ON THE POINCARE PROBLEM FOR RICCATI FOLIATIONS

CHENG GONG, JUN LU, AND SHENG-LI TAN

Dedicated to the memory of Professor Gang Xiao

ABSTRACT. In this paper, we will give some criteria on the algebraicity of a Riccati foliation.

1. INTRODUCTION

A holomorphic foliation on a smooth projective algebraic surface is said to be algebraic if it admits a rational first integral. In [Poi91], Poincaré studied the following problem which can be rephrased in modern terminology.

Question 1.1. *Is it possible to decided if a holomorphic foliation* \mathcal{F} *on* \mathbb{P}^2 *(alternatively, a rational ruled surface) is algebraic?*

Some research on holomorphic foliations is motivated by this problem (see [CN91], [Per02], [LN02], [Zam97], [Zam00], [Zam06] etc.). Painlevé [Pai74] asked the following question:

Question 1.2. Can we recognize the genus g of an algebraic foliation from its defining differential equation?

Lins-Neto [LN02] constructed counter-examples to show that the genus is not an invariant of differential equations. Therefore, one cannot define the genus for non-algebraic foliations.

In this paper we will answer the above questions in the case of Riccati foliations. Let \mathcal{F} be a foliation on an algebraic surface X with a regular ruling map $\varphi : X \to B$. We say \mathcal{F} is a Riccati foliation with respect to φ if $K_{\mathcal{F}}F = 0$ for a general fiber F of φ , i.e., F is transverse to \mathcal{F} ([Bru15, Ch. 4]). Let x (resp., y) be the local coordinate of B (resp., F). A Riccati foliation can always be written locally as

(1.1)
$$\omega = (q_0(x)y^2 + q_1(x)y + q_2(x))dx - p(x)dy,$$

where q_i 's and p are holomorphic functions. For convenience, we usually rewrite ω as in the following form:

(1.2)
$$\omega = (g_0(x)y^2 + g_1(x)y + g_2(x))dx - dy$$

where $g_i(x) := \frac{q_i}{n}$ for i = 0, 1, 2.

Up to a birational map, an algebraic Riccati foliation gives a fibration of genus g, i.e., a holomorphic map from a smooth algebraic surface to a smooth curve such that the general fiber is a smooth curve of genus g. Such a fibration is said to be a *Riccati fibration*.

First of all, a Riccati foliation \mathcal{F} with Kodaira dimension $kod(\mathcal{F}) = -\infty$ is algebraic by Miyaoka Theorem [Miy85] (also see [Bru15, Theorem 7.1]). More precisely, such a Riccati fibration is a family of rational curves. We can classify all such Riccati foliations as follows.

¹ This work is supported by NSFC, Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

² 2020 Mathematics Subject Classification. 14C21, 14D06, 14H10, 32S65, 37F75

³ Key words and phrases. Riccati foliation, isotrivial fibration, singular fiber.

Theorem 1.3. A Riccati foliation \mathcal{F} has Kodaira dimension $kod(\mathcal{F}) = -\infty$ if and only if \mathcal{F} has a standard form (see Sec. 2.1) on $\mathbb{P}^1 \times \mathbb{P}^1$ which occurs in one of the following cases by choosing a suitable coordinate:

(1) $\omega = dy;$ (2) $\omega = \lambda y dx - x dy \ (\lambda \in \mathbb{Q}^+ and \ \lambda \le \frac{1}{2});$ (3) $\omega = (xy^2 + y - \lambda^2(x-1))dx - 2x(x-1)dy \ (\lambda \in \mathbb{Q}^+ and \ \lambda \le \frac{1}{2});$ (4) $\omega = (xy^2 - 2(x-3)y - 3(x-1))dx - 12x(x-1)dy;$ (5) $\omega = (xy^2 - 4(x-3)y - 5(x-1))dx - 24x(x-1)dy;$ (6) $\omega = (xy^2 - 10(x-3)y - 11(x-1))dx - 60x(x-1)dy;$ (7) $\omega = (xy^2 - 10(x-3)y - 119(x-1))dx - 60x(x-1)dy.$

For an algebraic Riccati foliation with $kod(\mathcal{F}) \ge 0$, the corresponding Riccati fibration has a genus g > 0. For convenience, in what follows, we assume that such an fibration is *minimal normal-crossing*, i.e., each singular fiber is normal-crossing and each (-1)-curve in these fibers passes through at least 3 intersections. We can figure out the structure of the Riccati fibration firstly.

Theorem 1.4. Let $f : X \to C$ be a minimal normal-crossing fibration of genus g > 0 with singular fibers F_1, \ldots, F_s . If f is a Riccati fibration, then f is an isotrivial fibration over $C \cong \mathbb{P}^1$ and occurs in one of the following cases:

 $(A_0) \ s = 0 \ (i.e., f \ is \ trivial);$

 (A_{n-1}) s = 2 and $(\gamma_1, \gamma_2, d) = (n, n, n)$ $(n \ge 2);$

- (D_{n+2}) s = 3 and $(\gamma_1, \gamma_2, \gamma_3, d) = (2, 2, n, 2n)$ $(n \ge 2);$
- (*E*₆) s = 3 and $(\gamma_1, \gamma_2, \gamma_3, d) = (2, 3, 3, 12);$
- (*E*₇) s = 3 and $(\gamma_1, \gamma_2, \gamma_3, d) = (2, 3, 4, 24);$
- (*E*₈) s = 3 and $(\gamma_1, \gamma_2, \gamma_3, d) = (2, 3, 5, 60)$

where $\gamma_1 \leq \cdots \leq \gamma_s$ be the orders of periodic topology monodromies of F_i 's respectively and d is an integer satisfying $\sum_{i=1}^{s} (1 - 1/\gamma_i) = 2 - 2/d$.

Conversely, each isotrivial fibration $f : X \to C \cong \mathbb{P}^1$ of genus g > 1 occurring in one of the above cases is a Riccati fibration.

Remark 1.5. Theorem 1.4 can also be rephrased as follows: f is a Riccati fibration iff f can become a trivial fibration after a base change $\pi : \mathbb{P}^1 \to C \cong \mathbb{P}^1$ of degree d uniformly ramified over s critical points of f with ramification index $\gamma_1, \ldots, \gamma_s$ respectively. It's well-known that such a uniformly ramified cover over \mathbb{P}^1 is given exactly by a finite subgroup of Aut(\mathbb{P}^1) which also corresponds with one kind of *A*-*D*-*E* surface singularities (see [Xia92, Theoreom A 3.6] for instance). An algebraic Riccati foliation is said to be of *type* A_{n-1} (*resp.*, D_n , E_k) if the corresponding Riccati fibration is of type A_{n-1} (resp., D_n , E_k).

Remark 1.6. In what follows, we take $\gamma_1 = \gamma_2 = \gamma_3 = d = 1$ (if s = 0) or $\gamma_3 = 1$ (if s = 2) for convenience. The equality $\sum_{i=1}^{s} (1 - 1/\gamma_i) = 2 - 2/d$ still holds.

The genus of the fibration induced by an algebraic Riccati foliation can be determined by the following formula (see Lemma 4.2).

Corollary 1.7. Let \mathcal{F} be a standard form of an algebraic Riccati foliation w.r.t. a regular ruling map $\varphi : X \to B$ and $f : X \to \mathbb{P}^1$ be the fibration of genus g induced by \mathcal{F} . Let F_1, \dots, F_l be the \mathcal{F} -invariant fibers of φ and F' be a general fiber of f. Assume that F_i is of type $I_{\frac{m_i}{2}}$ (see Sec. 2.1) where $n_i > 1$ and $gcd(m_i, n_i) = 1$ for $i = 1, \dots, l$. We have

$$\frac{2g-2}{d} = 2g(B) - 2 + \sum_{i=1}^{l} \left(1 - \frac{1}{n_i}\right)$$

where d := FF'.

From the above results, one can classify precisely all Riccati fibrations of g = 1 as well as their Riccati foliations.

Theorem 1.8. A Riccati foliation \mathcal{F} with $kod(\mathcal{F}) = 0$ is algebraic iff \mathcal{F} is induced by an isotrivial elliptic fibration $f : X \to C$, up to a suitable coordinate, occurring in one of the following cases:

- (1) *f* is the second projection $pr_2 : X = E \times \mathbb{P}^1 \to \mathbb{P}^1$ for some smooth elliptic curve *E* and hence \mathcal{F} is a Riccati foliation of type A_0 w.r.t $pr_1 : X \to E$;
- (2) f is an elliptic fibration over P¹ with two singular fibers of nI₀ (see Lemma 2.12) and hence F is a suspension of the corresponding monodromy ρ : π₁(Alb(X)) → Aut(P¹) w.r.t. the Albanese morphism Alb : X → E where E is a smooth elliptic curve (see [Bru15, Ch. 7, Proposition 6]);
- (3) *f* is one of the following families from the Riccati foliation \mathcal{F} w.r.t. the projection $pr_1: X = \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$.

Туре	Riccati foliations	Families	Singular fibers
A_1	$(3x^2 + 1)ydx - 2(x^3 + x + c)dy$	$y^2 = t(x^3 + x + c)$	I_0^*, I_0^*
	$3x^2ydx - 2(x^3 + 1)dy$	$y^2 = t(x^3 + 1)$	
A_2	(2x-1)ydx - 3x(x-1)dy	$y^3 = tx(x-1)$	IV, IV*
A_3	(2x-1)ydx - 4x(x-1)dy	$y^4 = tx(x-1)$	III, III*
A_5	(3x-2)ydx - 6x(x-1)dy	$y^6 = tx^2(x-1)$	II, II*
E_6	$(3y^2 - 2xy - 1)dx - 6(x^2 - 1)dy$	$z^3 = t(x^2 - 1)$	$IV, IV^*, 2I_0$
D_{n+2}	$\frac{\psi'}{\psi(\psi-1)}(y^2 + n(\psi-1)y - \psi)dx - 2ndy$	$\left(\frac{y+\sqrt{\psi}}{y-\sqrt{\psi}}\right)^n = t\left(\frac{\sqrt{\psi}+1}{\sqrt{\psi}-1}\right)$	$\mathbf{I}_0^*, \mathbf{I}_0^*, \mathbf{n}\mathbf{I}_0$

where $c \in \mathbb{C}$ satisfies $4 + 27c^3 \neq 0$,

$$z := \frac{(4x^2 - 3)y^4 - 4xy^3 + 6y^2 - 4xy + 1}{3y^4 - 8xy^3 + 6y^2 - 1}$$

and $\psi = \frac{xf^2}{(x-1)(x-\lambda)g^2}$ (f, $g \in \mathbb{C}[x]$) satisfies

(1.3)
$$xf^2 - (x-1)(x-\lambda)g^2 = h^n$$

for some $\lambda \in \mathbb{C} \setminus \{0, 1\}$ and $h \in \mathbb{C}[x]$ (see Example 6.2).

In this paper, we consider the case that \mathcal{F} is a Riccati foliation with respect to a Hirzebruch surface $\varphi : \mathbb{F}_e \to \mathbb{P}^1$ of degree *e*. In this case, g_i 's in (1.2) are rational functions in $\mathbb{C}[x]$ (see Lemma 3.4). For convenience, the tautological section Γ_{∞} of φ with $\Gamma_{\infty}^2 = -e$ is defined by $y = \infty$ in what follows.

One can define the *discriminant* of ω as follows:

(1.4)
$$\Delta(\omega) = \frac{1}{2} \left(g_1 + \frac{g_0'}{g_0} \right)' - \frac{1}{4} \left(g_1 + \frac{g_0'}{g_0} \right)^2 + g_0 g_2.$$

whenever $g_0 \neq 0$. $\Delta(\omega)$ is an invariant of \mathcal{F} under any affine transformation

(1.5)
$$y = a(x)\overline{y} + b(x)$$

where $a, b \in \mathbb{C}(x)$ and $a \neq 0$ (Lemma 3.5).

Now our main results can be stated as follows.

Theorem 1.9. Assume that $g_0 \neq 0$. The following conditions are equivalent:

- (1) \mathcal{F} is algebraic;
- (2) by choosing a proper affine transformation (1.5), g_i 's in (1.2) can be taken as

$$g_0 = \frac{1}{d} \cdot \frac{\psi'}{(\psi - 1)}, \quad g_2 = \frac{1}{\gamma_2} \cdot \frac{\psi'}{(\psi - 1)} - \left(1 - \frac{1}{\gamma_1}\right)\frac{\psi'}{\psi}, \quad g_2 = \left(\frac{1}{d} - \frac{1}{\gamma_3}\right)\frac{\psi'}{\psi}$$

where $\psi \in \mathbb{C}(x)$, γ_i 's and d are as in Theorem 1.4 and Remark 1.6;

(3) there is a rational function $\psi \in \mathbb{C}(x)$ satisfying

$$\begin{split} \Delta(\omega) &= \frac{1}{2} \left(\frac{\psi''}{\psi'} \right)' - \frac{1}{4} \left(\frac{\psi''}{\psi'} \right)^2 + \frac{1}{4} \left(1 - \frac{1}{\gamma_1^2} \right) \left(\frac{\psi'}{\psi} \right)^2 + \frac{1}{4} \left(1 - \frac{1}{\gamma_2^2} \right) \left(\frac{\psi'}{\psi - 1} \right)^2 \\ &+ \frac{1}{4} \left(\frac{1}{\gamma_1^2} + \frac{1}{\gamma_2^2} - \frac{1}{\gamma_3^2} - 1 \right) \left(\frac{\psi'}{\psi} \right) \left(\frac{\psi'}{\psi - 1} \right); \end{split}$$

(4) there is a Riccati foliation \mathcal{F}_0 with $kod(\mathcal{F}_0) = -\infty$ w.r.t. a rational ruled surface $\varphi_0: X_0 \to \mathbb{P}^1$ such that \mathcal{F} is the pulling-back foliation of \mathcal{F}_0 after a base change $\psi: \mathbb{P}^1 \to \mathbb{P}^1$ and a birational map $\sigma: X \to X_1$ as in the following commutative diagram,

where $\varphi: X \to \mathbb{P}^1$ (resp., $\varphi_1: X_1 \to \mathbb{P}^1$) is the ruling map adapted to \mathcal{F} (resp., $\psi^* \mathcal{F}_0$).

