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1. Introduction

The notion of Calabi–Yau algebras is introduced by Ginzburg [15], and intensively studied in recent 
years. Among all Calabi–Yau algebras of great importance and interest are those which are Koszul. For 
example, all Koszul Calabi–Yau algebras can be constructed from a potential, which has become a center 
of the research, while it is generally difficult to find a potential for non-Koszul Calabi–Yau algebras (here 
Koszul refers to the generalized sense; see Remark 25). The reader is referred to [4–6,10,15,41,44] for more 
details and examples.

In this paper we show that for a Koszul Calabi–Yau algebra A, its Hochschild cohomology is isomorphic 
to the Hochschild cohomology of its Koszul dual algebra A! as Batalin–Vilkovisky algebras:

HH•(A;A) � HH•(A!;A!). (1)

This isomorphism has been folklore for years, and some results are already well-known, such as the Batalin–
Vilkovisky algebra structure on both sides. Let us start by describing some background.

Let A be an n-Calabi–Yau algebra (see Definition 26). Ginzburg proved that there is a Batalin–
Vilkovisky algebra structure on the Hochschild cohomology of A [15, Theorem 3.4.3]. It may be viewed as 
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a noncommutative generalization of the Batalin–Vilkovisky algebra on the polyvector fields of Calabi–Yau 
manifolds. Earlier than that, inspired by Chas–Sullivan’s work [9] on string topology, Tradler constructed, 
for a (differential graded) cyclic associative algebra, i.e. an associative algebra with a non-degenerate cycli-
cally invariant pairing, a Batalin–Vilkovisky algebra on its Hochschild cohomology [37, Theorem 1]. These 
two sources of Batalin–Vilkovisky algebra structures are quite different from each other. For example, con-
sider the space of polynomials of n variables C[x1, x2, · · · , xn]; it is a Calabi–Yau algebra in the sense of 
Ginzburg, while there does not exist a non-degenerate pairing on it, and therefore Tradler’s construction 
does not apply.

As already noticed by Van den Bergh [40, Proposition 2], Ginzburg remarked [15, Remark 5.4.10] that 
if the Calabi–Yau algebra A is Koszul (he also assumes A is of dimension 3, but this turns out to be 
not necessary, as shall be shown below), then its Koszul dual algebra A! admits a non-degenerate pairing, 
and Tradler’s construction can be applied to A!. From the works of Buchweitz [8], Beilinson, Ginzburg and 
Soergel [2] and Keller [22], we now know that HH•(A; A) � HH•(A!; A!) as Gerstenhaber algebras. Ginzburg 
stated as a conjecture, which he attributed to Rouquier (Ginzburg [15, Section 5.4]), that this isomorphism 
is in fact an isomorphism of Batalin–Vilkovisky algebras, given by Ginzburg and Tradler respectively. The 
goal of this paper is to show that this is indeed the case:

Theorem A (Rouquier’s conjecture). Suppose that A is a Koszul Calabi–Yau algebra, and let A! be its Koszul 
dual algebra. Then there is an isomorphism

HH•(A;A) � HH•(A!;A!)

of Batalin–Vilkovisky algebras between the Hochschild cohomology of A and A!.

In the literature, the two Batalin–Vilkovisky algebra structures on both sides have been further studied 
separately; see, for example, [1,25,31]. However, relatively little has been discussed on their relationship. 
The theorem above gives a bridge to connect and unite them. The key points to prove the above theorem 
are the following:

– For an associative algebra A and its Koszul dual coalgebra A¡, the chain complex

(A⊗A¡, b),

equipped with an appropriate differential b, computes the Hochschild homology of A and A¡ simultane-
ously, that is, we have canonical isomorphisms

HH•(A) � H•(A⊗A¡, b) � HH•(A¡). (2)

– On both HH•(A) and HH•(A¡) the Connes differential operator exists; however, it is in general not 
easy to define a version of Connes operator on (A ⊗ A¡, b). Nevertheless, we show that the canonical 
isomorphism (2) commutes with the Connes operator on HH•(A) and HH•(A¡).

– Analogous to (2), we show that for the Koszul algebra A, there is a canonical complex (A ⊗A!, δ) which 
computes the Hochschild cohomology of A and A! simultaneously, where A! is the Koszul dual algebra
of A, i.e. there are canonical isomorphisms

HH•(A;A) � H•(A⊗A!, δ) � HH•(A!;A!). (3)

– By two versions of Poincaré duality, due to Van den Bergh and Tradler respectively,

PD : HH•(A;A) � HHn−•(A), HH•(A!;A!) � HHn−•(A¡),
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together with the above two results, one obtains the desired isomorphism

HH•(A;A) � HH•(A!;A!),

where the Batalin–Vilkovisky operator on each side is the pull-back of the Connes operator via the 
Poincaré duality.

– The isomorphisms (2) and (3) do not respect the usual grading. They are in fact isomorphisms with 
respect to a certain bigrading; see Section 5 for details.

Quite recently, the above mentioned results of Ginzburg and Tradler were generalized to their twisted ver-
sions. More precisely, when a twisted Calabi–Yau algebra or a Frobenius algebra has semisimple Nakayama 
automorphism, then its Hochschild cohomology ring is still a Batalin–Vilkovisky algebra; see Kowalzig and 
Krähmer [23, Theorem 1.7] and Lambre, the third author and Zimmermann [26, Theorem 0.1]. We shall 
consider the twisted version of our main result and related applications in a future work.

This paper is organized as follows: Section 2 recalls some basic facts about bar/cobar constructions 
and twisting morphisms. Our basic reference of this section is the recent book of Loday and Vallette [29]. 
Section 3 collects the definitions of Hochschild and cyclic (co)homology of algebras and coalgebras; Section 4
reviews some basic facts about Koszul algebras; Section 5 computes the Hochschild (co)homology of Koszul 
algebras and their Koszul dual; Section 6 studies Koszul Calabi–Yau algebras; Section 7 proves Theorem A; 
and the last Section 8 gives an application of the previous results to the cyclic homology of Calabi–Yau 
algebras.

Throughout this paper, k denotes a field of arbitrary characteristic. It is supposed to be of zero charac-
teristic when talking about cyclic (co)homology.

2. Bar/cobar construction and twisting morphisms

The goal of this section is to recall some basic facts about the bar/cobar construction and twisting 
morphisms; for details, the reader is referred to the textbook of Loday and Vallette [29].

