K[y], such that

γ3ηh2 =

(
1
γ3
−

1
γ2
−

1
2

)
∂h2

∂y
∂h3

∂y
+

(
h3

γ3

∂2h2

∂y2 −
h2

γ2

∂2h3

∂y2

)
,(5.8)

γ2ξh3 =

(
1
γ2
−

1
γ3
−

1
2

)
∂h2

∂y
∂h3

∂y
−

(
h3

γ3

∂2h2

∂y2 −
h2

γ2

∂2h3

∂y2

)
,(5.9)

ηh3 = 2γ2ψu2hγ2−2
2 −

1
2γ2

(
∂h3

∂y

)2

,(5.10)

ξh2 = 2γ3ψ(ψ − 1)u2hγ3−2
3 −

1
2γ3

(
∂h2

∂y

)2

.(5.11)

Proof. By γ1 = 2 and (5.4), we have

h1 =
1

2ψu
·

(
h3

γ3

∂h2

∂y
−

h2

γ2

∂h3

∂y

)
.

Applying the above equality on (5.5), we obtain

h2

2γ2ψu2hγ2−2
2 −

1
2γ2

(
∂h3

∂y

)2
=

h3

γ3

((
1
γ3
−

1
γ2
−

1
2

)
∂h2

∂y
∂h3

∂y
+

(
h3

γ3

∂2h2

∂y2 −
h2

γ2

∂2h3

∂y2

))
.
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Since gcd(h2, h3) = 1,

h3

∣∣∣∣ 2γ2ψu2hγ2−2
2 −

1
2γ2

(
∂h3

∂y

)2
in K[x]. Thus we can find some η ∈ K[y] satisfying (5.10) and get (5.8) by the above
equality.

Both (5.9) and (5.11) can be obtained similarly by combining (5.4) and (5.6). □

Lemma 5.3. We have

η =
2

2γ3 − 2γ2 − γ2γ3
·
∂2h3

∂y2 , ξ =
2

2γ2 − 2γ3 − γ2γ3·

∂2h2

∂y2 .

Proof. Differentiating both sides of (5.10), one has

2γ2(γ2 − 2)ψu2hγ2−3
2

∂h2

∂y
= η

∂h3

∂y
+ h3

∂η

∂y
+

1
γ2

(
∂h3

∂y

) (
∂2h3

∂y2

)
.(5.12)

Note that γ2 = 2, 3. If γ2 = 2, then d = 2γ3 by Theorem 1.4 and hence deg h3 = 2. In this
case, (5.10) implies that

4ψu2 = ηh3 +
1
4

(
∂h3

∂y

)2

∈ K.

Since deg h3 = 2 and its leading coefficient is 1, one gets η = −1.
In what follows, we assume γ2 = 3. By (5.10), (5.12) and (5.9), in K[y], we have

h2 ≡ 1
36ψu2

(
∂h3
∂y

)2
,

∂h2
∂y ≡ 1

6ψu2

(
∂h3
∂y

) (
η + 1

3

(
∂2h3
∂y2

))
,

h2
3
∂2h3
∂y2 ≡

(
1
γ3
+ 1

6

)
∂h2
∂y

∂h3
∂y ,

(mod h3).

respectively. Note that gcd(h3,
∂h3
∂y ) = 1. One gets(

1
γ3
+

1
6

)
η +

1
3γ3

∂2h3

∂y2 ≡ 0 (mod h3)(5.13)

from the above equalities.
By (5.10), one can see that

deg η ≤ max{deg h2 − deg h3, deg h3 − 2} =
d
γ3
− 2 = deg

∂2h3

∂y2 .

hence (5.13) implies that (
1
γ3
+

1
6

)
η +

1
3γ3

∂2h3

∂y2 = 0,

i.e., η = − 2
γ3+6

∂2h3
∂y2 .