Theorem 1.10. Assume that $g_0 = 0$. The following conditions are equivalent:

- (1) \mathcal{F} is algebraic;
- (2) \mathcal{F} is of type A_{n-1} $(n \ge 1)$;
- (3) there is an \mathcal{F} -invariant section Γ of φ except the tautological section $y = \infty$;
- (4) by choosing a proper affine transformation (1.5), we can take

$$g_1 = \frac{\psi'}{n\psi}, \quad g_2 = 0 \ (n \ge 1)$$

for some $\psi \in \mathbb{C}(x)$;

(5) \mathcal{F} is the pulling-back foliation of \mathcal{F}_0 defined by $\omega_0 = ydx - nxdx$ after a base change and a birational map as in the commutative diagram in Theorem 1.9 (4).

Remark 1.11. $g_0 = 0$ iff the tautological section Γ_{∞} is *G*-invariant (see Lemma 3.4).

Remark 1.12. Theorem 1.9 and Theorem 1.10 also hold for the Riccati foliations with Kodaira dimension $-\infty$. So we can also classify them according to ADE types (see Example 6.1).

Based on the above theorems, we can get some criteria for the algebraicity or transcendency of a Riccati foliation $\mathcal F$ w.r.t. a rational fibration. For convenience, in what follows, we assume \mathcal{F} is a standard form w.r.t. $\varphi: X(=\mathbb{F}_e) \to B(=\mathbb{P}^1)$ and each singularity of \mathcal{F} is a non-degenerated one with a rational eigenvalue (see Sec. 2.1).

Corollary 1.13. Under our assumptions, the following conditions are equivalent:

- (1) \mathcal{F} is an algebraic foliation of type A_{n-1} ;
- (2) \mathcal{F} has two disjoint \mathcal{F} -invariant sections of φ .
- (3) \mathcal{F} occurs in one of the following cases:
 - (i) $g_0 = 0$ and $g_1 f + g_2 = f'$ for some $f(x) \in \mathbb{C}[x]$ with deg $f \le e$;
 - (ii) $g_0 \neq 0, e = 0, g_1 = c_1g_0$ and $g_2 = c_2g_0$ for some $c_1, c_2 \in \mathbb{C}$ satisfying $c_1^2 4c_2 \neq 0$.

Theorem 1.4 and Corollary 1.13 provide a new viewpoint for a fibration $f: X \to \mathbb{P}^1$ with two singular fibers.

Corollary 1.14. A fibration $f : X \to \mathbb{P}^1$ with two singular fibers is a Riccati fibration of type A_{n-1} . Furthermore, if X is a rational surface, then f can be obtained by a pencil as

follows:

$$y^n = t \prod_{i=1}^{\ell} (x - a_i)^{m_i}, \quad \forall t \in \mathbb{P}^1$$

where n and m_i 's are positive integers.

Remark 1.15. It is well-known that if $f : S \to \mathbb{P}^1$ is non-trivial (resp. non-isotrivial), then $s \ge 2$ (resp. 3, see [Bea81]). For a fibration over \mathbb{P}^1 with two singular fibers, each singular fiber is dual to each other and hence they have the same order of periodic topology monodromy (see [GLT16, Theorem 1.1]). Furthermore, the authors in [GLT16] classify all such fibrations of genus 2.

Corollary 1.16. Under our assumptions, \mathcal{F} is an algebraic foliation of type D_{n+2} iff it satisfies the following conditions:

(1) there is a horizontal irreducible \mathcal{F} -invariant curve Γ defined by

$$(y+a)^2 - \mu = 0$$
, for some $a, \mu \in \mathbb{C}(x)$;

(2) $g_0 \neq 0$ and $\tilde{\omega} := \left(ng_0 y^2 + \frac{\mu'}{2\mu} y - ng_0 \mu \right) dx - dy$ gives an algebraic Riccati foliation of type A_{n-1} .

Corollary 1.17. If there is a singularity p of \mathcal{F} with eigenvalue $\lambda_p = \frac{m}{n}$ (n > 1 and gcd(m, n) = 1) satisfying $n \ge 6$, then \mathcal{F} occurs in one of the following cases:

- (1) \mathcal{F} is of type A or D;
- (2) \mathcal{F} is not an algebraic Riccati foliation.

2. Preliminaries

2.1. **Riccati foliations.** Let (X, \mathcal{F}) be a Riccati foliation w.r.t. a minimal rational fibration $\varphi_0 : X \to B$. A fiber of φ_0 is \mathcal{F} -invariant if and only if it contains the singularities of \mathcal{F} . Note that $K_{\mathcal{F}} \sim rF$, where *F* is a fiber of φ_0 . We call *r* the *degree* of \mathcal{F} , and denote it by deg $\mathcal{F} = r$.

By choosing proper flipping maps, one can get a standard form (Y, \mathcal{G}) of (X, \mathcal{F}) where *Y* admits a minimal rational fibration $\varphi : Y \to B$ (see [Bru15, Ch. 4, Prop. 4.2]) and each \mathcal{G} -invariant fiber *F* is of the following form:

- (I_a) F admits two singular points with nonzero eigenvalues $\pm a$ along F, where $0 \le \text{Re } a \le \frac{1}{2}$.
- (II) F admits a saddle-node of multiplicity two, whose weak separatrix is contained in F.
- (III) F admits two saddle-nodes of the same multiplicity, whose strong separatrices are contained in F.
- (IV) F admits only one nilpotent singularity.

and that its reduced standard form $\rho : (Y, \mathcal{G}) \to (Y, \mathcal{G})$ is relatively minimal.

An algebraic Riccati foliation has at most singularities of type I_a ($a \in \mathbb{Q}^+$ and $a \leq \frac{1}{2}$). In this paper, our main goal is to answer Poincare problem on the algebraicity of the Riccati foliation. So we impose that following condition on a Riccati foliation to simplify our discussion in what follows.

Assumption. All *G*-invariant fibers of *G* are type I_a ($a \in \mathbb{Q}^+$ and $a \leq \frac{1}{2}$).

In this case, ρ restricted on a fiber F is exactly a resolution of the singularity with positive eigenvalue in F.

For a given *G*-invariant fiber *F* of type I_a ($a = \frac{m}{n}$, (m, n) = 1), we denote by $n_F = n$. We have the following facts for such a Riccati foliation (see [HLT20]). The total transform of *F* under ρ is

(2.1)
$$\rho^* F = n_F (\Theta_F + N_F + N'_F),$$

where Θ_F is a (-1) curve, N_F and N'_F are \mathbb{Q}^+ -divisors. There is a Zariski decomposition

(2.2)
$$K_{\widetilde{\mathcal{G}}} = \rho^* K_{\mathcal{G}} - \sum_F \Theta_F \sim \left(\deg \mathcal{G} - \sum_F \frac{1}{n_F} \right) \rho^* F_0 + \sum_F (N_F + N'_F)$$

whenever deg $\mathcal{G} \ge \sum_{F} \frac{1}{n_F}$, where *F* runs over all \mathcal{G} -invariant fibers and F_0 is a general fiber of φ .

Remark 2.1. From (2.2), the Kodaira dimension $\operatorname{Kod}(\overline{\mathcal{G}}) \leq 1$. Furthermore, for any relatively minimal Riccati foliation \mathcal{F} , its Kodaira dimension $\operatorname{Kod}(\mathcal{F})$ is consistent with the numerical Kodaira dimension $\nu(\mathcal{F})$ (cf. [Bru15, Ch.9, Sec. 5]). So $\operatorname{Kod}(\mathcal{F}) = -\infty$ iff $K_{\mathcal{F}}$ is not pseudo-effective.

Remark 2.2. The support of N_F (resp., N'_F) in (2.1) is a $\tilde{\mathcal{G}}$ -chains, i.e., a Hirzebruch-Jung string $C = C_1 + \cdots + C_r$ consisting of $\tilde{\mathcal{G}}$ -curves C_i 's satisfying that

- (1) all singularities of $\widetilde{\mathcal{G}}$ on *C* are reduced and non-degenerated;
- (2) there is only one singularity of \mathcal{G} , says $p_r \in C_r$, on $C \{p_1, \ldots, p_{r-1}\}$ where $p_i = C_i \cap C_{i+1}$ $(i = 1, \ldots, r-1)$.

In particular, there is at most one $\widetilde{\mathcal{G}}$ -curve meeting transversely with *C*.

One can write $N_F = \sum_{i=1}^{r} \frac{\mu_i}{n_F} C_i$ where $1 = \mu_r < \mu_{r-1} < \cdots < \mu_1 < n_F$. N_F satisfies that $N_F C_1 = -1$ and $N C_i = 0$ for else *i*. All μ_i 's can be determined uniquely by these equalities. More details can be found in [Bru15, Ch.8, Sec.2].

The following Lemmas are useful.

Lemma 2.3. Let Γ be a section of $\tilde{\varphi} = \varphi \rho : \tilde{Y} \to B$. Then $\Theta_F \Gamma = 0$. Moreover, Γ meets transversely with one of N_F, N'_F at some singularity and disjoints from another.

In particular, there are at most two \hat{G} -invariant sections of $\tilde{\varphi}$ whenever there is a G-invariant F.

Proof. If $\Theta_F \Gamma > 0$, then (2.1) implies that $\rho^* F \cdot \Gamma \ge n_F > 1$, a contradiction. So $\Theta_F \Gamma = 0$. Thus one has $\Gamma N_F > 0$ or $\Gamma N'_F > 0$.

Without loss of generality, we assume $\Gamma N_F > 0$. Note that $n_F N_F$ and $n_F N'_F$ are \mathbb{Z} -divisor (Remark 2.2). Therefore we have $n_F N_F \Gamma = 1$ and $N'_F \Gamma = 0$ from $\rho^* F \cdot \Gamma = 1$. Namely, Γ meets transversely with an irreducible component of N_F at some singularity and disjoints from N'_F .

The latter part is from Remark 2.2.

П

Corollary 2.4. Let D_1, D_2 are the *G*-invariant sections of $\varphi : Y \to B$. Then D_1, D_2 are disjoint. In particular, if $\varphi : Y(=\mathbb{F}_e) \to B(=\mathbb{P}^1)$ is a Hirzebruch surface of degree e > 0, then one of D_i 's is a tautological section (i.e., a section with self-intersection number (-e)).

Proof. Suppose that D_1, D_2 have an intersection p. Let F be the fiber passing through p. Since D_1, D_2 and F are G-invariant, p has an eigenvalue $\lambda_p > 0$.

Let q be another singularity in F' with eigenvalue $\lambda_q < 0$. Since $D_1F' = D_2F' = 1$, q is a reduced non-degenerated singularity outside of D_1, D_2 .

Let Γ_i be the inverse image of D_i under $\rho : \widetilde{Y} \to Y$ (i = 1, 2). From Lemma 2.3, we can assume that Γ_1 (resp., Γ_2) meets transversely with N_F (resp., N'_F) at some singularity \widetilde{p}_1 (resp., \widetilde{p}_2) and disjoints from N'_F (resp., N_F).

Note that only one of \tilde{p}_i 's is exactly the inverse image of q. Thus only one of D_i 's passes through q, a contradiction.

The latter part is from the well-known facts of a rational ruled surface.

Let F_1, \ldots, F_l be the *G*-invariant fibers of φ with $n_1 \leq \cdots \leq n_l$ respectively where $n_i := n_{F_i}$ $(i = 1, \ldots, l)$.