In this paper, we shall use chain complexes and homological gradings everywhere, that is, a complex is 
of the form

· · ·
dn+2

Cn+1
dn+1

Cn

dn

Cn−1
dn−1 · · ·

and the differential decreases the index.
Let V be a k-vector space and let V ∗ = Homk(V, k) denote its k-dual. For an abelian group G, written 

additively, a G-graded vector space V is a direct sum of vector spaces V = ⊕g∈GVg indexed by G. For a 
G-graded k-vector space V = ⊕g∈GVg, an element of Vg is said to be homogeneous of complete degree g. 
This G-graded k-vector space V = ⊕g∈GVg is locally finite if for any g ∈ G, dimk(Vg) < ∞. Denote by 
V ∨ its graded dual, that is, for g ∈ G, (V ∨)g = (V−g)∗. A linear map f : V → W between G-graded 
vector spaces is said to be graded of complete degree g ∈ G, if for any g′ ∈ G, f(Vg′) ⊆ Wg′+g. For two 
G-graded vector spaces V and W , their tensor product V ⊗W and the space of all finite sums of graded 
linear maps of arbitrary complete degrees Hom(V, W ) are also G-graded. We are mainly interested in the 
case where G = Z or Z × Z. When G = Z, G-graded spaces are simply called graded and the complete 
degree is also called degree; when G = Z ×Z, G-graded spaces are called bigraded and the complete degree 
is denoted by (degree, weight), that is, we call the first index “degree” and the second “weight”. For v ∈ Vi

for G = Z or v ∈ Vij for G = Z × Z, we write deg(v) = |v| = i and weight(v) = j. Given two G-graded 
vector spaces V and W , there exists a natural map V ∨ ⊗ W∨ → (V ⊗ W )∨ sending ϕ ⊗ ψ to the map 
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v ⊗ w 	→ (−1)deg(ψ)deg(v)ϕ(v)ψ(w). If V and W are locally finite, then the above map is an isomorphism. 
There is also a natural injection

W ⊗ V ∨ → Hom(V,W ) : w ⊗ ϕ 	→ (v 	→ ϕ(v)w). (4)

It is an isomorphism if V is locally finite.
Given a bigraded vector space V = V••, denote by sV its degree shift or suspension, that is, (sV )ij =

Vi−1,j . We shall also use the complete shift V (�) such that V (�)ij = Vi−�,j−�. Sometimes we consider 
bigraded maps of complete degree (r, 0) ∈ Z × Z, that is, bigraded maps which preserve the weight; in this 
case, we shall say that these are graded maps of degree r. Differentials are graded maps of degree −1 and 
square to zero, that is, they preserve the weight and decrease the degree by 1. In the following, we sometimes 
write deg(f) = |f |.

A Z-graded vector space V is connected if Vi = 0 for i < 0 and V0 = k, and it is 2-connected if it is 
connected and V1 = 0; a bigraded vector space is (Adams-)connected if Vij = 0 when i ≤ 0 or j ≤ 0 except 
V00 = k.

We shall apply the Koszul sign rule to determine signs in expressions, that is, when we exchange the 
positions of two graded objects in an expression, we need to multiply the expression by a power of −1 whose 
exponent is the product of their degrees. For example, left f : V → V ′ and W → W ′ be two graded linear 
maps. The graded linear map f⊗g : V ⊗W → V ′⊗W ′ is defined to be (f⊗g)(v⊗w) = (−1)|g||v|f(v) ⊗g(w).

An associative algebra is a triple (A, μ, η), where A is a vector space, μ : A ⊗A → A is the multiplication 
and η : k → A is the unit, which satisfy the obvious conditions. An algebra homomorphism is a linear 
map between two algebras which commutes with multiplications and units. An augmented algebra is an 
algebra (A, μ, η) endowed with an algebra homomorphism ε : A → k. For an augmented algebra A, we have 
A = k1A ⊕ A, where 1A = η(1) (thus k1A = Im(η)) and A = Ker(ε). We can also define (bi-)graded alge-
bras, augmented (bi-)graded algebras, differential (bi-)graded algebras, augmented differential (bi-)graded 
algebras. For these notions, multiplications, units and algebra maps are assumed to preserve the degree (and 
also the weight in the bigrading setup), differentials decrease the degree by 1 (and preserve the weight in the 
bigrading setup). For an (augmented differential) (bi)graded algebra A, Aop denotes its opposite algebra, 
which has the same underlying space (and the same unit, the same differential, the same (bi)grading and 
the same augmentation) as A, but is endowed with the new product a ∗ b = (−1)|a||b|ba.

A coassociative coalgebra is a triple (C, Δ, ε) where C is a vector space, Δ : C → C ⊗ C is the comul-
tiplication and ε : C → k is the counit, which satisfy the obvious conditions. A coalgebra homomorphism 
is a linear map between two coalgebras which commutes with comultiplications and counits. A coaug-
mented coalgebra is a coalgebra (C, Δ, ε) endowed with a coalgebra homomorphism η : k → C. For a 
coaugmented coalgebra C, we have C = k1C ⊕ C, where 1C = η(1) (thus k1C = Im(η)) and C = Ker(ε). 
We can also define (bi-)graded coalgebras, augmented (bi-)graded coalgebras, differential (bi-)graded coal-
gebras, coaugmented differential (bi-)graded coalgebras. For these notions, comultiplications, counits and 
coalgebra maps are assumed to preserve the degree (and also the weight in bigraded setup), differentials 
decrease the degree by 1 (and preserve the weight in the bigrading setup). For a coaugmented coalge-
bra C, let Δ0 = IdC : C → C, Δ1 = Δ : C → C ⊗ C be Δ(x) = Δ(x) − x ⊗ 1 − 1 ⊗ x and for n ≥ 2, 
Δn = (Δ ⊗ IdC ⊗ · · · ⊗ IdC) ◦ Δn−1 : C → C⊗n. A coalgebra is conilpotent if C = ∪i≥0Ker(Δi). For 
a (coaugmented differential) (bi)graded coalgebra C, Ccoop denoted its opposite coalgebra, which has the 
same underlying space (and the same counit, the same differential, the same (bi)grading and the same 
coaugmentation) as C, but is endowed with the new coproduct ΔCcoop = τ ◦ΔC , where τ : C ⊗C → C ⊗C

is the swap sending c1 ⊗ c2 	→ (−1)|c1||c2|c2 ⊗ c1.
Given a coalgebra (C, Δ, εC) and an algebra (A, μ, ηA), the linear space Hom(C, A) is an algebra with 

respect to the convolution product, that is, for f, g ∈ Hom(C, A), f ∗ g = μ ◦ (f ⊗ g) ◦ Δ (notice that when 
this formula is applied to elements, we need to apply the Koszul rule to determine signs). The unit of this 
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algebra is ηA ◦ εC . When C and A are differential (bi-)graded, Hom(C, A) denotes the space of (bi-)graded 
linear maps. In this case, Hom(C, A) is differential (bi-)graded algebra whose differential ∂ is induced from 
that of A and C, that is ∂(f) = dA ◦ f − (−1)|f |f ◦ dC , where dA (resp. dC) is the differential over A
(resp. C).

For a differential (bi-)graded coalgebra C and a differential (bi-)graded algebra A, an element α ∈
Hom(C, A) of degree −1 (or of complete degree (−1, 0) in the bigrading setup) is said to be a twisting 
morphism if ∂(α) + α ∗ α = 0 [29, Section 2.1.3]. When C is coaugmented and A is augmented, a twisting 
morphism is always assumed to satisfy α ◦ ηC = 0 and εA ◦ α = 0. Write Tw(C, A) for the space of twisting 
morphisms.