Similarly, we can get the other equality by combining (5.9) and (5.11). □

Lemma 5.4. If γ2 = 3, then we have

h1 =
1

216ψ2u3

 18h3

γ3 + 6
·
∂h3

∂y
·
∂2h3

∂y2 −
36h2

3

γ3(γ3 + 6)
·
∂3h3

∂y3 −

(
∂h3

∂y

)3 ,(5.14)

h2 =
1

36ψu2

(∂h3

∂y

)2

−
12h3

γ3 + 6
·
∂2h3

∂y2

 ,(5.15)

0 =
3γ3

2(γ3 + 6)

(
∂2h3

∂y2

)2

−
∂h3

∂y
·
∂3h3

∂y3 +
h3

γ3 − 2
·
∂4h3

∂y4 .(5.16)
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Proof. The equality (5.15) is from (5.10) and Lemma 5.3. Furthermore, it implies that

∂h2

∂y
=

1
18ψu2(γ3 + 6)

(
γ3
∂h3

∂y
·
∂2h3

∂y2 − 6h3 ·
∂3h3

∂y3

)
,

∂2h2

∂y2 =
1

18ψu2(γ3 + 6)

γ3

(
∂2h3

∂y2

)2

+ (γ3 − 6)
∂h3

∂y
·
∂3h3

∂y3 − 6h3 ·
∂4h3

∂y4

 .
Applying the above equalities on (5.8), one gets (5.16).

(5.14) is from (5.15) and (5.4). □

From Lemma 5.4, it’s enough to solve the equation (5.16). Set m = d
r3

and

h3 =

m∑
i=0

(
m
k

)
akym−k, a0 := 1, ak ∈ K (k = 2, . . . ,m).(5.17)

Since both leading coefficients of h1, h2 are 1, (5.14) and (5.15) imply that

a2 = a2
1 − ψ

(
6u
m

)2

, a3 = a3
1 − 3a1ψ

(
6u
m

)2

+ 2ψ2
(

6u
m

)3

.

Without loss of generality, we can assume a1 = 0 and u = m
6 by taking an affine trans-

formation y = 6uȳ
m − a. Thus a2 = ψ and a3 = −2ψ2. By (5.16) and a straightforwards

computation, we obtain these undetermined coefficients ak’s. Finally, we have

h3 =

m∑
k=0

(−1)k−1
(
m
k

)
(k − 1)ψ[ k+1

2 ]ym−k −
1
2

(γ3 − 3)(ψ − 1)(4ψ)[
γ3
2 ]+1ργ3(5.18)

where ρ3 = ρ4 := 1 and

ρ5 := ψ3(1424 − 1600ψ) + 960ψ3y − 2079ψ2y2 + 2200ψ2y3 − 990ψy4 + 165y6.

Furthermore, one can get h1, h2 by (5.14), (5.15) and (5.18).

5.2. Riccati fibrations of type An−1. We assume that f is of type An−1. The case for A0
has been discussed in Corollary 3.3. In what follows, we assume n ≥ 2. In this case,
(γ1, γ2, d) = (n, n, n) by Theorem 1.4.

By Corollary 4.3, both Γ1,Γ2 are the sections of φ̃ and hence both D1,D2 are the sections
of φ.

From Corollary 2.4, either e = 0, or e > 0 and Γ∞ = Di for some i. In the latter case, we
can assume that D1 = Γ∞ and D2 = Γ0 by choosing a suitable coordinate. From Lemma
3.4, the expression (1.2) of G is as follows:

ω = g1ydx − dy, g1 =

l−1∑
i=1

λi

x − ai
(5.19)

where λi := ±mi
ni

(i = 1, . . . , l − 1).
Note that nλi is an integer (i = 1, . . . , l − 1) by Corollary 4.3. We take

ψ =

l−1∏
i=1

(x − ai)nλi ∈ C(x).(5.20)

Thus g1 =
ψ′

nψ .
Now we consider the case for e = 0. If Γ′∞ = D1 or D2, one can get an expression of ω

as above. In what follows, we assume that Γ′∞ , D1,D2. Since Di’s are disjoint sections
(Corollary 2.4), one can assume that D1 (resp., D2) is defined by y = −1 (resp., y = 0) by
choosing a suitable coordinate. Therefore, we obtain the expression (1.2) of G

ω =
ψ′

nψ
(y2 + y)dx − dy(5.21)

where ψ is as in (5.20).
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Conversely, (5.19) (resp., (5.21)) gives a pencil defiend by yn = tψ (resp., yn = tψ(y+1)n)
for t ∈ C. So we get a Riccati fibration of An−1.

Remark 5.5. By taking ψ = 1 in (5.19) or (5.21), one can also get Corollary 3.3.