Lemma 2.5. We have deg $\mathcal{G} = 2g(B) - 2 + l$. Furthermore, $\operatorname{Kod}(\widetilde{\mathcal{G}}) = -\infty$ iff $B \cong \mathbb{P}^1$ and $\sum_{1 \leq i \leq l} \left(1 - \frac{1}{n_i}\right) < 2$. In this case, \mathcal{G} is algebraic and n_i 's satisfy one of the following conditions:

(1) $l \le 2;$ (2) $l = 3, n_1 = n_2 = 2;$ (3) $l = 3, n_1 = 2, n_2 = 3, n_3 \le 5.$

Proof. Let m(G) be the sum of the multiplicities of the singularities of G. From [Bru15, Proposition 2.1], one has

$$m(\mathcal{G}) = K_{\mathcal{G}}^2 - K_{\mathcal{G}}K_Y + c_2(Y) = 2\deg \mathcal{G} + 4 - 4g(B).$$

Under our assumption, we have also $m(\mathcal{G}) = 2l$. Thus

$$\deg \mathcal{G} = 2g(B) - 2 + l.$$

From (2.2), $K_{\widetilde{\mathcal{G}}}$ is not pseudo-effective iff deg $\mathcal{G} < \sum_{1 \le i \le l} \frac{1}{n_i}$, that is,

$$2g(B) - 2 + \sum_{1 \le i \le l} \left(1 - \frac{1}{n_i}\right) < 0.$$

The above inequality holds iff g(B) = 0 and $\sum_{1 \le i \le l} \left(1 - \frac{1}{n_i}\right) < 2$. In this case, it's algebraic from Miyaoka Theorem [Miy85].

The latter consequence is from a straightforwards computation.

Similarly, one can get the following result.

Lemma 2.6. The Kodaira dimension $kod(\widetilde{G}) = 0$ iff either

- (I) *B* is a smooth elliptic curve and *G* is a suspension of a representation $\mu : \pi_1(B) \rightarrow Aut(\mathbb{P}^1)$ (see [Bru15, Proposition 6.6]) or
- (II) $B \cong \mathbb{P}^1$ and one of the following cases occurs:
 - (1) l = 3 and $(n_1, n_2, n_3) = (3, 3, 3);$
 - (2) l = 3 and $(n_1, n_2, n_3) = (2, 4, 4);$
 - (3) l = 3 and $(n_1, n_2, n_3) = (2, 3, 6);$
 - (4) l = 4 and $(n_1, n_2, n_3, n_4) = (2, 2, 2, 2)$.

2.2. Foliations induced by fibrations. Let $f : X \to C$ be a minimal normal-crossing fibration of genus $g \ge 1$ with singular fibers F_1, \ldots, F_s . From [Bru15, p.21, p.62], f gives a relative minimal foliation \mathcal{F} with a canonical divisor

(2.3)
$$K_{\mathcal{F}} = K_{X/C} - \sum_{i=1}^{s} (F_i - F_{i,\text{red}})$$

where $F_{i,red}$ is the reduce part of F_i . Since $g \ge 1$, $K_{\mathcal{F}}$ is pseudoeffective (see [Bru15, Theorem 7.1]). $K_{\mathcal{F}}$ gives a Zariski decomposition $K_{\mathcal{F}} = P + N$ where N consists of some Hirzebruch-Jung branches lying the fibers of f ([Ser92, Theorem 3.4]).

The fibration f is said to be *isotrivial* if all smooth fibers are isomorphic to a fixed smooth curve. By [Ser92] or [Bru15, § 9.2], one has

Lemma 2.7. Let f, \mathcal{F} be as above and $kod(\mathcal{F})$ be the Kodaira dimension.

- (1) $\operatorname{kod}(\mathcal{F}) = 0$ iff *f* is an isotrivial elliptic fibration;
- (2) $\operatorname{kod}(\mathcal{F}) = 1$ iff *f* is either non-isotrivial (g = 1) or isotrivial (g > 1).
- (3) $\operatorname{kod}(\mathcal{F}) = 2$ iff *f* is a non-isotrivial fibration of genus g > 1.

Corollary 2.8. If $kod(\mathcal{F}) = 1$, then |mP| (for $m \gg 0$) as a base point free linear system gives a fibration $\varphi : X \to B$ with $P \sim \gamma F'$ ($\gamma \in \mathbb{Q}^+$) for a general fiber F' of φ .

Furthermore, f coincides with φ *if and only if g* = 1.

Proof. The first part of this corollary is trivial.

From [Ser92, Theorem 3.4], N consists of Hirzebruch-Jung branches in all singular fibers of f. So NF = 0 for a general fiber F of f. By (2.3), one gets

$$PF = K_{\mathcal{F}}F = 2g - 2.$$

If g > 1, then PF > 0. So *F* is a horizontal curve in the fibration $\varphi : X \to B$. If g = 1, then PF = 0 implies that F'F = 0, i.e., $\varphi = f$.

For an isotrivial fibration f, each singular fiber F can be written as follows

(2.4)
$$F = \gamma \left(\Gamma + \sum_{i=1}^{b} \Theta_{i} \right)$$

where Θ_i 's are disjoint Hirzebruch-Jung branches, Γ is a smooth curve of genus g' meeting transversely with each Θ_i at one point, γ (> 1) is the order of the topology monodromy of the fiber germ (f, F) (see [GLT16, p. 88]). The component Γ is said to be *principal* (see [Xia90, p. 383]).

Let F_1, \ldots, F_s be the singular fibers of f with principal components $\Gamma_1, \ldots, \Gamma_s$ and the orders of topology monodromy $\gamma_1, \cdots, \gamma_s$ respectively. Set d = FF'.

Corollary 2.9. Under the notations and assumptions in Corollary 2.8, one has

$$\frac{2g(F') - 2}{d} = 2g(C) - 2 + \sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i}\right)$$

whenever g > 1.

Proof. From Corollary 2.8, $P \sim \gamma F'$ ($\gamma \in \mathbb{Q}^+$) and hence PF' = 0. Since PN = 0, one has F'N = 0. So $F'K_{\mathcal{F}} = PF' + NF' = 0$.

By (2.4), the support of $F_i - \gamma_i \Gamma_i$ consists of some Hirzebruch-Jung branches of F_i . Since all Hirzebruch-Jung branches lie in N and NF' = 0, one gets $(F_i - \gamma_i \Gamma_i)F' = 0$, i.e., $F_iF' = \gamma_i \Gamma_i F'$. Similarly, one has also $F_{i,red}F' = \Gamma_i F'$.

Thus we obtain

(2.5)
$$\sum_{i=1}^{s} (F_i - F_{i, \text{red}}) F' = d \sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i} \right).$$

Since $K_X F' = 2g(F') - 2$, one has

(2.6)
$$K_{X/C}F' = 2g(F') - 2 - (2g(C) - 2)FF'.$$

Combining (2.3), (2.5), (2.6) and $K_{\mathcal{F}}F' = 0$, one gets (4.1).

Corollary 2.10. The isotrivial fibration $f: X \to \mathbb{P}^1$ of genus g > 1 satisfying $\sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i}\right) < 2$ (i.e., the conditions in Lemma 2.5) is a Riccati fibration.

Proof. By Corollary 2.9, $F' \cong \mathbb{P}^1$, i.e., $\varphi : X \to B$ in Corollary 2.8 is a ruled surface. So $K_{\mathcal{F}}F' = 0$, namely, \mathcal{F} is a Riccati foliation.

For an elliptic fibration on a birationally ruled surface, we have the following well-known result (see [Xia92, Theorem 3.2.4] or [FM94, Proposition 3.23]).

Lemma 2.11. Let $f : X \to C$ be an elliptic fibration with $kod(X) = -\infty$ and F_1, \ldots, F_k be the multiple fibers with the multiplicities $m_1 \leq \cdots \leq m_k$ respectively. Then $C \cong \mathbb{P}^1$ and one of the following cases holds:

- (1) $\chi(O_X) = 0$ (*i.e.*, all singular fibers of f are multiple fibers), k = 0 or k = 2 and $m_1 = m_2$. In this case, X is a minimal elliptic ruled surface.
- (2) $\chi(O_X) = 1, k \le 1$. In this case, X is a rational surface. In particular, if k = 1 and f is relatively minimal, then $F_1 \equiv_{\text{linear}} -m_1 K_X$.

8

A fibration $f: X \to \mathbb{P}^1$ with 2 singular fibers is isotrivial from [Bea81] (also see [GLT16]). In particular, such an elliptic fibration can be classified as follows (see [Tan10, Theorem 3.2], [Hir85] or [MP86]).

Lemma 2.12. Let $f: X \to \mathbb{P}^1$ be an elliptic fibration with 2 singular fibers. Then f is isomorphic to one of the following families.

- (I) $X = (E \times \mathbb{P}^1)/\mathbb{Z}_n$ where E is an elliptic curve and the n-cyclic group $\mathbb{Z}_n = \{\sigma^k\}$ acts on $E \times \mathbb{P}^1$ by $\sigma^k(p, [x, y]) = (p + k\delta, [x, \xi^k y]);$ (I*) $y^2 = \lambda(x^3 + x + c) (4 + 27c^2 \neq 0)$ or $y^2 = \lambda(x^3 + 1);$
- (II) $y^2 = x^3 + \lambda;$
- (II) $y^2 = x^3 + \lambda x;$ (III) $y^2 = x^3 + \lambda x;$ (IV) $y^3 = x^3 + \lambda x.$

The types of the singular fibers are respectively (nI_0, nI_0) , (I_0^*, I_0^*) , (II, II^*) , (III, III^*) , $(IV, IV^*).$

Remark 2.13. In case (I) of Lemma 2.12, X is a minimal elliptic ruled surface by Lemma 2.11. So the foliation \mathcal{F} induced by f is a Riccati foliation w.r.t. the ruling map. It has no singularity and is a non-trivial holomorphic vector field with $kod(\mathcal{F}) = 0$. By [Bru15, Theorem 6.6], \mathcal{F} is a suspension of a representation $\rho : \pi_1(Alb(X)) \to Aut(\mathbb{P}^1)$.

3. RICCATI FOLIATIONS ON A RATIONAL SURFACE

All notations and assumptions in Sec. 2.1 are adopted. In this section, we consider the case that X is a rational surface, i.e., $\varphi : Y(= \mathbb{F}_e) \to B(= \mathbb{P}^1)$ is a Hirzebruch surface of degree *e*. In this case, deg $\mathcal{G} = l - 2$ by Lemma 2.5.

Let Γ_{∞} be a tautological section with $\Gamma_{\infty}^2 = -e$ and F be a general fiber of φ . Let x (resp., y) be the coordinate of B (resp., F). We assume that Γ_{∞} is defined by $y = \infty$. Let F_1, \ldots, F_l be the *G*-invariant fiber of φ . Without loss of generality, we assume $F_l = \varphi^{-1}(\infty)$ whenever l > 0.

Remark 3.1. The birational map $\sigma : (X, \mathcal{F}) \rightarrow (Y, \mathcal{G})$ can be realized as a Möbius transformation

$$y = \frac{a\overline{y} + b}{c\overline{y} + d}, \quad a, b, c, d \in \mathbb{C}(x), \ ad - bc \neq 0,$$

where \bar{y} is the coordinate of a general fiber of $\varphi_0 : X \to B$. Moreover, it can be decomposed into more simple transformations: $y = (x - r)^{\pm 1} \cdot \overline{y}$ (i.e., flipping map), $y = s\overline{y} + r$ and $y = \frac{1}{\overline{y}}$ $(r, s \in \mathbb{C}, s \neq 0).$

3.1. Discriminant of a Riccati foliation.

Lemma 3.2. Under our assumptions, we have

- (1) if Γ_{∞} is not *G*-invariant, then $l \ge 2 + e$ and the equality holds iff Γ_{∞} transverses to G;
- (2) if Γ_{∞} is *G*-invariant, then $l \ge 2e$ and the equality holds iff either l = e = 0 or each singularity $p_i = \Gamma_i \cap F_i$ has an eigenvalue $-\frac{1}{2}$ (i = 1, ..., l).

Moreover, we have always $l \neq 1$ *.*

Proof. (1) By Lemma 2.5, $K_{\mathcal{G}}\Gamma_{\infty} = \deg \mathcal{G} = l - 2$. If Γ_{∞} is not \mathcal{G} -invariant, then

(3.1)
$$K_{\mathcal{G}}\Gamma_{\infty} = \operatorname{tang}(\mathcal{G}, \Gamma_{\infty}) + e \ge e,$$

i.e., $l \ge 2 + e \ge 2$, and the first equality holds iff Γ_{∞} transverse to \mathcal{G} from [Bru15, Proposition 2.2].

(2) Assume that l > 0. If Γ_{∞} is *G*-invariant, then

$$-e = \sum_{1 \le i \le l} \frac{m_i}{n_i}$$

where $\frac{m_i}{n_i}$ is the eigenvalue of the singularity $p_i = F_i \cap \Gamma_{\infty}$ (i = 1, ..., l) from Camacho-Sad formula ([CS82, Suw98]). Note that $|\frac{m_i}{n_i}| \le \frac{1}{2}$. Thus $e \le \frac{l}{2}$ and the equality holds iff each $\frac{m_i}{n_i} = -\frac{1}{2}$. If l = 1, $e = -\frac{m_1}{n_1}$ is not an integer, a contradiction. So $l \ne 1$. Similarly, in case of l = 0, the Camacho-Sad formula implies e = 0.

Corollary 3.3. If l = 0, then G is defined by $\omega = dy$ w.r.t. the first projection

 $\varphi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1, \quad (x, y) \to x.$

Proof. From Lemma 3.2, e = 0 and Γ_{∞} is *G*-invariant. Since l = 0, *G* is algebraic (Lemma 2.5). In this case, the Riccati fibration $f: Y \to C$ induced by G is smooth.