For a differential (bi-)graded coalgebra C and a differential (bi-)graded algebra A, given a twisting 
morphism α from C to A, one can define a new differential on Hom(C, A), namely, for f ∈ Hom(C, A), define 
∂α(f) = ∂(f) + [α, f ], where [α, f ] = α ∗ f − (−1)|α|f ∗α. The triple (Hom(C, A), ∗, ∂α) is a new differential 
(bi-)graded algebra, denoted by Homα(C, A), called the twisted convolution algebra [29, Proposition 2.1.6]. 
When C is locally finite, there exists an isomorphism of (bi-)graded vector spaces Hom(C, A) � A ⊗ C∨, 
and in this case, there is an induced differential (bi-)graded algebra structure over A ⊗ C∨ and we denote 
it by A ⊗α C∨.1

Given a differential (bi-)graded coalgebra C and a differential (bi-)graded algebra A, for an element 
α ∈ Hom(C, A) of degree −1 (or complete degree (−1, 0) in the bigrading setup), one can also define a 
new differential on the tensor product C ⊗ A by posing dα = dC ⊗ IdA + IdC ⊗ dA + drα, where drα =
(IdC ⊗ μ) ◦ (IdC ⊗ α⊗ IdA) ◦ (Δ ⊗ IdA). This is a differential if (and only if) α is a twisting morphism [29, 
Lemma 2.1.5]. The tensor product C ⊗A endowed with dα is denoted by C ⊗α A, called the (right) twisted 
tensor product. One can also define a left twisted tensor product A ⊗α C by defining the differential to be 
dC ⊗ IdA + IdC ⊗ dA + dlα where dlα = (μ ⊗ IdC) ◦ (IdA ⊗ α⊗ IdC) ◦ (IdA ⊗ Δ).

Let α : C → A and α′ : C ′ → A′ be two twisting morphisms from (bi-)graded coalgebras to (bi-)graded 
algebras. Let f : C → C ′ (resp. g : A → A′) be a homomorphism of (bi-)graded coalgebras (resp. of 
(bi-)graded algebras). We say that the two twisting morphisms are compatible if g ◦ α = α′ ◦ f . The Com-
parison Lemma for twisted tensor products [29, Lemma 2.1.9] says that if f and g are quasi-isomorphisms, 
then so is f ⊗ g : C ⊗α A → C ′ ⊗α′ A′.

Let A = k1A ⊕ A be an augmented (bi-)graded algebra. Its bar construction B(A) is defined to be the 
tensor coalgebra T c(sA) = k ⊕ sA ⊕ (sA)⊗2 ⊕ · · · . We shall write an element of B(A) as [a1|a2| · · · |an] ∈
(sA)⊗n for a1, · · · , an ∈ A. We can put a bigrading on the bar construction B(A). When A is bigraded, 
B(A) is naturally bigraded. When A is not bigraded, we give A a bigrading as follows: if A is only an 
augmented ungraded algebra, we place A in degree zero, and put k1A in weight zero and A in weight 1; 
if A is an augmented (differential) graded algebra, we place its original grading in the degree grading 
and put k1A in weight zero and A in weight 1. As T c(sA) is a cofree conilpotent coalgebra, the map 

T c(SA) � sA ⊗ sA
f→ sA induces a coderivation on B(A), denoted by d2. Here f : sA ⊗ sA → sA sends 

[a] ⊗[b] to (−1)deg(a)[ab]. The differential of A also induces a differential d1 on B(A). Now (B(A), d = d1+d2)
is a differential bigraded conilpotent cofree coalgebra. The canonical map π : B(A) � sA � A � A is a 
twisting morphism and the right twisted tensor product B(A) ⊗π A (resp. the left twisted tensor product 
A ⊗π B(A)) is quasi-isomorphic to k and thus is a free resolution of k as right module (resp. left module); 
see [29, Proposition 2.2.8]. For a quasi-isomorphism of augmented differential graded connected algebras 
g : A → A′, the induced map B(g) : B(A) → B(A′) is also a quasi-isomorphism [29, Proposition 2.2.3]. This 
can be proved with the help of a spectral sequence induced by the weight grading on the bar construction, 
that is, Fp(B(A)) = ⊕i≤p(sA)⊗i.

1 This notation seems to be new, which does not appear in Loday and Vallette [29].
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Let C = k1C ⊕ C be a coaugmented (bi-)graded coalgebra. Its cobar construction Ω(C) is defined to 
be the tensor algebra T (s−1C). We shall write an element of Ω(A) as 〈a1|a2| · · · |an〉 ∈ (s−1A)⊗n. The 
bigrading on Ω(C) can be given similarly. When C is bigraded, Ω(C) is naturally bigraded. When C is 
not bigraded, we give C a bigrading as follows: if C is only an augmented ungraded coalgebra, we place C
in degree zero, and put k1C in weight zero and C in weight 1; if C is an augmented (differential) graded 
coalgebra, we place its original grading in the degree grading and put k1C in weight zero and C in weight 1. 
As T (s−1C) is a free algebra, the map s−1C

f→ s−1C ⊗ s−1C � T (s−1C) induces a derivation d2 on 
Ω(C), where f : s−1C → s−1C ⊗ s−1C sends 〈c〉 to (−1)|c(1)|〈c(1)〉 ⊗ 〈c(2)〉. The differential of C also 
induces a differential d1 on Ω(C). Now (Ω(C), d = d1 + d2) is a differential bigraded free algebra. The map 
ι : C � C � s−1C � Ω(C) is a twisting morphism and the twisted tensor product C⊗ιΩ(C) (and Ω(C) ⊗ιC) 
is quasi-isomorphic to k; see [29, Proposition 2.2.8]. For a quasi-isomorphism of augmented differential 
graded 2-connected coalgebras h : C → C ′, the map Ω(h) : Ω(C) → Ω(C ′) is also a quasi-isomorphism [29, 
Proposition 2.2.5]. This can be proved with the help of a spectral sequence induced by the weight grading 
on the cobar construction, that is, Fp(Ω(C)) = ⊕i≥−p(s−1C)⊗i.

The bar construction and the cobar construction form a pair of adjoint functors and represent the 
bifunctor Tw(C, A). In fact, given an augmented differential (Adams-)connected (bi-)graded algebra A and 
a coaugmented differential (Adams-)connected conilpotent (bi-)graded coalgebra C, there exist bifunctorial 
isomorphisms

Hom(C,B(A)) � Tw(C,A) � Hom(Ω(C), A),

where the first Hom is in the category of augmented differential (bi-)graded coalgebras and the second in the 
category of coaugmented differential connected conilpotent (bi-)graded algebras. Applying this adjunction to 
C = B(A), we obtain the counit ε : ΩB(A) → A and the universal twisting morphism π : B(A) → A appeared 
above; similarly, we obtain the unit η : C → BΩ(C) and the universal twisting morphism ι : C → Ω(C)
mentioned earlier. Given a twisting morphism α : C → A, it factors uniquely through π and ι:

Ω(C)
gα

C

ι

α

fα

A

B(A)
π

where fα is a homomorphism of augmented differential (bi-)graded algebras and gα a homomorphism be-
tween coaugmented differential connected conilpotent (bi-)graded coalgebras.