From the above discussions, we have

Lemma 5.6. Up to an affine transformation (1.5), an algebraic Riccati foliation of type
An−1 has an expression as in (5.19) or (5.21). Conversely, a Riccati foliation with such
expressions for any non-zero ψ ∈ C(x) is of type An−1.

5.3. Riccati foliations of type Dn+2. We consider a Riccati fibration of type Dn+2 (n ≥ 2)
in this section. In this case, (γ1, γ2, γ3, d) = (2, 2, n, 2n), deg h1 = deg h2 = n and deg h3 =

2.
Take α =

√
ψ and K = K(α). In K[y], (5.2) implies

(αh1 + h2)(αh1 − h2) = (α2 − 1)hn
3.(5.22)

Since K[y] is a Gaussian integral domain and gcd(αh1 + h2, αh1 − h2) = 1 in K[y],

αh1 + h2 = (α + 1)ηn
1, αh1 − h2 = (α − 1)ηn

2

where both η1, η2 are monic polynomials in K[y] satisfying h3 = η1η2. So

η1 = y + a + bα, η2 = y + a − bα

for some a, b ∈ K. Note that b , 0 and α < K since h3 is irreducible in K[y].
Therefore we have

h1 = 1
2α ((α + 1)(y + a + bα)n + (α − 1)(y + a − bα)n) ,

h2 = 1
2 ((α + 1)(y + a + bα)n − (α − 1)(y + a − bα)n) ,

h3 = (y + a)2 − b2ψ.
(5.23)

By the above equalities, we can get the differential expression of the corresponding
Riccati foliation as follows:

ω =

(
−

ψ′

2nbψ(ψ − 1)
(y + a)2 +

(
b′

b
+
ψ′

2ψ

)
(y + a) +

bψ′

2n(ψ − 1)
− a′

)
dx − dy.(5.24)

Without loss of generality, one can assume that a = 0 and b = 1 by taking an affine
transformation y = bȳ − a.

Furthermore, we set ψ̄ = 1
1−ψ . Thus ω has a form as in Theorem 1.9 (2), that is,

ω =

(
ψ̄′

2n(ψ̄ − 1)
y2 +

ψ̄′

2ψ̄(ψ̄ − 1)
y −

ψ̄′

2nψ̄

)
dx − dy.(5.25)

From the above discussions, we have

Lemma 5.7. Up to a proper affine transformation (1.5), an algebraic Riccati foliation
of type Dn+2 has an expression as in (5.25). Conversely, a Riccati foliation with such an
expression for any non-constant ψ̄ ∈ C(x) is algebraic.

Remark 5.8. If
√
ψ =

√
1 − 1/ψ̄ ∈ C(x), then h3 in (5.22) is reducible and hence (5.25)

gives a Riccati foliation of An−1. The fact can also be found by taking an affine transfor-
mation y =

√
ψ(2ȳ + 1) in (5.25). Then one can get an expression (5.21). A similar result

can also be got when n is even and one of
√
ψ̄,

√
ψ̄ − 1 is in C(x).

Proof of Lemma 4.5. In this case, by choosing a suitable coordinate x in B(� P1), we
can take u1 = x, u2 = (x−1)(x−λ), u3 = 1 and ψ = u1v2

1
u2v2

2
satisfying (5.3). Set f = v1, g = v2

and h = v3. Thus one has (1.3). 2
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5.4. Riccati fibration of Ek. Combing (5.18) and Lemma 5.4, one can obtain h1 and h2.
The differential expression ω is from d(ψh2

1/h
3
2). By a straightforwards computation, we

have

ω =

(
ψ′

dψ(ψ − 1)
y2 +

(
ψ′

2ψ
+

ψ′

6(ψ − 1)

)
y −

(
1
6
+

1
d

)
·

ψ′

ψ − 1

)
dx − dy.

Furthermore, by taking y = −ψȳ and ψ̄ = ψ
ψ−1 , ω has an expression as in Theorem 1.9 (2),

i.e.,

ω =

(
ψ̄′

d(ψ̄ − 1)
ȳ2 +

(
ψ̄′

3(ψ̄ − 1)
−
ψ̄′

2ψ̄

)
ȳ −

(
1
6
+

1
d

)
·
ψ̄′

ψ̄

)
dx − dȳ.(5.26)

Lemma 5.9. Up to a proper affine transformation as in (1.5), an algebraic Riccati foliation
of type Ek has an expression as in Theorem 1.9 (2), i.e., (5.26). Conversely, a Riccati
foliation with such an expression for any non-constant ψ̄ ∈ C(x) is algebraic.