For any irreducible *G*-invariant component $\Gamma(\neq \Gamma_{\infty})$, one can claim that $\Gamma_{\infty}\Gamma = 0$. If not, their intersections give at least one singularity of G and hence there is a G-invariant fiber of φ passing through it, a contradiction. So Γ is defined by y = c for some $c \in \mathbb{C}$.

Therefore f is exactly the second projection

$$f: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1, \quad (x, y) \to y$$

Namely, \mathcal{G} can be defined by $\omega = dy$.

In what follows, we assume that $l \ge 2$. From Lemma 3.2, we have always $l \ge e + 1$.

Lemma 3.4. Each Riccati foliation \mathcal{F} has an expression (1.1) or (1.2) satisfying

- (1) $p, q_i \in \mathbb{C}[x]$ (*i.e.*, $g_i \in \mathbb{C}(x)$) for i = 0, 1, 2;
- (2) Γ_{∞} is *G*-invariant iff $q_0 = 0$ (i.e., $g_0 = 0$);
- (3) if \mathcal{F} is a standard form, then p has no multiple root (i.e., the order of each pole of g_i 's on $\mathbb{P}^1 - \{\infty\}$ is 1) and deg $q_i < \deg p + (i-1)e$ (i.e., deg $g_i := \deg q_i - \deg p < i$ (i-1)e for i = 0, 1, 2.

Proof. From Remark 3.1, it's enough to consider the standard form *G*.

It's well known that ω is a section of $V := H^0(Y, \Omega_Y \otimes O_Y(N_G))$ where

$$N_{\mathcal{G}} := K_{\mathcal{G}} - K_Y = 2\Gamma_{\infty} + (l+e)F$$

is the normal bundle of \mathcal{G} (see [Bru15]). One can construct a subspace V' of V consisting of the following differential forms

$$\omega = \sum_{i=0}^{2} q_i(x) y^{2-i} dx - p(x) dy + c x^{l-1} (ey dx - x dy), \quad q_i, p \in \mathbb{C}[x], \ c \in \mathbb{C},$$

where deg $q_i \leq l-2 + (i-1)e$ (i = 0, 1, 2) and deg $p \leq l-1$. It's easy to see that $\dim V' = 4l - 2.$

We will claim V = V'. For this purpose, we need compute dim V. Consider the exact sequence

$$0 \longrightarrow \varphi^* \Omega_B \otimes \mathcal{O}_Y(N_{\mathcal{G}}) \longrightarrow \Omega_Y \otimes \mathcal{O}_Y(N_{\mathcal{G}}) \longrightarrow \Omega_{Y/B} \otimes \mathcal{O}_Y(N_{\mathcal{G}}) \longrightarrow 0$$

where $\Omega_{Y/B} = O_Y(-2\Gamma_{\infty} - eF)$ be the relatively canonical sheaf of φ . By Leray spectral sequence and $R^1 \varphi_* O_Y(2\Gamma_\infty) = 0$, one has

$$h^{k}(Y,\varphi^{*}\Omega_{B}\otimes O_{Y}(N_{\mathcal{G}}))=h^{k}(B,\varphi_{*}O_{Y}(2\Gamma_{\infty})\otimes O_{B}(l+e-2)),\ k=0,1.$$

Since $\varphi_* O_Y(2\Gamma_\infty) = O_B \oplus O_B(-e) \oplus O_B(-2e)$ and $l \ge e+1$, we get

$$h^1(Y, \varphi^*\Omega_B \otimes O_Y(N_G)) = 0, \quad h^0(Y, \varphi^*\Omega_B \otimes O_Y(N_G)) = 3l - 3.$$

Note $h^0(\Omega_{Y/B} \otimes O_Y(N_G)) = h^0(Y, O_Y(lF)) = l + 1$, we obtain

$$\dim V = h^0(Y, \varphi^* \Omega_B \otimes \mathcal{O}_Y(N_G)) + h^0(\Omega_{Y/B} \otimes \mathcal{O}_Y(N_G)) = 4l - 2$$

Now we investigate the neighbourhood near by $F_l = \varphi^{-1}(\infty)$. Take a coordinate transformation $(x, y) = (\frac{1}{t}, \frac{u}{t^e})$. We get the expression of ω in the neighbourhood as follows:

$$\tilde{\omega} = -\sum_{i=0}^{2} \tilde{q}_i y^{2-i} dt + \tilde{p}(eudt - tdu) - cdu,$$

where $\tilde{q}_i := q_i t^{l-2+(i-1)e}$ (i = 0, 1, 2) and $\tilde{p} := pt^{l-1}$ are still polynomials in $\mathbb{C}[x]$. Note that \mathcal{G} -invariant fiber F_l is defined by t = 0. So c = 0. Thus we get the expression (1.1) with coefficients $q_i, p \in \mathbb{C}[x]$ (i.e., g_i 's are in $\mathbb{C}(x)$).

Let $x = a_i$ be the equation of F_i (i = 1, ..., l - 1). Since F_i 's are \mathcal{G} -invariant, $x = a_1, ..., a_{l-1}$ are the roots of p. Note that deg $p \le l - 1$. So deg p = l - 1 and p has no multiple root.

Take $y = \frac{1}{y}$. One get the differential form

$$\tilde{\omega} = \sum_{i=0}^{2} q_i v^i dt + p dv$$

Note that Γ_{∞} is defined by v = 0. Thus Γ_{∞} is *G*-invariant iff $v \mid q_0(x)$ (i.e., $q_0 = 0$).

For convenience, we usually replace the expression (1.1) by (1.2). We define the discriminant of ω as in (1.4). Let $(\overline{X}, \overline{\mathcal{F}})$ be a Riccati foliation w.r.t. $\overline{\varphi} : \overline{X} \to \mathbb{P}^1$ and

$$\bar{\omega} = (\bar{g}_0 \bar{y}^2 + \bar{g}_1 \bar{y} + \bar{g}_0) dx - d\bar{y}$$

be the differential form of $\overline{\mathcal{F}}$.

Lemma 3.5. Assume that $g_0\bar{g}_0 \neq 0$. Then $\Delta(\omega) = \Delta(\bar{\omega})$ iff there is a birational map $\sigma : (\overline{X}, \overline{\mathcal{F}}) \rightarrow (X, \mathcal{F})$ defined by an affine transformation as in (1.5).

Proof. (\Rightarrow) By a transform

$$y = \frac{z}{g_0} - \frac{1}{2g_0} \left(g_1 + \frac{g'_0}{g_0} \right) \quad \left(\text{resp., } \bar{y} = \frac{z}{\bar{g}_0} - \frac{1}{2\bar{g}_0} \left(\bar{g}_1 + \frac{\bar{g}'_0}{\bar{g}_0} \right) \right),$$

one gets a Riccati foliation defined by

$$\omega' = (z^2 + \Delta)dx - dz$$

where $\Delta := \Delta(\omega) = \Delta(\tilde{\omega})$. Hence a birational map $\sigma : (\overline{X}, \overline{\mathcal{F}}) \to (X, \mathcal{F})$ can be obtained by the transformation

$$y = \frac{\bar{g}_0}{g_0}\bar{y} - \frac{1}{2g_0}\left(g_1 - \bar{g}_1 + \frac{g_0'}{g_0} - \frac{\bar{g}_0'}{\bar{g}_0}\right).$$

(⇐) By Remark 3.1, it's enough to consider the transformations: $y = (x - r)^{\pm 1}\bar{y}$ and $y = s\bar{y} + r$ ($s, r \in \mathbb{C}, s \neq 0$).

Take a transformation $y = (x - r)\overline{y}$. One has

$$\bar{g}_0 = g_0(x-r), \quad \bar{g}_1 = g_1 - \frac{1}{x-r}, \quad \bar{g}_2 = \frac{g_2}{x-r}.$$

From a straightforwards computation, we get $\Delta(\bar{\omega}) = \Delta(\omega)$. The other cases can also be checked similarly.

Example 3.6. Consider a standard form \mathcal{F} w.r.t. $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ with three \mathcal{F} -invariant fibers. By choosing a proper coordinate, we can assume that

(1) F_1 , F_2 and F_3 are defined by x = 0, x = 1 and $x = \infty$ respectively;

(2) $p_1 = (0, \infty), p_2 = (1, 0)$ are singularities of \mathcal{G} with eigenvalues λ_1, λ_2 respectively. Firstly, we consider the case that the sections $\Gamma_{\infty} : y = \infty$ and $\Gamma_0 : y = 0$ passe through both singularities on F_3 . In this case, both sections are \mathcal{G} -invariant. If not, $1 = K_{\mathcal{G}}\Gamma = \tan(\mathcal{G}, \Gamma) \ge 2$ for $\Gamma = \Gamma_{\infty}$ or Γ_0 , a contradiction. So

(3.3)
$$\omega = \left(\frac{-\lambda_1}{x} + \frac{\lambda_2}{x-1}\right)ydx - dy$$

and the eigenvalue λ_3 of the singularity $p_3 = \Gamma_{\infty} \cap F_3$ satisfies $\lambda_1 - \lambda_2 + \lambda_3 = 0$ by Camacho-Sad formula. In particular, the foliation is an algebraic one of type A.

In what follows, we assume there is a singularity on F_3 , says p_3 , outside of Γ_{∞} and Γ_0 . By choosing a proper coordinate, we can take $p_3 = (\infty, -1)$ with eigenvalue λ_3 . From Lemma 3.4, we get

(3.4)
$$\omega = \left(\frac{\lambda_2 - \lambda_1 + \lambda_3}{2(x-1)}y^2 + \left(\frac{-\lambda_1}{x} + \frac{\lambda_2}{x-1}\right)y + \frac{\lambda_2 - \lambda_1 - \lambda_3}{2x}\right)dx - dy.$$

Hence

$$\Delta(\omega) = \frac{1}{4} \left(\frac{1 - (\lambda_1 - 1)^2}{x^2} + \frac{1 - \lambda_2^2}{(x - 1)^2} + \frac{(\lambda_1 - 1)^2 + \lambda_2^2 - \lambda_3^2 - 1}{x(x - 1)} \right).$$

3.2. **Riccati foliations with Kodaira dimension** $-\infty$. Let \mathcal{F} be a Riccati foliation with $\operatorname{kod}(\mathcal{F}) = -\infty$. In this case, it's algebraic from Miyaoka Theorem [Miy85]. By Lemma 2.5, the rational fibration φ : $Y(=\mathbb{F}_e) \to B(=\mathbb{P}^1)$ adapted to the standard form \mathcal{G} is a Hirzebruch surface of degree *e*.

Lemma 3.7. We have $e \le 1$. Furthermore, up to a flipping map, we can assume always that e = 0.

Proof. It's easy to see that $e \le 1$ and $l \le 3$ from Lemma 2.5 and Lemma 3.2.

Now we consider the case of e = 1. We hope to find a singularity with eigenvalue $\frac{1}{2}$ outside Γ_{∞} . Then we can make a flipping map by blowing-up the singularity with eigenvalue $\frac{1}{2}$ and get a new standard form of \mathcal{F} w.r.t. the projection $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$. For this purpose, we consider the following two cases.

Case 1. Γ_{∞} is not *G*-invariant.

From Lemma 3.2, l = 3 and Γ_{∞} transverses to \mathcal{G} . In this case, there is a \mathcal{G} -invariant fiber of type $I_{\frac{1}{2}}$ by Lemma 2.5. Hence Γ_{∞} doesn't pass through both singularities in such an fiber.

Case 2. Γ_{∞} is *G*-invariant.

Lemma 3.2 implies l = 2 and Γ_{∞} passes through two singularities with eigenvalues $-\frac{1}{2}$ precisely. Namely, the singularities with eigenvalues $\frac{1}{2}$ are outside Γ_{∞} .

In what follows, we assume that e = 0, i.e., $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ is a projection satisfying $\varphi(x, y) = x$ where (x, y) is the coordinate of $\mathbb{P}^1 \times \mathbb{P}^1$. Let Γ_{∞} (resp., Γ_0) be the section of φ defined by $y = \infty$ (resp., y = 0).

Corollary 3.8. If l = 2, then G can be defined by $\omega = \lambda y dx - dy$ up to a suitable coordinate.

Proof. One can choose a suitable coordinate such that the \mathcal{G} -invariant fibers of φ , says F_0, F_∞ , are defined by $x = 0, \infty$ respectively. Furthermore, we can also assume that Γ_∞ and Γ_0 passes through the singularities in F_0 respectively.

We claim that Γ_{∞} is *G*-invariant. If not, one has $tang(\mathcal{G}, \Gamma_{\infty}) \ge 1$ by our assumption. So (3.1) implies $l \ge 3$, a contradiction. Similarly, Γ_0 is also *G*-invariant. Thus we get $\omega = \lambda y dx - x dy$ from Lemma 3.4.

Proof of Theorem 1.3. The case for $l \le 2$ is from Corollary 3.3 and Corollary 3.8.