A fundamental result about twisting morphisms [29, Theorem 2.3.1] is the following: Let C (resp. A) be a 
connected (bi-)graded differential coalgebra (resp. algebra) and let α : C → A be a twisting morphism. Then 
C ⊗α A is a resolution of k if and only if the induced homomorphism of differential (bi-)graded algebras 
gα : Ω(C) → A corresponding to α is a quasi-isomorphism if and only if the induced homomorphism of 
differential (bi-)graded coalgebras fα : C → B(A) corresponding to α is a quasi-isomorphism. If this is the 
case, we call such a twisting morphism Koszul morphism.

Given a twisting morphism α : C → A, one can define a twisted differential on A ⊗ C ⊗ A; see [29, 
Exercise 2.7.6]. In fact, let dα = dA⊗C⊗A + IdA ⊗ drα − dlα ⊗ IdA. Then it is a differential and write 
A ⊗α C ⊗α A for this new complex. There is an isomorphism of complexes

Homα(C,A) � HomAe(A⊗α C ⊗α A,A). (5)
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Furthermore the bimodule homomorphism A ⊗α C ⊗α A � A ⊗ k ⊗ A � A is a quasi-isomorphism of 
bimodules if and only if α is a Koszul morphism. So when α is a Koszul morphism, A ⊗αC⊗αA is bimodule 
free resolution of A. Let α′ : C ′ → A be another twisting morphism. Suppose that α and α′ are compatible 
via f : C → C ′. Then there is an induced morphism of complexes A ⊗α C ⊗α A → A ⊗α′ C ′ ⊗α′ A and this 
induces Homα′

(C ′, A) → Homα(C, A). When C and C ′ are locally finite, this in turn induces

A⊗α′
C ′∨ → A⊗α C∨. (6)

Let C be an (Adams-)connected differential (bi-)graded coalgebra C and let A be an (Adams-)connected
differential (bi-)graded algebra A. Suppose that they are locally finite. Then C∨ is an algebra and A∨

becomes a coalgebra. Given a twisting morphism α : C → A, then its dual α∨ : A∨ → C∨ is also a twisting 
morphism. It is easy to show that the natural map

Homα(C,A) → Homα∨
(A∨, C∨), ϕ 	→ (f 	→ (−1)|f ||ϕ|f ◦ ϕ)

is a quasi-isomorphism of differential (bi-)graded algebras. Since C and A are locally finite, this translates 
into an isomorphism

A⊗α C∨ � C∨ ⊗α∨
A. (7)

3. Hochschild homology of algebras and coalgebras

In this section we recall briefly the definitions of Hochschild and cyclic homology of algebras and coal-
gebras. The materials are well-known, however, it is rare to find a reference which treats algebras and 
coalgebras simultaneously. They will be used in later sections. We shall always deal with (co)augmented 
ordinary (co)algebras in order to avoid complicated expressions of signs. The reader may add the signs 
himself using the Koszul sign rule.

3.1. Hochschild homology of algebras

Definition 1 (Hochschild homology). Let A be an associative algebra, and M be an A-bimodule. The 
Hochschild chain complex of A with value in M is the graded vector space

CH•(A;M) :=
⊕
n≥0

M ⊗A⊗n

with differential b : CH•(A; M) → CH•−1(A; M) defined by

b(m, a1, · · · , an) :=
n−1∑
i=0

(−1)i(m, · · · , ai−1, aiai+1, · · · , an) + (−1)n(anm, a1, · · · , an−1). (8)

The associated homology is called the Hochschild homology of A with value in M and is denoted by 
HH•(A; M). In particular, if M = A, then HH•(A) := HH•(A; A) is called the Hochschild homology of A.

As we have assumed that A is augmented and unital, let A be the augmentation ideal, then CH•(A) is 
quasi-isomorphic to the normalized Hochschild complex

CH•(A) := A⊗ B(A) =
⊕

A⊗A
⊗n
n≥0
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with the induced differential b (see, for example, Loday [27, Proposition 1.6.5]). It is easy to see that there 
is an isomorphism of complexes

CH•(A) � A⊗Ae (A⊗π B(A) ⊗π A);

the reader is referred to the second section for the notation A ⊗π B(A) ⊗π A.
From now on, when mentioning the normalized Hochschild complex, we shall take this identification.

Definition 2 (Connes cyclic operator). Let A be an (augmented) algebra. The Connes cyclic operator

B : CH•(A) → CH•+1(A)

is defined by

B(a0, a1, · · · , an) :=
n∑

i=0
(−1)(i−1)(n+1)(1, ai, · · · , an, a0, · · · , ai−1),

where, by abuse of notations, we identify an element of A with its image under the natural map A → A.

It is easy to check that B2 = 0 and Bb + bB = 0, and hence

(CH•(A), b, B)

defines a mixed complex, in the sense of Kassel [21].

Definition 3 (Cyclic homology). (See Jones [19].) Let A be an algebra. Let CH•(A) be the normalized
Hochschild complex of A (in fact, this definition applies to any mixed complex), and u be a free variable of 
degree −2, which commutes with b and B. The (reduced) negative cyclic, periodic cyclic, and cyclic chain 
complex of A is the following complex respectively

(CH•(A)[[u]], b + uB),

(CH•(A)[[u, u−1]], b + uB),

(CH•(A)[[u, u−1]]/uCH•(A)[[u]], b + uB),

and is denoted by CC−
• (A), CCper

• (A) and CC•(A) respectively. The associated homology is called the 
negative cyclic, periodic cyclic and cyclic homology of A respectively, and is denoted by HC−

• (A), HCper
• (A)

and HC•(A) respectively.

From the above definition, we see that there is a short exact sequence

0 −→ CH•(A) −→ CC•(A) ·u−→ CC•−2(A) −→ 0,

which induces on the homology level the so-called Connes exact sequence:

· · · −→ HH•(A) −→ HC•(A) −→ HC•−2(A) −→ HH•−1(A) −→ · · · . (9)

Definition 4 (Hochschild cohomology). Let A be an associative algebra, and M be an A-bimodule. The 
Hochschild cochain complex CH•(A; M) of A with value in M is the complex whose underlying space is
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⊕
n≥0

Hom(A⊗n,M)

with the coboundary δ : Hom(A⊗n, M) → Hom(A⊗n+1, M) defined by

(δf)(a0, a1, a2, · · · , an) = a0f(a1, · · · , an) +
n−1∑
i=0

(−1)i+1f(a0, · · · , aiai+1, · · · , an)

+ (−1)nf(a0, · · · , an−1)an. (10)

The associated cohomology is called the Hochschild cohomology of A with values in M , and is denoted by 
HH•(A; M). In particular, if M = A, then HH•(A) := HH•(A; A) is called the Hochschild cohomology of A.