Remark 5.10. If γ3 = 3 and 3
√
ψ̄ − 1 ∈ C(x), then h1 is reducible and the Riccati foliation

gives a fibration of type D4 or A1. Similarly, if γ3 = 4 and
√
ψ̄ − 1 ∈ C(x), then the Riccati

fibration is of type E6, D4 or A1.

5.5. The proves of main results. We will prove Theorem 1.9 and Theorem 1.10 firstly.
Proof of Theorem 1.9.
(1)⇐⇒ (2) It’s from Lemma 5.6, Lemma 5.7 and Lemma 5.9.
(2)⇐⇒ (3) It’s from Lemma 3.5.
(4) =⇒ (1) It’s obvious from Miyaoka Theorem [Miy85].
(2) =⇒ (4) Let F0 be a Riccati foliation w.r.t. pr1 : P1 × P1 → P1 defined by

ω0 =

(
xy2 +

((
2 −

d
γ3

)
x +

(
d −

d
γ1

))
y +

(
1 −

d
γ3

)
(x − 1)

)
dx − d · (x − 1)xdy.

From Lemma 2.5, Kod(F0) = −∞.
Without loss of generality, we assume the differential form F is as in (2). It’s easy to

see that F is a pulling-back of F0 by the base change ψ : P1 → P1.
Up to now, this proof is completed. 2

Proof of Theorem 1.10. (1)⇐⇒ (2) =⇒ (3) It’s from Corollary 4.3.
(3) =⇒ (4) By choosing a suitable coordinate, we can assume that y = 0 is G-invariant

section. Thus ω can be written as in (5.19) by Lemma 3.4.
(4)⇐⇒ (5) It’s obvious.
(5) =⇒ (1) By Theorem 1.3(2), F0 is algebraic. So is F . 2

Proof of Corollary 1.13.
(1) =⇒ (2) It’s from Corollary 2.4 and Corollary 4.3.

(2) =⇒ (3) Let D1,D2 be the disjoint F -invariant sections. If e > 0, then one of the
sections, says D1, is the tautological section (i.e., D2

1 = −e) defined by y = ∞. Hence D2
is defined by y = f (x) for some f ∈ C[x] with deg f ≤ e. So g0 = 0 and g1 f + g2 = f ′.

If e = 0, then we can defined Di’s by y = a1 and y = a2 (a1, a2 ∈ C ∪ {∞}, a1 , a2)
respectively. If a1 = ∞ (resp., a2 = ∞), then g0 = 0 and g2 = −a2g1 (resp., g2 = −a1g1).
If a1, a2 ∈ C, then g0y2 + g1y + g2 = g0(y − a1)(y − a2). Namely, g1 = −(a1 + a2)g0 and
g2 = a1a2g0. Set c1 = −(a1 + a2) and c2 = a1a2. Since a1 , a2, c2

1 − 4c2 , 0.
(3) =⇒ (1) By Corollary 2.4, we can always assume that both sections are defined by

y = 0 and y = ∞ respectively. Thus ω = g1ydx − dy. So it’s algebraic from Theorem 1.10.
2

Proof of Corollary 1.16.
(=⇒) By (5.23), we have a horizontal irreducible F -invariant curve defiend by h3 = 0, i.e.,

(y + a)2 − µ = 0

where µ := b2ψ and b, ψ ∈ C(x) \ {0}.
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By (5.24), g0 = −
ψ′

2nbψ(ψ−1) (, 0). So one has

bg0 = −
1

2n
·

ψ′

ψ(ψ − 1)
=

1
2n
·

b(bµ′ − 2b′µ)
µ(b2 − µ)

,

i.e.,

ng0b2 −
µ′

2µ
· b − ng0µ = −b′.

Thus y = −b,− µb are the solutions of the differential equation ω̃ = 0 where

ω̃ :=
(
ng0y2 +

µ′

2µ
y − ng0µ

)
dx − dy.

Namely, the Riccati foliation F̃ defined by ω̃ has two F̃ -invariant sections. By Corollary
1.13 and Corollary 2.4, the standard form of F̃ has two disjoint invariant sections and
hence F̃ is of type An.