In what follows, we assume that l = 3. In this case, (n_1, n_2, n_3) satisfies Lemma 2.5 and so $n_1 = 2$. One can find that Γ_{∞} (resp., Γ_0) is not *G*-invariant and passes at most one singularity of *G* from (3.1) and (3.2).

By choosing a suitable coordinate, one can assume that \mathcal{F} has a differential form ω as in Example 3.6 with $(\lambda_1, \lambda_2, \lambda_3) = (\frac{1}{2}, \frac{1}{n_2}, \frac{m}{n_3})$ where $0 < m \le \frac{n_3}{2}$ and $(m, n_3) = 1$.

If $n_2 = 2$, then

$$\omega = (\lambda_3 x y^2 + y - \lambda_3 (x - 1))dx - 2x(x - 1)dy.$$

By replaceing y by $\frac{y}{\lambda_3}$, one gets an expression as in Theorem 1.3 (3). If $n_2 = 3$, then ω is as in Theorem 1.3 (4)–(7).

Let $f : X \to C$ be a Riccati fibration of genus $g \ge 1$ and \mathcal{F} be the Riccati foliation induced by f with respect to a rational fibration. Without loss of generality, we assume that f is a minimal normal-crossing fibration whose singular fibers are F_1, \ldots, F_s with principal components $\Gamma_1, \ldots, \Gamma_s$ respectively.

Let (Y, \mathcal{G}) be the standard form of (X, \mathcal{F}) w.r.t. a minimal rational fibration $\varphi : Y \to B$ and $\rho : (\widetilde{Y}, \widetilde{\mathcal{G}}) \to (Y, \mathcal{G})$ be the relatively minimal standard form w.r.t. a rational fibration $\tilde{\varphi} = \varphi \rho : \widetilde{Y} \to B$ as in Sec. 2.1. Under our assumption, $(\widetilde{Y}, \widetilde{\mathcal{G}}) = (X, \mathcal{F})$. Since $g \ge 1$, there is a Zariski decomposition $K_{\widetilde{\mathcal{G}}} = P + N$.

Let F'_1, \ldots, F'_l be the *G*-invariant fibers of *G* and take $n_i = n_{F'_i}$ $(i = 1, \ldots, l)$ where $n_{F'_i}$ is defined as in Sec 2.1. We set d = FF'.

4.1. Proof of Theorem 1.4.

Lemma 4.1. Any Riccati fibration is isotrivial. Furthermore, the rational fibration $\tilde{\varphi}$ coincides with the fibration given by |mP| as in Corollary 2.8 whenever g > 1.

Proof. It's enough to consider the case of $kod(\widetilde{\mathcal{G}}) = 1$ by Lemma 2.7 and $kod(\widetilde{\mathcal{G}}) \le 1$.

Let $\varphi' : \widetilde{Y} \to B$ be the fibration given by |mP| and F' be a general fiber of φ' . Take a general fiber \widetilde{F} of $\tilde{\varphi}$. One has $K_{\widetilde{G}}\widetilde{F} = 0$ since \widetilde{G} is a Riccati foliation. Noting that both P and \widetilde{F} are nef, it implies that $P\widetilde{F} = N\widetilde{F} = 0$. Hence $\widetilde{F}F' = 0$ for any fiber F' of φ' by Corollary 2.8. So $\tilde{\varphi} = \varphi'$. It implies that g > 1 by Corollary 2.8 again. Therefore f is isotrivial from Lemma 2.7

Let γ_i be the order of topology monodromy of F_i (i = 1, ..., s).

Lemma 4.2. Take a general fiber F' (resp., F) of $\tilde{\varphi}$ (resp., f). We have

(4.1)
$$-\frac{2}{d} = 2g(C) - 2 + \sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i}\right),$$

(4.2)
$$\frac{2g-2}{d} = 2g(B) - 2 + \sum_{i=1}^{l} \left(1 - \frac{1}{n_i}\right).$$

In particular, the first equality implies that $C \cong \mathbb{P}^1$ and $\sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i}\right) = 2 - \frac{2}{d} < 2$.

Proof. If g > 1, then (4.1) is from Lemma 4.1, Corollary 2.9 and g(F') = 0. Now we investigate the case of g = 1. Since f is isotrivial, one has P = 0 by Lemma 2.7. So $NF' = K_{\mathcal{F}}F' = 0$. Thus one can get (4.1) by a similar proof of Corollary 2.9.

From (2.3), $K_{\tilde{G}}F = 2g - 2$. Combining (2.2), Lemma 2.5 and NF = 0, one gets

$$K_{\widetilde{\mathcal{G}}}F = \left(2g(B) - 2 + \sum_{i=1}^{l} \left(1 - \frac{1}{n_i}\right)\right)FF'.$$

Thus (4.2) is obtained.

Proof of Theorem 1.4. Assume that *f* is a Riccati fibration. By Lemma 4.2, we have $\sum_{i=1}^{s} \left(1 - \frac{1}{\gamma_i}\right) < 2$. It implies that *f* occurs in one of the cases in Theorem 1.4 by a computation as in Lemma 2.5.

Conversely, for any isotrivial fibration $f: S \to C \cong \mathbb{P}^1$ of genus g > 1 occurring in one of the cases in Theorem 1.4, Corollary 2.10 implies that it is a Riccati fibration. \Box

From the proof of Lemma 4.2, we have

Corollary 4.3. Each principal components Γ_i of F_i (i = 1, ..., s) satisfies $\Gamma_i F' = \frac{d}{\gamma_i}$. In particular, for a Riccati fibration of type A_n , both Γ_i 's are sections of $\tilde{\varphi}$. Conversely, if a principal component of a Riccati fibration is a section of the corresponding ruling map, then it is of type A_n .

Similarly, $\Theta_{F'_i}F = \frac{d}{n_i}$ where $\Theta_{F'_i}$ is the (-1)-curve as in (2.1). Therefore we have always $\gamma_i \mid d$ and $n_i \mid d$.

4.2. Algebraic Riccati Foliation with Kodaira Dimension Zero. In this section, we will consider the case of algebraic Riccati foliation with Kodaira Dimension Zero (i.e., $kod(\tilde{\mathcal{G}}) = 0$). From Lemma 2.7 and Theorem 1.4, $f : X \to C \cong \mathbb{P}^1$) is an isotrivial elliptic fibration occurring in one of the cases in Theorem 1.4.

If s = 0, f is trivial, i.e., $f : X = E \times \mathbb{P}^1 \to \mathbb{P}^1$. If s = 2, then f occurs in one of the cases in Lemma 2.12.

In what follows, we assume that s = 3. In this case, the rational fibration $\varphi : Y \to B$ adapted to \mathcal{G} gives s a rational ruled surface (namely, $B \cong \mathbb{P}^1$ and $Y = \mathbb{F}_e$) by Lemma 2.11. Therefore \mathcal{G} occurs in one of the cases in Lemma 2.6 (II):

- (1) l = 3 and $(n_1, n_2, n_3) = (3, 3, 3)$;
- (2) l = 3 and $(n_1, n_2, n_3) = (2, 4, 4);$
- (3) l = 3 and $(n_1, n_2, n_3) = (2, 3, 6);$
- (4) l = 4 and $(n_1, n_2, n_3, n_4) = (2, 2, 2, 2)$.

We exclude the case (2) firstly. Since $n_1 = 4$, the eigenvalues of the singularities on F'_1 are $\pm \frac{1}{4}$. So F'_1 gives two $\tilde{\mathcal{G}}$ -chains: a (-4)-curve and a Hirzebruch-Jung chain consisting of four (-2)-curves. It implies that f contains two singular fibers of type *III* and *III** respectively (cf. [BHPV04, Ch. V, Sec. 7]). Thus $\gamma_1 = \gamma_2 = 4$, a contradiction to Lemma 4.2. So the case (2) doesn't occur.

Similarly, one can also exclude the case (3).

Lemma 4.4. In case (1), up to a proper coordinate, G can be determined uniquely by a differential form

(4.3)
$$\omega = (3y^2 - 2xy - 1)dx - 6(x^2 - 1)dy$$

on $\mathbb{P}^1 \times \mathbb{P}^1$.

Proof. Let (x, y) be the coordinate of $Y = \mathbb{F}_e$ such that $y = \infty$ is a tautological section Γ_{∞} of φ with $\Gamma_{\infty}^2 = -e$ and $x = \pm 1, \infty$ are all *G*-invariant fibers. Furthermore, we assume that $(x, y) = (\infty, 0)$ is a singularity with eigenvalue $\frac{1}{3}$.

By our assumption and Corollary 4.3, Γ_{∞} is not \mathcal{G} -invariant. So $e \le 1$ by Lemma 3.2. We will exclude the case for e = 1. Suppose that e = 1. By choosing a suitable coordinate, we can assume (x, y) = (1, 0) is another singularity with eigenvalue $\frac{1}{3}$. From Lemma 3.4 and our assumptions, one has

$$\omega = (ay^2 + 4xy + b(x - 1))dx - 6(x^2 - 1)dy$$

for some $a, b \in \mathbb{C}$ ($a \neq 0$). Since the eigenvalues of both singularities on the fiber x = -1 are $\pm \frac{1}{3}$, one gets that b = 0. So y = 0 defines a *G*-invariant section, a contradiction. Thus we have e = 0.

Without loss of generality, we can choose a suitable coordinate *y* on a general fibe rof φ such that $(x, y) = (\infty, \infty), (\infty, 0), (1, 1)$ are singularities of \mathcal{G} with eigenvalues $-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ respectively. Thus one gets (4.3) by Lemma 3.4.

Now we investigate the case (4). In this case, $(\gamma_1, \gamma_2, \gamma_3) = (2, 2, n)$. More precisely, the singular fibers of f are type I_0^* , I_0^* and nI_0 respectively. For the surface $Y = \mathbb{F}_e$, one has $e \le 2$ by Lemma 3.2. By choosing some proper flipping maps, we can always assume that e = 0. Furthermore, we can assume that the \mathcal{G} -invariant fibers are $x = 0, 1, \lambda, \infty$ ($\lambda \ne 0, 1$).

We state the following result which will be proved in Sec.5.3.

Lemma 4.5. In case (4), up to a suitable coordinate and an affine transform (1.5), \mathcal{F} can be determined by a differential form

$$\omega = \frac{\psi'}{\psi(\psi-1)}(y^2 + n(\psi-1)y - \psi)dx - 2ndy$$

where $\psi = \frac{xf^2}{(x-1)(x-d)g^2}$ $(f, g \in \mathbb{C}[x])$ satisfies

$$xf^2 - (x-1)(x-\lambda)g^2 = h^n$$

for some $h \in \mathbb{C}[x]$.

Proof of Theorem 1.8. It's from the above discussions, Lemma 4.4 and Lemma 4.5.

5. RICCATI FIBRATIONS ON A RATIONAL SURFACE.

In this section, we investigate a Riccati fibration $f: X \to C$ on a rational ruled surface $\varphi_0: X \to B(=\mathbb{P}^1)$. We adopt all notations and assumptions in Sec. 4.

Let Γ_{∞} be a tautological section of the Hirzebruch surface $\varphi : Y(=\mathbb{F}_e) \to B(=\mathbb{P}^1)$ of degree e with $\Gamma_{\infty}^2 = -e$ and F' be a general fiber of $\tilde{\varphi}$. Take a general fiber F of f and d = FF'.

Let x (resp., y) be the coordinate of $B = \mathbb{P}^1$ (resp., F'). We assume that Γ_{∞} is defined by $y = \infty$ and Γ_0 is a section defined by y = 0. Each *G*-invariant fiber F'_i (i = 1, ..., l) is of type $I_{\frac{m_i}{n_i}}$ $(0 < \frac{m_i}{n_i} \le \frac{1}{2})$ and is defined by $x = a_i$ (for i < l) or $x = \infty$ (for i = l) respectively.

Let $D_i = \rho(\Gamma_i)$ where Γ_i is the principal component of the singular fiber F_i of f with the order γ_i of periodic topology monodromy (i = 1, ..., s). Let $f_i \in \mathbb{C}[x, y]$ be the local equation of $D_i = \operatorname{div}(f_i)$ in $Y (i = 1, \dots, s)$.

5.1. Some lemmas. Note that $\rho(F_i)$ is a sum of D_i and some *G*-invariant fibers of φ , that is, $\rho_*F_i = \operatorname{div}(u_i f_i^{\gamma_i})$ for some $u_i \in \mathbb{C}[x]$. Since $f: X \to \mathbb{P}^1$ is a pencil of curves, f is determined by the family of the curves on Y.

$$C_t: u_1 f_1^{\gamma_i} - t u_2 f_2^{\gamma_2} = 0, \quad \forall t \in \mathbb{P}^1$$

Without loss of generality, we can assume that $C_1 = \rho_* F_3$ whenever s = 3. Thus one gets the relation between f_i 's:

(5.1)
$$u_1 f_1^{\gamma_1} - u_2 f_2^{\gamma_2} = u_3 f_3^{\gamma_3}.$$

Set $f_i = v_i h_i$ (i = 1, ..., s) where $v_i \in \mathbb{C}[x]$ and $h_i \in K[y]$ $(K := \mathbb{C}(x))$ with the leading coefficient 1 as a polynomial of y. Take $\psi := \frac{u_1 v_1^{\gamma_1}}{u_2 v_2^{\gamma_2}}$. Thus the above relation can be rephrase as follows.