Definition 5. Let A be an associative algebra and let CH•(A; A) be its Hochschild cochain complex.

(1) The cup product on CH•(A; A) is defined as follows: for any f ∈ CHn(A; A) and g ∈ CHm(A; A),

f ∪ g(a1, . . . , an+m) := (−1)nmf(a1, . . . , an)g(an+1, . . . , an+m).

(2) For any f ∈ CHn(A; A) and g ∈ CHm(A; A), let

f ◦ g(a1, . . . , an+m−1) :=
n−1∑
i=1

(−1)(m−1)(i−1)f(a1, . . . , ai−1, g(ai, . . . , ai+m−1), ai+m, . . . , an+m−1).

The Gerstenhaber Lie bracket on CH•(A; A) is defined to be

{f, g} := f ◦ g − (−1)(n−1)(m−1)g ◦ f.

Both the cup product and the Gerstenhaber Lie bracket induce a well-defined product and bracket on 
Hochschild cohomology HH•(A; A), which makes HH•(A; A) into a Gerstenhaber algebra. Recall that a 
Gerstenhaber algebra is a graded commutative algebra together with a degree −1 Lie bracket {−, −} such 
that for each homogeneous element a,

b 	→ {a, b}

is a derivation with respect to the product.

Theorem 6 (Gerstenhaber). Let A be an algebra. Then the Hochschild cohomology HH•(A; A) of A equipped 
with the cup product and the Gerstenhaber Lie bracket forms a Gerstenhaber algebra.

Proof. For a proof, see Gerstenhaber [13, Theorems 3–5]. �
Similarly to the Hochschild homology case, one may introduce the reduced Hochschild cochain complex 

CH•(A; A) (see Loday [27, §1.5.7]). It turns out that

CH•(A;A) � Homπ(B(A), A),

where the RHS is the twisted convolution algebra induced by the canonical Koszul morphism π : B(A) → A

(cf. Section 2).
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Proposition 7. Let A be an algebra over a field k. Denote by Ae = A ⊗ Aop the enveloping algebra of A. 
View A as an Ae-module, then

HH•(A) � TorA
e

• (A,A), HH•(A) � Ext•Ae(A,A).

Endow A∗ = Homk(A, k) with the induced Ae-module structure and we also have an isomorphism 
Homk(HH•(A), k) � HH•(A, A∗).

Proof. For the first statement, see, for example, Weibel [43, Lemma 9.1.3]. The second statement follows 
from an adjunction. �

The cyclic cochain complex of an associative algebra A is defined to be dual complex of CC•(A), with the 
dual differential b∗ and B∗ respectively. Let v be the dual variable of u, which is of degree 2. Then CC•(A)
is a module over k[[v]].

There is no short exact sequence which relates the Hochschild cochain complex CH•(A; A) and the cyclic 
cochain complex CC•(A); instead, we consider the dual complex Hom(CH•(A), k) of CH•(A) and then

0 v · CC•−2(A)
embedding

CC•(A)
projection

Hom(CH•(A),k) 0

is exact, which induces the Connes long exact sequence on the cohomology level

· · · −→ Hom(HH•(A),k) −→ HC•−1(A) −→ HC•+1(A) −→ Hom(HH•(A),k) −→ · · · ,

where the isomorphism H•(v · CC•(A)) � HC•−2(A) is used, due to the isomorphism of chain complexes 

v · CC•(A) 
/v
� CC•(A). Notice that Hom(CH•(A), k) � CH•(A, A∗) by (the proof of) Proposition 7.

3.2. Hochschild homology of coalgebras

The Hochschild homology of coalgebras arises from algebraic topology as examples of cosimplicial objects 
(cf. Eilenberg and Moore [12]).

Definition 8 (Hochschild homology of coalgebras). Let C be a coaugmented coalgebra with a counit and 
co-augmentation such that C = k ⊕ C. Write the coproduct as Δ(c) =

∑
(c) c

′ ⊗ c′′ + c ⊗ 1 + 1 ⊗ c, for any 

c ∈ C, then the reduced Hochschild complex is

CH•(C) := Ω(C) ⊗ C =
⊕
n≥0

C
⊗n ⊗ C.

The Hochschild differential b and the Connes cyclic operator B are defined by

b(a1, · · · , an, a0) :=
n∑

i=1

∑
(ai)

(−1)i(a1, · · · , ai−1, a
′
i, a

′′
i , · · · , an, a0)

+ (−1)n+1 ·
∑
(a0)

((a1, · · · , an, a′0, a′′0) − (a′′0 , a1, · · · , an, a′0)),

B(a1, · · · , an, a0) :=
∑

(−1)i(n−i)ε(a0)(ai+1, · · · , an, a1, · · · , ai−1, ai), (11)

i
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respectively, where c is again the image of c ∈ C in C, and ε : C → k is the counit. The homology 
(CH•(C), b) is the Hochschild homology of C, denoted by HH•(C), and the cyclic homology of the mixed 
complex (CH•(C), b, B) is the cyclic homology of C.

We leave to the interested readers to check that in the above definition b2 = B2 = bB + Bb = 0.
It is easy to verify that the b-complex CH•(C) is just Ω(C) ⊗ι C, where ι : C → Ω(C) is the canonical 

twisting morphism defined in Section 2.

Proposition 9. Let C be a finite dimensional coalgebra. Denote by A := Homk(C, k) its dual algebra. Then

HC−
• (C) � HC−•(A).

Proof. This is because

Hom(A⊗n, k) � Hom(Hom(C,k)⊗n, k) � C⊗n,

and thus as complexes,

CC−•(A) � CC−
• (C),

where the negative sign in the superscript CC−•(A) appears since we have to change the homological degree 
to the cohomological one. �
Remark 10. The definition of the Hochschild and cyclic homologies can be generalized to DG algebras and 
DG coalgebras, where we add in the boundary map b (and B) the differential of the corresponding algebra 
and/or coalgebra respectively, and the signs follow the Koszul sign convention.

4. Basics of Koszul algebras

In this section, we recall some basic facts about Koszul algebras. The notion of Koszul algebras was first 
introduced by Priddy [34]; for a comprehensive discussion of them, we refer to Loday and Vallette [29].

4.1. Koszul complexes and Koszul algebras

Suppose V is a finite dimensional (possibly graded) vector space, and let T (V ) be the free tensor algebra 
generated by V . Let R ⊂ V ⊗ V be a subspace (graded subspace if V is graded). We call the pair (V, R) a 
quadratic datum. The quadratic algebra associated with this datum is defined to be

A = A(V,R) := T (V )/(R),

where (R) is the two-sided ideal generated by R in T (V ), that is,

A = T (V )/(R) = k⊕ V ⊕ · · · ⊕ V ⊗n

∑n−2
i=1 V ⊗i ⊗R⊗ V ⊗n−2−i

⊕ · · · . (12)

In the classical grading for Koszul algebras (see [2]), one usually puts the elements of

An = V ⊗n

∑n−2 ⊗i ⊗n−2−i

i=1 V ⊗R⊗ V
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in degree n. In this paper, we shall use a bigrading on A such that an element

v1 ⊗ · · · ⊗ vn ∈ V ⊗n

∑n−2
i=1 V ⊗i ⊗R⊗ V ⊗n−2−i

has degree |v1| + · · · + |vn| and weight n. For example, if V is ungraded, elements of A only live in the 
column degree = 0, so in this case, the relation between the classical grading and the bigrading is

An = A0,n, for n ≥ 0. (13)

We shall use these two notations in the sequel. For simplicity, we shall assume from now on that V is 
ungraded.