(⇐=) Without loss of generality, we can assume that a = 0. Since y2 − µ = 0 is F -
invariant, one has g1 =

µ′

2µ and g2 = −µg0. Let y = y1(x) ∈ C(x) be a solution of ω̃ = 0.
Take b = −y1 and ψ = µ

b2 . From a straightforwards computation, one gets

g0 = −
ψ′

2nbψ(ψ − 1)
, g1 =

b′

b
+
ψ′

2ψ
, g2 =

bψ′

2n(ψ − 1)
.

Namely, ω has an expression as in (5.24). So F is of type Dn+2. 2

Proof of Corollary 1.17. We assume that F is not of type An−1 or Dn+2. Suppose that F
be algebraic. From Theorem Theorem 1.9, Theorem 1.10, up to a proper flipping map, F
is from a pulling-back of a Riccati foliation with Kodaira dimension −∞ (more precisely,
foliations in Theorem 1.3(4)-(7)). So λp ∈ {

1
2 ,

1
3 ,

1
4 ,

1
5 ,

2
5 }, i.e., n ≤ 5, a contradiction. 2

6. Some examples

Example 6.1. Let F be a Riccati foliations with Kod(F ) = −∞. Theorem 1.9 and The-
orem 1.10 are also valid for F . More precisely, we can find a special Riccati foliation F0
with Kod(F0) = −∞ such that F is a pulling-back of F0 after a base change ψ : P1 → P1

and a flipping map. Let ω0 be the differential form of F0.
(An−1) ω = λydx − xdy (λ = m

n ∈ Q
+), ω0 = ydx − ndy and ψ = xm;

(Dn+2) ω = (xy2 + y − λ2(x − 1))dx − 2x(x − 1)dy (λ = m
n ∈ Q

+),

ω0 = (xy2 + ny − (x − 1))dx − 2nx(x − 1)dy,

ψ = (1 − x)m−2[m/2] ·

[m/2]∑
k=0

(
m
2k

)
(x − 1)[m/2]−k xk


2

;

(E6) ω = ω0 = (xy2 − 2(x − 3)y − 3(x − 1))dx − 12x(x − 1)dy and ψ = x;
(E7) ω = ω0 = (xy2 − 4(x − 3)y − 5(x − 1))dx − 24x(x − 1)dy and ψ = x;
(E8) ω = ω0 = (xy2 − 10(x − 3)y − 11(x − 1))dx − 60x(x − 1)dy and ψ = x;
(E′8) ω = (xy2 − 10(x − 3)y − 119(x − 1))dx − 60x(x − 1)dy, ω0 is as in (E8) and

ψ = 1 +
(x − 1)(2916x2 − 3375x − 3125)3

(189x − 125)5 .

Example 6.2. Let F be an algebraic Riccati foliation of type Dn+2 w.r.t. φ : P1 × P1 → P1

as in Theorem 1.8 (3).

(D4) λ = a2 and ψ = − x(a−1)2

(x−1)(x−λ) ;

(D5) λ = (a−1)3(a+1)
2a−1 and

ψ = −
x

(x − 1)(x − λ)
·

(
x − 1 − a3

)2

(2a − 1)(a + 1)2 ;
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(D6) λ =
(

2a
a2−1

)4
and

ψ = −
x

(x − 1)(x − λ)
·


(
x − 4(3a2+2a+1)

(a2−2a+3)(a+1)4

)
(
x − 4

(a+1)4

) ·
(a2 − 2a + 3)(a2 + 2a − 1)

(a2 − 1)2


2

where a ∈ C such that λ , 0, 1,∞.

Example 6.3. Consider the foliation (3.4) in Example 3.6. Assume that Kod(F ) ≥ 0. Let
λi =

mi
ni

(ni > 1 and gcd(mi, ni) = 1). We claim that F is not algebraic whenever ni ≥ 6 for
some i.

By Corollary 1.13, F is not of type An−1. We claim that F is not Dn+1. If not, from
Corollary 1.16, one can find a horizontal irreducible F -invariant curve Γ defined by (y +
a)2 − µ = 0. Thus φ|Γ : Γ → P1 gives a double cover ramified exactly over two points
in {0, 1,∞}. Hence there are two G-invariant fibers of type I 1

2
. Thus one gets g = 0 from

(4.2). Namely, Kod(F ) = −∞, a contradiction.
Therefore F is not algebraic from Corollary 1.17.
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