(5.2)
$$\psi h_1^{\gamma_1} - h_2^{\gamma_2} = (\psi - 1)h_3^{\gamma_3}, \quad \psi \in K$$

and

(5.3)
$$u_1 v_1^{\gamma_1} - u_2 v_2^{\gamma_2} = u_3 v_3^{\gamma_3}.$$

Since Γ_i is irreducible, $h_i \in K[y]$ is irreducible. Moreover, by Corollary 4.3, one has $\deg_{y} h_i = \frac{d}{v_i}$ and $gcd(h_i, h_j) = 1$ in K[y] $(i \neq j)$.

It's easy to see that the differential form ω of \mathcal{G} is from differential form $d\left(\frac{\psi h_1^{\gamma_1}}{h_1^{\gamma_2}}\right)$ (or $d\left(\frac{(\psi-1)h_3^{\gamma_3}}{h_2^{\gamma_2}}\right)$, etc.). In what follows, we consider the case for s = 3. We assume $2 = \gamma_1 \le \gamma_2 \le \gamma_3$.

Lemma 5.1. *There is a* $u \in \mathbb{C}(x)$ *such that*

(5.4)
$$\gamma_1 \psi u h_1^{\gamma_1 - 1} = \frac{h_3}{\gamma_3} \frac{\partial h_2}{\partial y} - \frac{h_2}{\gamma_2} \frac{\partial h_3}{\partial y}$$

(5.5)
$$\gamma_2 u h_2^{\gamma_2 - 1} = \frac{h_3}{\gamma_3} \frac{\partial h_1}{\partial y} - \frac{h_1}{\gamma_1} \frac{\partial h_3}{\partial y}$$

(5.6)
$$\gamma_3(\psi-1)uh_3^{\gamma_3-1} = \frac{h_1}{\gamma_1}\frac{\partial h_2}{\partial y} - \frac{h_2}{\gamma_2}\frac{\partial h_1}{\partial y}.$$

Proof. From (5.2), we have

$$\psi \frac{h_1^{\gamma_1}}{h_3^{\gamma_3}} = \frac{h_2^{\gamma_2}}{h_3^{\gamma_3}} + \psi - 1.$$

Taking $\frac{\partial}{\partial y}$ on both sides of the above equality, we get

$$\psi \frac{h_1^{\gamma_1}}{h_3^{\gamma_3}} \left(\frac{\gamma_1}{h_1} \frac{\partial h_1}{\partial y} - \frac{\gamma_3}{h_3} \frac{\partial h_3}{\partial y} \right) = \frac{h_2^{\gamma_2}}{h_3^{\gamma_3}} \left(\frac{\gamma_2}{h_2} \frac{\partial h_2}{\partial y} - \frac{\gamma_3}{h_3} \frac{\partial h_3}{\partial y} \right),$$

i.e.,

(5.7)
$$\gamma_1 \psi h_1^{\gamma_1 - 1} \left(\frac{h_3}{\gamma_3} \frac{\partial h_1}{\partial y} - \frac{h_1}{\gamma_1} \frac{\partial h_3}{\partial y} \right) = \gamma_2 h_2^{\gamma_2 - 1} \left(\frac{h_3}{\gamma_3} \frac{\partial h_2}{\partial y} - \frac{h_2}{\gamma_2} \frac{\partial h_3}{\partial y} \right).$$

Since $gcd(h_1, h_2) = 1$, (5.7) implies that

$$h_1^{\gamma_1-1}\Big|\Big(\frac{h_3}{\gamma_3}\frac{\partial h_2}{\partial y}-\frac{h_2}{\gamma_2}\frac{\partial h_3}{\partial y}\Big), \quad h_2^{\gamma_2-1}\Big|\Big(\frac{h_3}{\gamma_3}\frac{\partial h_1}{\partial y}-\frac{h_1}{\gamma_1}\frac{\partial h_3}{\partial y}\Big)$$

in *K*[*y*].

Note that $\deg_y h_1^{\gamma_1 - 1} = d - \frac{d}{\gamma_1}$ and

$$\deg_{y}\left(\frac{h_{3}}{\gamma_{3}}\frac{\partial h_{2}}{\partial y} - \frac{h_{2}}{\gamma_{2}}\frac{\partial h_{3}}{\partial y}\right) \le \frac{d}{\gamma_{2}} + \frac{d}{\gamma_{3}} - 2 = d - \frac{d}{\gamma_{1}}$$

by (4.1). Thus

$$w_1 h_1^{\gamma_1 - 1} = \left(\frac{h_3}{\gamma_3} \frac{\partial h_2}{\partial y} - \frac{h_2}{\gamma_2} \frac{\partial h_3}{\partial y}\right)$$

for some $w_1 \in \mathbb{C}(x)$. Similarly,

$$w_2 h_2^{\gamma_2 - 1} = \left(\frac{h_3}{\gamma_3} \frac{\partial h_1}{\partial y} - \frac{h_1}{\gamma_1} \frac{\partial h_3}{\partial y}\right)$$

for some $w_2 \in \mathbb{C}(x)$ satisfying $\gamma_1 \psi w_2 = \gamma_2 w_1$ by (5.7). Take $u = \frac{w_1}{\gamma_1 \psi} = \frac{w_2}{\gamma_2}$. we get (5.4) and (5.5). The last equality (5.6) can also be obtained similarly.

Lemma 5.2. There are $\eta, \xi \in K[y]$, such that

(5.8)
$$\gamma_3 \eta h_2 = \left(\frac{1}{\gamma_3} - \frac{1}{\gamma_2} - \frac{1}{2}\right) \frac{\partial h_2}{\partial y} \frac{\partial h_3}{\partial y} + \left(\frac{h_3}{\gamma_3} \frac{\partial^2 h_2}{\partial y^2} - \frac{h_2}{\gamma_2} \frac{\partial^2 h_3}{\partial y^2}\right)$$

(5.9)
$$\gamma_2 \xi h_3 = \left(\frac{1}{\gamma_2} - \frac{1}{\gamma_3} - \frac{1}{2}\right) \frac{\partial h_2}{\partial y} \frac{\partial h_3}{\partial y} - \left(\frac{h_3}{\gamma_3} \frac{\partial^2 h_2}{\partial y^2} - \frac{h_2}{\gamma_2} \frac{\partial^2 h_3}{\partial y^2}\right)$$

(5.10)
$$\eta h_3 = 2\gamma_2 \psi u^2 h_2^{\gamma_2 - 2} - \frac{1}{2\gamma_2} \left(\frac{\partial h_3}{\partial y}\right)^2,$$

(5.11)
$$\xi h_2 = 2\gamma_3 \psi(\psi - 1) u^2 h_3^{\gamma_3 - 2} - \frac{1}{2\gamma_3} \left(\frac{\partial h_2}{\partial y}\right)^2$$

Proof. By $\gamma_1 = 2$ and (5.4), we have

$$h_1 = \frac{1}{2\psi u} \cdot \left(\frac{h_3}{\gamma_3} \frac{\partial h_2}{\partial y} - \frac{h_2}{\gamma_2} \frac{\partial h_3}{\partial y}\right).$$

Applying the above equality on (5.5), we obtain

$$\begin{split} h_2 &\left(2\gamma_2 \psi u^2 h_2^{\gamma_2 - 2} - \frac{1}{2\gamma_2} \left(\frac{\partial h_3}{\partial y} \right)^2 \right) \\ &= \frac{h_3}{\gamma_3} \left(\left(\frac{1}{\gamma_3} - \frac{1}{\gamma_2} - \frac{1}{2} \right) \frac{\partial h_2}{\partial y} \frac{\partial h_3}{\partial y} + \left(\frac{h_3}{\gamma_3} \frac{\partial^2 h_2}{\partial y^2} - \frac{h_2}{\gamma_2} \frac{\partial^2 h_3}{\partial y^2} \right) \right). \end{split}$$

Since $gcd(h_2, h_3) = 1$,

$$h_3 \left| \left(2\gamma_2 \psi u^2 h_2^{\gamma_2 - 2} - \frac{1}{2\gamma_2} \left(\frac{\partial h_3}{\partial y} \right)^2 \right) \right|$$

in K[x]. Thus we can find some $\eta \in K[y]$ satisfying (5.10) and get (5.8) by the above equality.

Both (5.9) and (5.11) can be obtained similarly by combining (5.4) and (5.6).

Lemma 5.3. We have

$$\eta = \frac{2}{2\gamma_3 - 2\gamma_2 - \gamma_2\gamma_3} \cdot \frac{\partial^2 h_3}{\partial y^2}, \quad \xi = \frac{2}{2\gamma_2 - 2\gamma_3 - \gamma_2\gamma_3} \cdot \frac{\partial^2 h_2}{\partial y^2}.$$

Proof. Differentiating both sides of (5.10), one has

(5.12)
$$2\gamma_2(\gamma_2 - 2)\psi u^2 h_2^{\gamma_2 - 3} \frac{\partial h_2}{\partial y} = \eta \frac{\partial h_3}{\partial y} + h_3 \frac{\partial \eta}{\partial y} + \frac{1}{\gamma_2} \left(\frac{\partial h_3}{\partial y}\right) \left(\frac{\partial^2 h_3}{\partial y^2}\right).$$

Note that $\gamma_2 = 2, 3$. If $\gamma_2 = 2$, then $d = 2\gamma_3$ by Theorem 1.4 and hence deg $h_3 = 2$. In this case, (5.10) implies that

$$4\psi u^2 = \eta h_3 + \frac{1}{4} \left(\frac{\partial h_3}{\partial y}\right)^2 \in K.$$

Since deg $h_3 = 2$ and its leading coefficient is 1, one gets $\eta = -1$.

In what follows, we assume $\gamma_2 = 3$. By (5.10), (5.12) and (5.9), in K[y], we have

$$\begin{cases} h_2 &\equiv \frac{1}{36\psi u^2} \left(\frac{\partial h_3}{\partial y}\right)^2, \\ \frac{\partial h_2}{\partial y} &\equiv \frac{1}{6\psi u^2} \left(\frac{\partial h_3}{\partial y}\right) \left(\eta + \frac{1}{3} \left(\frac{\partial^2 h_3}{\partial y^2}\right)\right), \\ \frac{h_2}{3} \frac{\partial^2 h_3}{\partial y^2} &\equiv \left(\frac{1}{\gamma_3} + \frac{1}{6}\right) \frac{\partial h_2}{\partial y} \frac{\partial h_3}{\partial y}, \end{cases}$$
(mod h_3).

respectively. Note that $gcd(h_3, \frac{\partial h_3}{\partial y}) = 1$. One gets

(5.13)
$$\left(\frac{1}{\gamma_3} + \frac{1}{6}\right)\eta + \frac{1}{3\gamma_3}\frac{\partial^2 h_3}{\partial y^2} \equiv 0 \pmod{h_3}$$

from the above equalities.

By (5.10), one can see that

$$\deg \eta \leq \max\{\deg h_2 - \deg h_3, \deg h_3 - 2\} = \frac{d}{\gamma_3} - 2 = \deg \frac{\partial^2 h_3}{\partial y^2}.$$

hence (5.13) implies that

$$\left(\frac{1}{\gamma_3} + \frac{1}{6}\right)\eta + \frac{1}{3\gamma_3}\frac{\partial^2 h_3}{\partial y^2} = 0,$$

i.e., $\eta = -\frac{2}{\gamma_3+6} \frac{\partial^2 h_3}{\partial y^2}$. Similarly, we can get the other equality by combining (5.9) and (5.11).

Lemma 5.4. *If* $\gamma_2 = 3$ *, then we have*

(5.14)
$$h_1 = \frac{1}{216\psi^2 u^3} \left(\frac{18h_3}{\gamma_3 + 6} \cdot \frac{\partial h_3}{\partial y} \cdot \frac{\partial^2 h_3}{\partial y^2} - \frac{36h_3^2}{\gamma_3(\gamma_3 + 6)} \cdot \frac{\partial^3 h_3}{\partial y^3} - \left(\frac{\partial h_3}{\partial y}\right)^3 \right),$$

(5.15)
$$h_2 = \frac{1}{36\psi u^2} \left(\left(\frac{\partial h_3}{\partial y} \right)^2 - \frac{12h_3}{\gamma_3 + 6} \cdot \frac{\partial^2 h_3}{\partial y^2} \right),$$

(5.16)
$$0 = \frac{3\gamma_3}{2(\gamma_3 + 6)} \left(\frac{\partial^2 h_3}{\partial y^2}\right)^2 - \frac{\partial h_3}{\partial y} \cdot \frac{\partial^3 h_3}{\partial y^3} + \frac{h_3}{\gamma_3 - 2} \cdot \frac{\partial^4 h_3}{\partial y^4}.$$

Proof. The equality (5.15) is from (5.10) and Lemma 5.3. Furthermore, it implies that

$$\frac{\partial h_2}{\partial y} = \frac{1}{18\psi u^2(\gamma_3+6)} \left(\gamma_3 \frac{\partial h_3}{\partial y} \cdot \frac{\partial^2 h_3}{\partial y^2} - 6h_3 \cdot \frac{\partial^3 h_3}{\partial y^3} \right),$$

$$\frac{\partial^2 h_2}{\partial y^2} = \frac{1}{18\psi u^2(\gamma_3+6)} \left(\gamma_3 \left(\frac{\partial^2 h_3}{\partial y^2} \right)^2 + (\gamma_3-6) \frac{\partial h_3}{\partial y} \cdot \frac{\partial^3 h_3}{\partial y^3} - 6h_3 \cdot \frac{\partial^4 h_3}{\partial y^4} \right)$$

Applying the above equalities on (5.8), one gets (5.16).