The quadratic coalgebra C(V, R) associated with the quadratic datum (V, R) is defined to be the 
subcoalgebra of T c(V ) satisfying that for any subcoalgebra C of T c(V ) such that the composition 
C � T c(V ) � V ⊗2/R is zero, there is a unique coalgebra morphism C → C(V, R) making the follow-
ing diagram commutative

C(V,R)

C T c(V ).

Therefore

C = C(V,R) = k⊕ V ⊕R⊕ · · · ⊕
( ⋂
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ · · · .

We define the Koszul dual coalgebra A¡ of a quadratic algebra A = A(V, R) to be C(sV, s2R), so elements 
of

⋂
i+2+j=n

(sV )⊗i ⊗ (s2R) ⊗ (sV )⊗j

have weight n and degree equal to n. Since V is ungraded (and thus is put in degree zero), the elements of 
A¡ live in the diagonal degree = weight of the first quadrant. In the classical grading for this coalgebra, one 
puts A¡

0 = k, A¡
1 = V and for n ≥ 2,

A¡
n =

⋂
i+2+j=n

(sV )⊗i ⊗ (s2R) ⊗ (sV )⊗j ,

so this is just our weight grading and the relation between the classical grading and the bigrading

A¡
n = A¡

n,n, for n ≥ 0. (14)

Given a quadratic coalgebra C = C(V, R), we define its Koszul dual algebra C ¡ to be

A(s−1V, s−2R) = T (s−1V )/(s−2R).

Thus by definition, we have (A¡)¡ = A and (C ¡)¡ = C.
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The Koszul dual algebra of the quadratic algebra A = A(V, R) is the graded dual of A¡ = C(sV, s2R), 
so if we denote by R⊥ the subspace of V ∗ ⊗ V ∗ consisting of functions vanishing on R via the natural map 
V ∗ ⊗ V ∗ → (V ⊗ V )∗, then

A! = A(s−1V ∗, s−2R⊥).

The elements of (s−1V ∗)⊗n/ 
∑

i+2+j=n(s−1V ∗)⊗i⊗ (s−2R⊥) ⊗ (s−1V ∗)⊗j have weight −n and degree equal 
to the original degree minus n. Since V is ungraded (and thus is put in degree zero), the elements of A!

live in the diagonal degree = weight of the third quadrant. In the usual grading for this algebra, one puts 
A!

0 = k, A!
1 = V and for n ≥ 2, A!

n = (V ∗)⊗n/ 
∑

i+2+j=n(V ∗)⊗i ⊗ (R⊥) ⊗ (V ∗)⊗j , so the relation between 
the classical grading and the bigrading is

A!
n = A!

−n,−n, n ≥ 0. (15)

As is easily seen, the canonical map κ : A¡ � sV � V � A is a twisting morphism, so one can form the 
twisted tensor product A¡ ⊗κ A or A ⊗κ A¡.

Definition 11. The algebra A is said to be a Koszul algebra if A ⊗κ A¡ is a projective resolution of k or 
equivalently κ is a Koszul morphism.

We provide a concrete description of this complex. Choose a basis {ei} of V , and let {e∗i } be the dual 
basis of V ∗. Let 

∑
i

ei ⊗ s−1e∗i act on A ⊗A¡ by

d(a⊗ f) = (−1)|f |
∑
i

aei ⊗ f · s−1e∗i ,

then d2 is automatically 0. This complex A ⊗κA
¡ = (A ⊗A¡, d) is called the Koszul complex of the quadratic 

algebra A.
One immediately gets that if A is Koszul, then A! is also Koszul. In fact the Koszul complex of A! is just 

A! ⊗κ∨ A∨ which is the dual of the Koszul complex of A.
Let us consider the bar construction of A = A(V, R). As we have supposed that V is ungraded, it is put 

in degree zero. Graphically, the bar construction B(A) = k ⊕ sA⊕ (sA)⊗2 ⊕ (sA)⊗3 ⊕ · · · has the following 
structure

...
...

...
...

3 V ⊗3

V⊗R+R⊗V V ⊗ V ⊗2

R + V ⊗2

R ⊗ V V ⊗ V ⊗ V

2 V ⊗2

R V ⊗ V

1 V

0 k

weight/degree 0 1 2 3 · · ·

In this graph, we did not draw nonzero terms. From this diagram, we know that there is a natural injection 
i : A¡ � B(A) such that for any i ≥ 0, Hii(B(A)) can be identified with A¡

i = A¡
i,i.

Now consider the cobar construction of A¡. Graphically, the bar construction

Ω(A¡) = k⊕ s−1A¡ ⊕ (s−1A¡)⊗2 ⊕ (s−1A¡)⊗3 ⊕ · · ·
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has the following structure

...
...

...
...

...

3 V V V V R + RV RV ∩ V R

2 V V R

1 V

0 k

weight/degree 0 1 2 3 · · ·

In this graph, we write VW for the tensor product V ⊗ W and do not draw nonzero terms. From this 
diagram, we know that there is a natural surjection q : Ω(A¡) � A such that for any i ≥ 0, H0i(Ω(A¡)) can 
be identified with Ai = A0,i.

It follows from the fundamental result about twisting morphisms that A is a Koszul algebra if and only 
if q : Ω(A¡) � A is a quasi-isomorphism of differential bigraded algebras if and only if i : A¡ � B(A) is a 
quasi-isomorphism of differential bigraded coalgebras.

This kind of reciprocity is also reflected in the following proposition and it follows from the adjunction 
between the bar and cobar construction.

Proposition 12. Suppose that A is a Koszul algebra. Denote by A¡ the Koszul dual coalgebra of A. Then we 
have a commutative diagram

A¡ η

i

BΩ(A¡)

B(p)

B(A)

of quasi-isomorphisms between differential graded coalgebras.