(5.14) is from (5.15) and (5.4).

From Lemma 5.4, it's enough to solve the equation (5.16). Set $m = \frac{d}{r_3}$ and

(5.17)
$$h_3 = \sum_{i=0}^m \binom{m}{k} a_k y^{m-k}, \quad a_0 := 1, \ a_k \in K \ (k = 2, \dots, m).$$

Since both leading coefficients of h_1 , h_2 are 1, (5.14) and (5.15) imply that

$$a_2 = a_1^2 - \psi \left(\frac{6u}{m}\right)^2$$
, $a_3 = a_1^3 - 3a_1\psi \left(\frac{6u}{m}\right)^2 + 2\psi^2 \left(\frac{6u}{m}\right)^3$.

Without loss of generality, we can assume $a_1 = 0$ and $u = \frac{m}{6}$ by taking an affine transformation $y = \frac{6u\bar{y}}{m} - a$. Thus $a_2 = \psi$ and $a_3 = -2\psi^2$. By (5.16) and a straightforwards computation, we obtain these undetermined coefficients a_k 's. Finally, we have

(5.18)
$$h_3 = \sum_{k=0}^{m} (-1)^{k-1} {m \choose k} (k-1) \psi^{\left[\frac{k+1}{2}\right]} y^{m-k} - \frac{1}{2} (\gamma_3 - 3) (\psi - 1) (4\psi)^{\left[\frac{\gamma_3}{2}\right] + 1} \rho_{\gamma_3}$$

where $\rho_3 = \rho_4 := 1$ and

 $\rho_5 := \psi^3 (1424 - 1600\psi) + 960\psi^3 y - 2079\psi^2 y^2 + 2200\psi^2 y^3 - 990\psi y^4 + 165y^6.$

Furthermore, one can get h_1, h_2 by (5.14), (5.15) and (5.18).

5.2. Riccati fibrations of type A_{n-1} . We assume that f is of type A_{n-1} . The case for A_0 has been discussed in Corollary 3.3. In what follows, we assume $n \ge 2$. In this case, $(\gamma_1, \gamma_2, d) = (n, n, n)$ by Theorem 1.4.

By Corollary 4.3, both Γ_1 , Γ_2 are the sections of $\tilde{\varphi}$ and hence both D_1 , D_2 are the sections of φ .

From Corollary 2.4, either e = 0, or e > 0 and $\Gamma_{\infty} = D_i$ for some *i*. In the latter case, we can assume that $D_1 = \Gamma_{\infty}$ and $D_2 = \Gamma_0$ by choosing a suitable coordinate. From Lemma 3.4, the expression (1.2) of \mathcal{G} is as follows:

(5.19)
$$\omega = g_1 y dx - dy, \quad g_1 = \sum_{i=1}^{l-1} \frac{\lambda_i}{x - a_i}$$

where $\lambda_i := \pm \frac{m_i}{n_i}$ (i = 1, ..., l - 1). Note that $n\lambda_i$ is an integer (i = 1, ..., l - 1) by Corollary 4.3. We take

(5.20)
$$\psi = \prod_{i=1}^{l-1} (x - a_i)^{n\lambda_i} \in \mathbb{C}(x).$$

Thus $g_1 = \frac{\psi'}{n\psi}$.

Now we consider the case for e = 0. If $\Gamma'_{\infty} = D_1$ or D_2 , one can get an expression of ω as above. In what follows, we assume that $\Gamma'_{\infty} \neq D_1, D_2$. Since D_i 's are disjoint sections (Corollary 2.4), one can assume that D_1 (resp., D_2) is defined by y = -1 (resp., y = 0) by choosing a suitable coordinate. Therefore, we obtain the expression (1.2) of \mathcal{G}

(5.21)
$$\omega = \frac{\psi'}{n\psi}(y^2 + y)dx - dy$$

where ψ is as in (5.20).

Conversely, (5.19) (resp., (5.21)) gives a pencil defiend by $y^n = t\psi$ (resp., $y^n = t\psi(y+1)^n$) for $t \in \mathbb{C}$. So we get a Riccati fibration of A_{n-1} .

Remark 5.5. By taking $\psi = 1$ in (5.19) or (5.21), one can also get Corollary 3.3.

From the above discussions, we have

Lemma 5.6. Up to an affine transformation (1.5), an algebraic Riccati foliation of type A_{n-1} has an expression as in (5.19) or (5.21). Conversely, a Riccati foliation with such expressions for any non-zero $\psi \in \mathbb{C}(x)$ is of type A_{n-1} .

5.3. **Riccati foliations of type** D_{n+2} . We consider a Riccati fibration of type D_{n+2} ($n \ge 2$) in this section. In this case, $(\gamma_1, \gamma_2, \gamma_3, d) = (2, 2, n, 2n)$, deg $h_1 = \deg h_2 = n$ and deg $h_3 = 2$.

Take $\alpha = \sqrt{\psi}$ and $\overline{K} = K(\alpha)$. In $\overline{K}[y]$, (5.2) implies

(5.22)
$$(\alpha h_1 + h_2)(\alpha h_1 - h_2) = (\alpha^2 - 1)h_3^n$$

Since $\overline{K}[y]$ is a Gaussian integral domain and $gcd(\alpha h_1 + h_2, \alpha h_1 - h_2) = 1$ in $\overline{K}[y]$,

 $\alpha h_1 + h_2 = (\alpha + 1)\eta_1^n, \quad \alpha h_1 - h_2 = (\alpha - 1)\eta_2^n$

where both η_1, η_2 are monic polynomials in K[y] satisfying $h_3 = \eta_1 \eta_2$. So

$$\eta_1 = y + a + b\alpha, \quad \eta_2 = y + a - b\alpha$$

for some $a, b \in K$. Note that $b \neq 0$ and $\alpha \notin K$ since h_3 is irreducible in K[y]. Therefore we have

(5.23)
$$\begin{cases} h_1 = \frac{1}{2\alpha} \left((\alpha + 1)(y + a + b\alpha)^n + (\alpha - 1)(y + a - b\alpha)^n \right), \\ h_2 = \frac{1}{2} \left((\alpha + 1)(y + a + b\alpha)^n - (\alpha - 1)(y + a - b\alpha)^n \right), \\ h_3 = (y + a)^2 - b^2 \psi. \end{cases}$$

By the above equalities, we can get the differential expression of the corresponding Riccati foliation as follows:

(5.24)
$$\omega = \left(-\frac{\psi'}{2nb\psi(\psi-1)}(y+a)^2 + \left(\frac{b'}{b} + \frac{\psi'}{2\psi}\right)(y+a) + \frac{b\psi'}{2n(\psi-1)} - a'\right)dx - dy.$$

Without loss of generality, one can assume that a = 0 and b = 1 by taking an affine transformation $y = b\bar{y} - a$.

Furthermore, we set $\bar{\psi} = \frac{1}{1-\psi}$. Thus ω has a form as in Theorem 1.9 (2), that is,

(5.25)
$$\omega = \left(\frac{\bar{\psi}'}{2n(\bar{\psi}-1)}y^2 + \frac{\bar{\psi}'}{2\bar{\psi}(\bar{\psi}-1)}y - \frac{\bar{\psi}'}{2n\bar{\psi}}\right)dx - dy.$$

From the above discussions, we have

Lemma 5.7. Up to a proper affine transformation (1.5), an algebraic Riccati foliation of type D_{n+2} has an expression as in (5.25). Conversely, a Riccati foliation with such an expression for any non-constant $\bar{\psi} \in \mathbb{C}(x)$ is algebraic.

Remark 5.8. If $\sqrt{\psi} = \sqrt{1 - 1/\bar{\psi}} \in \mathbb{C}(x)$, then h_3 in (5.22) is reducible and hence (5.25) gives a Riccati foliation of A_{n-1} . The fact can also be found by taking an affine transformation $y = \sqrt{\psi}(2\bar{y} + 1)$ in (5.25). Then one can get an expression (5.21). A similar result can also be got when *n* is even and one of $\sqrt{\bar{\psi}}, \sqrt{\bar{\psi} - 1}$ is in $\mathbb{C}(x)$.

Proof of Lemma 4.5. In this case, by choosing a suitable coordinate x in $B \cong \mathbb{P}^1$, we can take $u_1 = x$, $u_2 = (x-1)(x-\lambda)$, $u_3 = 1$ and $\psi = \frac{u_1v_1^2}{u_2v_2^2}$ satisfying (5.3). Set $f = v_1$, $g = v_2$ and $h = v_3$. Thus one has (1.3).

5.4. **Riccati fibration of** E_k . Combing (5.18) and Lemma 5.4, one can obtain h_1 and h_2 . The differential expression ω is from $d(\psi h_1^2/h_2^3)$. By a straightforwards computation, we have

$$\omega = \left(\frac{\psi'}{d\psi(\psi-1)}y^2 + \left(\frac{\psi'}{2\psi} + \frac{\psi'}{6(\psi-1)}\right)y - \left(\frac{1}{6} + \frac{1}{d}\right) \cdot \frac{\psi'}{\psi-1}\right)dx - dy.$$

Furthermore, by taking $y = -\psi \bar{y}$ and $\bar{\psi} = \frac{\psi}{\psi - 1}$, ω has an expression as in Theorem 1.9 (2), i.e.,

$$(5.26) \qquad \omega = \left(\frac{\bar{\psi}'}{d(\bar{\psi}-1)}\bar{y}^2 + \left(\frac{\bar{\psi}'}{3(\bar{\psi}-1)} - \frac{\bar{\psi}'}{2\bar{\psi}}\right)\bar{y} - \left(\frac{1}{6} + \frac{1}{d}\right)\cdot\frac{\bar{\psi}'}{\bar{\psi}}\right)dx - d\bar{y}.$$

Lemma 5.9. Up to a proper affine transformation as in (1.5), an algebraic Riccati foliation of type E_k has an expression as in Theorem 1.9 (2), i.e., (5.26). Conversely, a Riccati foliation with such an expression for any non-constant $\bar{\psi} \in \mathbb{C}(x)$ is algebraic.

Remark 5.10. If $\gamma_3 = 3$ and $\sqrt[3]{\overline{\psi} - 1} \in \mathbb{C}(x)$, then h_1 is reducible and the Riccati foliation gives a fibration of type D_4 or A_1 . Similarly, if $\gamma_3 = 4$ and $\sqrt{\overline{\psi} - 1} \in \mathbb{C}(x)$, then the Riccati fibration is of type E_6 , D_4 or A_1 .

- 5.5. The proves of main results. We will prove Theorem 1.9 and Theorem 1.10 firstly. *Proof of Theorem 1.9.*
 - (1) \iff (2) It's from Lemma 5.6, Lemma 5.7 and Lemma 5.9.
 - (2) \iff (3) It's from Lemma 3.5.
 - $(4) \Longrightarrow (1)$ It's obvious from Miyaoka Theorem [Miy85].

(2) \Longrightarrow (4) Let \mathcal{F}_0 be a Riccati foliation w.r.t. $pr_1 : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ defined by

$$\omega_0 = \left(xy^2 + \left(\left(2 - \frac{d}{\gamma_3}\right)x + \left(d - \frac{d}{\gamma_1}\right)\right)y + \left(1 - \frac{d}{\gamma_3}\right)(x-1)\right)dx - d \cdot (x-1)xdy.$$

From Lemma 2.5, $\operatorname{Kod}(\mathcal{F}_0) = -\infty$.

Without loss of generality, we assume the differential form \mathcal{F} is as in (2). It's easy to see that \mathcal{F} is a pulling-back of \mathcal{F}_0 by the base change $\psi : \mathbb{P}^1 \to \mathbb{P}^1$.

Up to now, this proof is completed.

Proof of Theorem 1.10. (1) \iff (2) \implies (3) It's from Corollary 4.3.

(3) \implies (4) By choosing a suitable coordinate, we can assume that y = 0 is *G*-invariant section. Thus ω can be written as in (5.19) by Lemma 3.4.

(4) \iff (5) It's obvious.

(5) \Longrightarrow (1) By Theorem 1.3(2), \mathcal{F}_0 is algebraic. So is \mathcal{F} . *Proof of Corollary 1.13.*

 $(1) \Longrightarrow (2)$ It's from Corollary 2.4 and Corollary 4.3.

(2) \implies (3) Let D_1, D_2 be the disjoint \mathcal{F} -invariant sections. If e > 0, then one of the sections, says D_1 , is the tautological section (i.e., $D_1^2 = -e$) defined by $y = \infty$. Hence D_2 is defined by y = f(x) for some $f \in \mathbb{C}[x]$ with deg $f \le e$. So $g_0 = 0$ and $g_1 f + g_2 = f'$.

If e = 0, then we can defined D_i 's by $y = a_1$ and $y = a_2$ $(a_1, a_2 \in \mathbb{C} \cup \{\infty\}, a_1 \neq a_2)$ respectively. If $a_1 = \infty$ (resp., $a_2 = \infty$), then $g_0 = 0$ and $g_2 = -a_2g_1$ (resp., $g_2 = -a_1g_1$). If $a_1, a_2 \in \mathbb{C}$, then $g_0y^2 + g_1y + g_2 = g_0(y - a_1)(y - a_2)$. Namely, $g_1 = -(a_1 + a_2)g_0$ and $g_2 = a_1a_2g_0$. Set $c_1 = -(a_1 + a_2)$ and $c_2 = a_1a_2$. Since $a_1 \neq a_2, c_1^2 - 4c_2 \neq 0$.

(3) \implies (1) By Corollary 2.4, we can always assume that both sections are defined by y = 0 and $y = \infty$ respectively. Thus $\omega = g_1 y dx - dy$. So it's algebraic from Theorem 1.10. \Box

Proof of Corollary 1.16.

 (\Longrightarrow) By (5.23), we have a horizontal irreducible \mathcal{F} -invariant curve defined by $h_3 = 0$, i.e.,

$$(y+a)^2 - \mu = 0$$

where $\mu := b^2 \psi$ and $b, \psi \in \mathbb{C}(x) \setminus \{0\}$.

By (5.24),
$$g_0 = -\frac{\psi'}{2nb\psi(\psi-1)} \neq 0$$
. So one has

$$bg_0 = -\frac{1}{2n} \cdot \frac{\psi'}{\psi(\psi - 1)} = \frac{1}{2n} \cdot \frac{b(b\mu' - 2b'\mu)}{\mu(b^2 - \mu)},$$

i.e.,

$$ng_0b^2 - \frac{\mu'}{2\mu} \cdot b - ng_0\mu = -b'.$$

Thus $y = -b, -\frac{\mu}{b}$ are the solutions of the differential equation $\tilde{\omega} = 0$ where

$$\tilde{\omega} := \left(ng_0 y^2 + \frac{\mu'}{2\mu} y - ng_0 \mu \right) dx - dy.$$

Namely, the Riccati foliation $\widetilde{\mathcal{F}}$ defined by $\widetilde{\omega}$ has two $\widetilde{\mathcal{F}}$ -invariant sections. By Corollary 1.13 and Corollary 2.4, the standard form of $\widetilde{\mathcal{F}}$ has two disjoint invariant sections and hence $\widetilde{\mathcal{F}}$ is of type A_n .

(\Leftarrow) Without loss of generality, we can assume that a = 0. Since $y^2 - \mu = 0$ is \mathcal{F} -invariant, one has $g_1 = \frac{\mu'}{2\mu}$ and $g_2 = -\mu g_0$. Let $y = y_1(x) \in \mathbb{C}(x)$ be a solution of $\tilde{\omega} = 0$. Take $b = -y_1$ and $\psi = \frac{\mu}{h^2}$. From a straightforwards computation, one gets

$$g_0 = -\frac{\psi'}{2nb\psi(\psi-1)}, \quad g_1 = \frac{b'}{b} + \frac{\psi'}{2\psi}, \quad g_2 = \frac{b\psi'}{2n(\psi-1)}.$$

Namely, ω has an expression as in (5.24). So \mathcal{F} is of type D_{n+2} .

Proof of Corollary 1.17. We assume that \mathcal{F} is not of type A_{n-1} or D_{n+2} . Suppose that \mathcal{F} be algebraic. From Theorem Theorem 1.9, Theorem 1.10, up to a proper flipping map, \mathcal{F} is from a pulling-back of a Riccati foliation with Kodaira dimension $-\infty$ (more precisely, foliations in Theorem 1.3(4)-(7)). So $\lambda_p \in \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}\}$, i.e., $n \leq 5$, a contradiction.

6. Some examples

Example 6.1. Let \mathcal{F} be a Riccati foliations with $\operatorname{Kod}(\mathcal{F}) = -\infty$. Theorem 1.9 and Theorem 1.10 are also valid for \mathcal{F} . More precisely, we can find a special Riccati foliation \mathcal{F}_0 with $\operatorname{Kod}(\mathcal{F}_0) = -\infty$ such that \mathcal{F} is a pulling-back of \mathcal{F}_0 after a base change $\psi : \mathbb{P}^1 \to \mathbb{P}^1$ and a flipping map. Let ω_0 be the differential form of \mathcal{F}_0 .

 $\begin{array}{l} (A_{n-1}) \ \omega = \lambda y dx - x dy \ (\lambda = \frac{m}{n} \in \mathbb{Q}^+), \ \omega_0 = y dx - n dy \ \text{and} \ \psi = x^m; \\ (D_{n+2}) \ \omega = (xy^2 + y - \lambda^2 (x-1)) dx - 2x(x-1) dy \ (\lambda = \frac{m}{n} \in \mathbb{Q}^+), \end{array}$

$$\omega_0 = (xy^2 + ny - (x - 1))dx - 2nx(x - 1)dy,$$

$$\psi = (1-x)^{m-2[m/2]} \cdot \left(\sum_{k=0}^{[m/2]} \binom{m}{2k} (x-1)^{[m/2]-k} x^k\right)^2;$$

 $\begin{array}{l} (E_6) \ \omega = \omega_0 = (xy^2 - 2(x-3)y - 3(x-1))dx - 12x(x-1)dy \ \text{and} \ \psi = x; \\ (E_7) \ \omega = \omega_0 = (xy^2 - 4(x-3)y - 5(x-1))dx - 24x(x-1)dy \ \text{and} \ \psi = x; \end{array}$

(*E*₈) $\omega = \omega_0 = (xy^2 - 10(x - 3)y - 11(x - 1))dx - 60x(x - 1)dy$ and $\psi = x$;

 (E'_8) $\omega = (xy^2 - 10(x - 3)y - 119(x - 1))dx - 60x(x - 1)dy$, ω_0 is as in (E_8) and

$$\psi = 1 + \frac{(x-1)(2916x^2 - 3375x - 3125)^3}{(189x - 125)^5}$$

Example 6.2. Let \mathcal{F} be an algebraic Riccati foliation of type D_{n+2} w.r.t. $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ as in Theorem 1.8 (3).

$$(D_4) \ \lambda = a^2 \text{ and } \psi = -\frac{x(a-1)^2}{(x-1)(x-\lambda)};$$

$$(D_5) \ \lambda = \frac{(a-1)^3(a+1)}{2a-1} \text{ and }$$

$$\psi = -\frac{x}{(x-1)(x-\lambda)} \cdot \frac{\left(x-1-a^3\right)^2}{(2a-1)(a+1)^2};$$

$$(D_6) \ \lambda = \left(\frac{2a}{a^2 - 1}\right)^4 \text{ and}$$
$$\psi = -\frac{x}{(x - 1)(x - \lambda)} \cdot \left(\frac{\left(x - \frac{4(3a^2 + 2a + 1)}{(a^2 - 2a + 3)(a + 1)^4}\right)}{\left(x - \frac{4}{(a + 1)^4}\right)} \cdot \frac{(a^2 - 2a + 3)(a^2 + 2a - 1)}{(a^2 - 1)^2}\right)^2$$

where $a \in \mathbb{C}$ such that $\lambda \neq 0, 1, \infty$.

Example 6.3. Consider the foliation (3.4) in Example 3.6. Assume that $\text{Kod}(\mathcal{F}) \ge 0$. Let $\lambda_i = \frac{m_i}{n_i}$ $(n_i > 1 \text{ and } \text{gcd}(m_i, n_i) = 1)$. We claim that \mathcal{F} is not algebraic whenever $n_i \ge 6$ for some *i*.

By Corollary 1.13, \mathcal{F} is not of type A_{n-1} . We claim that \mathcal{F} is not D_{n+1} . If not, from Corollary 1.16, one can find a horizontal irreducible \mathcal{F} -invariant curve Γ defined by $(y + a)^2 - \mu = 0$. Thus $\varphi|_{\Gamma} : \Gamma \to \mathbb{P}^1$ gives a double cover ramified exactly over two points in $\{0, 1, \infty\}$. Hence there are two \mathcal{G} -invariant fibers of type $I_{\frac{1}{2}}$. Thus one gets g = 0 from (4.2). Namely, Kod(\mathcal{F}) = $-\infty$, a contradiction.

Therefore \mathcal{F} is not algebraic from Corollary 1.17.

References

- [AI02] T. Ashikaga, M. Ishizaka: Classification of degenerations of curves of genus three via Matsumoto-Montesinos' theorem, Tohoku Math. J., Second Series, 54 (2002), 195–226.
- [AK00] T. Ashikaga, K. Konno: Global and local properties of pencils of algebraic curves, Algebraic geometry, 2000, 1–49.
- [BHPV04] W. Barth, K. Hulek, C. Peters, A. Van de ven: Compact complex surfaces (Second Edition), Springer Verlag, Berlin etc., 2004.
- [Bru15] M. Brunella: Birational geometry of foliations, IMPA Monographs 1, Springer, Cham 2015.
- [Bea81] A. Beauville: Le nombre minimum de fibres singulières d'une courbe stable sur P¹, Séminaire sur les pinceaux de courbes de genre au moins deux (L. Szpiro, ed.), Astérisque 86 (1981), 97–108.
- [CS82] C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann.of Math., 115 (3) (1982), 579–595.
- [CN91] D. Cerveau, A. Lins Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903.
- [FM94] R. Friedman, J.W. Morgan: Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 27, Springer-Verlag, Berlin, 1994.
- [GLT16] C. Gong, J. Lu, S.-L. Tan: On families of curves over P¹ with two singular fibers, Osaka J. Math. 53 (2016), 83–99.
- [Har66] W. J. Harvey: Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 17(1) (1966), 86–97.
- [Hir85] U. Schmickler Hirzebruch: Elliptische flächen über ℙ₁C mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung, Universität Münster, Münster, West Germany, 1985.
- [HLT20] J. Hong, J. Lu, S.-L. Tan: On the Slope of Non-algebraic Holomorphic Foliations, Proc. of AMS, 2020, 148(11), 4817–4830.
- [LN02] A. Lins-Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. 35 (2002), no. 2, 231–266.
- [LT13] J. Lu, S.-L. Tan: Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc., **365** (2013), 3373–3396.
- [MP86] R. Miranda, U. Persson: On extremal elliptic surfaces, Math. Z., 193 (1986), 537–558
- [Miy85] Y. Miyaoka: *Deformations of a morphism along a foliation and applications*, Algebraic geometry, Bowdoin (1985), 245–268.
- [Nie27] J. Nielsen: Untersuchungen zur topologie der geschlossenen zweiseitigen Flächen, Acta Math., 50 (1927), 189–358.
- [Pai74] P. Painlevé: "Sur les intégrales algébriques des équations différentielles du premier ordre" and "Mémoire sur les équations différentielles du premier ordre", Oeuvres de Paul Painlevé; Tome II, Éditions du Centre National de la Recherche Scientifique, 15, quai Anatole-France, 75700, Paris 1974.
- [Per02] J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226.
- [Poi91] H. Poincaré: Sur l'integration algébrique des équations différentielles du premier ordre et du premier degré I and II, Rendiconti del Circolo Matematico di Palermo 5 (1897), 193–239.
- [Ser92] F. Serrano: Fibred surfaces and moduli, Duke Math. J. 67 (1992), 407–421.
- [Suw98] Indices of vector fields and residues of holomorphic singular foliations, Hermann, Paris, (1998).

- [Tan10] S.-L. Tan: Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Viet., **35**(1), (2010), 159–172.
- [Xia90] G. Xiao: On the stable reduction of pencils of curves, Math. Z., 203 (1990), 379–389.
- [Xia92] G. Xiao: *The fibrations of algbraic surfaces*, Shanghai Scientific & Technical Publishers, 1992 (in Chinese).
- [Zam97] A. G. Zamora, *Foliations in algebraic surfaces having a rational first integral*, Publ. Mat. 41 (1997), no. 2, 357-373.
- [Zam00] A. G. Zamora, *Sheaves associated to holomorphic first integrals*, Ann. Inst. Fourier (Grenoble) **50** (2000), no. 3, 909-919.
- [Zam06] A. G. Zamora, Unipotent reduction and the Poincaré Problem, Internat. J. Math. 17 (2006), no. 8, 949-962.

Address of Cheng Gong: Department of Mathematics, Soochow University, Shizi RD 1, Suzhou 215006, Jiangsu, P. R. of China

Email address: cgong@suda.edu.cn

Address of Jun Lu and Sheng-Li Tan: School of Mathematical Sciences and Shanghai Key Lab. of PMMP, East China Normal University, Dongchuan RD 500, Shanghai 200241, P. R. of China

Email address: jlu@math.ecnu.edu.cn , sltan@math.ecnu.edu.cn