Remark 13. Let A be a Koszul algebra. Since A is locally finite, its graded dual A∨ is a coalgebra. We have 
four universal twisting morphisms:

π : B(A) → A, π′ = ι∨ : B(A!) → A!, ι : A¡ → Ω(A¡), ι′ = π∨ : A∨ → Ω(A∨),

two Koszul morphisms:

κ : A¡ → A and κ∨ : A∨ → A!,

two quasi-isomorphisms of differential bigraded coalgebras:

i : A¡ → B(A) and q∨ : A∨ → B(A!),

and two quasi-isomorphisms of differential bigraded algebras:

q : Ω(A¡) → A and i∨ : Ω(A∨) → A!,

which satisfy some compatibility conditions. Furthermore, there are four algebra–coalgebra dualities:

B(A)∨ � Ω(A∨), Ω(A∨)∨ � B(A), B(A!)∨ � Ω(A¡), Ω(A¡)∨ � B(A!). (16)
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Corollary 14. Suppose that A is a Koszul algebra. Denote by A¡ its Koszul dual coalgebra. Then

(1) there is an isomorphism of graded coalgebras

A¡ � TorA• (k, k)

and an isomorphism of graded algebras

A! � Ext−•
A (k, k);

(2) the complex

· · · −→ A⊗A¡
m ⊗A

b−→ A⊗A¡
m−1 ⊗A

b−→ · · · b−→ A⊗A¡
0 ⊗A � A⊗A mult−−−−→ A,

where

b(a⊗ c⊗ a′) =
∑
i

(
eia⊗ e∗i c⊗ a′ + (−1)ma⊗ ce∗i ⊗ a′ei

)
(17)

for a ⊗ c ⊗ a′ ∈ A ⊗A¡
m ⊗A, gives a resolution of A as an A-bimodule.

Proof. Since π : B(A) � sA � A � A is a Koszul morphism, A ⊗π B(A) ⊗π A is a projective bimodule 
resolution of A as bimodules. For the Koszul algebra, the map i : A¡ � B(A) is a quasi-isomorphism of 
differential bigraded coalgebras and κ : A¡ � sV � V � A is a Koszul morphism. It is easy to see that 
κ = π◦i, that is, κ and π are compatible. The comparison lemma shows that A ⊗κA

¡⊗κA → A ⊗πB(A) ⊗πA

is a quasi-isomorphism. As a consequence, the complex k ⊗A (A ⊗κ A¡
• ⊗κ A) ⊗A k computes TorA• (k, k), 

and there is an isomorphism of complexes A¡
• � k ⊗A (A ⊗κ A¡

• ⊗κ A) ⊗A k. Taking homology groups, we 
obtain an isomorphism of graded spaces A¡

• � TorA• (k, k). Via this isomorphism, we endow TorA• (k, k) with 
a graded coalgebra structure. Notice that we have used the classical grading for the complexes.

For the second statement of (1), one can take the graded duals of both sides of the first isomorphisms 
and notice that the graded dual of TorA• (k, k) is just Ext−•

A (k, k). Alternatively, one checks that the complex 
HomA(k ⊗A (A ⊗π B(A) ⊗π A), k) is isomorphic to the graded dual of B(A). Note that the minus sign in 
the second isomorphism comes from our grading convention that A! is negatively bigrading.

For (2), this complex is just A ⊗κ A
¡ ⊗κ A. For another nice proof, see Krähmer [24, Proposition 19]. �

5. Hochschild (co)homology of Koszul algebras

As proved by Priddy [34], Koszul duality greatly simplifies the computation of Hochschild homology and 
cohomology groups.

5.1. Hochschild homology via the Koszul complex

Denote by

K ′(A) = {· · · −→ A⊗A¡
m ⊗A

b−→ A⊗A¡
m−1 ⊗A

b−→ · · · b−→ A⊗A¡
0 ⊗A}

the projective bimodule resolution of A as in Corollary 14, that is, K ′(A) = A ⊗κ A¡
• ⊗κ A. Let K(A) :=

A ⊗A⊗Aop K ′(A). More concretely (recall that we assume that V is ungraded), choose a basis {ei} of V , 
and let {e∗i } be the dual basis of V ∗. Then
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K(A) � (A⊗A¡
•, b)

with differential

b(a⊗ c) =
∑
i

(
aeia⊗ c · s−1e∗i + (−1)meia⊗ s−1e∗i · c

)
(18)

for a ⊗ c ∈ A ⊗A¡
m. Therefore, we have

HH•(A) � H•(K(A), b). (19)

Observe that the homological grading coincides with the classical grading. Since A is bigraded, the normal-
ized Hochschild complex of A and the Hochschild homology are also bigraded. Define

HHij(A) = Hij(CH••(A)) � Hij(K(A), b),

then the relation between the homological grading and the bigrading is

HHn(A) =
⊕
i

HHn,n+i(A), n ≥ 0. (20)

Similarly, define

HHij(A¡) = Hij(CH••(A¡))

and we obtain

HHn(A¡) =
⊕
i

HHi,i+n(A), n ≥ 0. (21)

Theorem 15. Let A be a Koszul algebra, and denote by A¡ its Koszul dual coalgebra. Then we have bigraded 
isomorphisms

HH••(A) � H••(K(A), b) � HH••(A¡),

which respect the Connes cyclic operator on both sides.

For the proof of the above result, we need some lemmas.

Lemma 16. Let A be a Koszul algebra, and A¡ be its Koszul dual coalgebra. Then we have commutative 
diagram of quasi-isomorphisms of b-complexes

CH•(Ω(A¡)) = Ω(A¡) ⊗ BΩ(A¡)
p1

CH•(A) = A⊗ B(A) CH•(A¡) = Ω(A¡) ⊗A¡.

q2

φ2

K(A) = A⊗A¡
φ1
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The explicit formulae for p1, q2, φ1 and φ2 are given as follows:

p1 = CH•(p) = p⊗ B(p), q2 = id ⊗ η,

φ1 = id ⊗ i, φ2 = p⊗ id,

where η and i are given in Proposition 12.

Proof. One verifies easily that p1, q2, φ1 and φ2 are chain maps and the commutativity of the diagram 
follows from Proposition 12.

We already know that φ1 is a quasi-isomorphism. Since the functor CH•(−) preserves quasi-isomorphisms, 
p1 is a quasi-isomorphism [27, 5.3.5 Theorem].

The proof of other two quasi-isomorphisms follows from a standard spectral sequence argument. To show 
the quasi-isomorphism

φ2 : Ω(A¡) ⊗A¡ → A⊗A¡,

filter both complexes by

Fr(Ω(A¡) ⊗A¡) =
⊕
s≤r

Ω(A¡) ⊗A¡
s and Fr(A⊗A¡) =

⊕
s≤r

A⊗A¡
s.

Both of the boundary maps respect the filtrations, and the comparison theorem for spectral sequences [29, 
Lemma 2.5.1] guarantees the quasi-isomorphism, induced by the quasi-isomorphism p : Ω(A¡) → A¡. For 
q2 : Ω(A¡) ⊗A¡ → Ω(A¡) ⊗A¡, just choose the filtrations

Fr(Ω(A¡) ⊗A¡) =
⊕
s≤r

Ω(A¡) ⊗A¡
s, Fr(Ω(A¡) ⊗ BΩ(A¡)) =

⊕
s≤r

Ω(A¡) ⊗ BΩ(A¡)•,s. �

Now let us recall a result of Loday–Quillen (see Loday and Quillen [28, §5] and Loday [27, §3.1]). For 
a vector space V , the free algebra A = T (V ) generated by V is a Koszul algebra (taking R = 0). In this 
case, A¡ = k ⊕ sV , and one verifies easily that Ω(A¡) = A and that the two canonical twisting morphisms 
κ : A¡ → A and ι : A¡ → Ω(A¡) = A coincide. This shows that the Koszul complex (which is also called the 
small complex by Loday–Quillen)

(T (V ) ⊗ (k⊕ sV ), b)

computes both the Hochschild homology of the free algebra T (V ) and the Hochschild homology of the 
coalgebra A¡. This result is generalized to the case of the cobar construction Ω(C) of any coaugmented 
DG coalgebra C by Vigué-Poirrier [42] and Jones and McCleary [20]. The Hochschild and cyclic homol-
ogy of Ω(C) can also be computed via this small complex, i.e. there is a quasi-isomorphism of mixed 
complexes

(CH•(Ω(C)), b, B) � (CH•(C), b, B).

Recall that a quasi-isomorphism of mixed complexes is a quasi-isomorphism for the b-complexes which also 
commutes with the differentials B.

What we need further is summarized into the following lemma, which is a key fact for the proof of 
Theorem 15.
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Lemma 17. Let A be a Koszul algebra, and denote by A¡ its Koszul dual coalgebra.

(i) The map

p1 : CH•(Ω(A¡)) = Ω(A¡) ⊗ BΩ(A¡) → CH•(A) = A⊗ B(A)

constructed in Lemma 16 is a quasi-isomorphism of mixed complexes.
(ii) The map q2 constructed in Lemma 16 has a left inverse

p2 : CH•(A) = A⊗ B(A) → CH•(A¡) = Ω(A¡) ⊗A¡

which is also a quasi-isomorphism of mixed complexes.

Proof. (1) Since p : Ω(A¡) → A is a quasi-isomorphism of DG algebras, by applying the Hochschild chain 
complex functor, we obtain

p1 = CH•(p) : CH•(Ω(A¡)) → CH•(A)

is a quasi-isomorphism of mixed complexes.
(2) The formula for p2 is given as follows. Recall that an element in the bar construction is written in the 

form [u1|u2| · · · |un] and an element in the cobar construction is written in the form 〈a1|a2| · · · |an〉. Define 
p2 : CH•(Ω(A¡)) → CH•(A¡) by

Ω(A¡) ⊗ BΩ(A¡) −→ Ω(A¡) ⊗A¡

〈a1|a2| · · · |an〉 ⊗ 1 	−→ 〈a1|a2| · · · |an〉 ⊗ 1

〈a1|a2| · · · |an〉 ⊗ [〈u1|u2| · · · |um〉] 	−→
∑
i

(−1)μi〈ui+1| · · · |um|a1| · · · |an|u1| · · · |ui−1〉 ⊗ ui

〈a1|a2| · · · |an|〉 ⊗ [v1| · · · |vr] 	−→ 0,

where a1, · · · , an, u1, · · · , um ∈ A, v1, · · · , vr ∈ Ω(A¡) with r > 1 and μi = (|ui+1| + · · · + |um|)(|a1| + · · · +
|an| + |u1| + · · · + |ui| + 1). The reader may find in Vigué-Poirrier [42] and Jones and McCleary [20, §6]
(where p2 is denoted by j) that

p2 : (CH•(Ω(A¡)), b, B) → (CH•(A¡), b, B)

is a morphism of mixed complexes.
It is direct to see that

p2 ◦ q2 = id : Ω(A¡) ⊗A¡ → Ω(A¡) ⊗A¡.

Therefore p2 is a quasi-isomorphism of b-complexes, and thus a quasi-isomorphism of mixed complexes. �
Remark that by Loday [27, Proposition 2.5.15], a quasi-isomorphism of mixed complexes induces not 

only isomorphisms of Hochschild homology groups, but also isomorphism of cyclic homology groups.

Proof of Theorem 15. The statement now follows directly from Lemmas 16 and 17. �
Remark 18. Recall that we have

HHn(A) =
⊕

HHn,i+n(A)

i



JID:JPAA AID:5397 /FLA [m3L; v1.169; Prn:2/12/2015; 9:58] P.19 (1-33)
X. Chen et al. / Journal of Pure and Applied Algebra ••• (••••) •••–••• 19
and

HHn(A¡) =
⊕
i

HHi,i+n(A¡).

The isomorphism in Theorem 15 preserves the bigrading, but it does NOT follow that HHn(A) � HHn(A¡)!

Example 19. Let us consider the example A = k[X]. Then A¡ = k ⊕sV with V = kX one-dimensional space 
generated by X lying in complete degree (0, 1). Since A = T (V ), we use the small complex (A ⊗ A¡, b) of 
Loday–Quillen to compute the Hochschild cohomology of A and A¡. In fact, we obtain easily that

HHij(A) = HHij(A¡) =

⎧⎪⎪⎨
⎪⎪⎩

kXj if i = 0
kXj−1Y if i = 1
0 otherwise

where Y is an element in complete degree (1, 1), and

HHn(A) =

⎧⎪⎪⎨
⎪⎪⎩

k[X] if n = 0
k[X]Y if n = 1
0 otherwise

but

HHn(A¡) = kXn ⊕ kXn−1Y, n ≥ 0.

5.2. Hochschild cohomology via the Koszul complex

Now, let us consider Hochschild cohomologies. Recall that HH•(A) � Ext•Ae(A, A). For a Koszul alge-
bra A, we have

HHi(A) = H−i(HomAe(A⊗κ A¡
• ⊗κ A,A))

= H−i(Homκ(A¡
•, A))

(4)= Hi(A⊗κ A!
•), (22)

where the differential of the complex A ⊗κ A!
• is given by

δ(a⊗ x) =
∑
i

(
eia⊗ e∗i x + (−1)|x|aei ⊗ xe∗i

)
. (23)

Notice that the cohomological grading coincides with the classical grading. As we work in the bigraded 
setup, define

HHij(A) � H−i,−j(A⊗κ A!)

and

HHij(A!) � H−i,−j(A! ⊗κ∨
A).
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Therefore, we obtain that

HHn(A) =
⊕
i

HHn,n−i(A), n ≥ 0, (24)

and

HHn(A!) =
⊕
i

HHi,−n+i(A!), n ≥ 0. (25)

Since for Koszul algebras, (A!)! = A, we have a natural isomorphism:

Theorem 20. (See Buchweitz [8], Beilinson, Ginzburg and Soergel [2], Keller [22].) Let A be a Koszul algebra 
and A! be its Koszul dual algebra. Then there are natural isomorphisms of bigraded algebras

HH••(A) 
−→ HH••(A!),

where the product on both sides is the cup product.

Proof. We have the following diagram

CH•(A;A) 
 Homπ(B(A), A) 


(4)
A⊗π Ω(A∨)

(6)


 A⊗κ A!

(7)

CH•(A!;A!) 
 Homι∨(B(A!), A!) 


(4)
A! ⊗ι∨ Ω(A¡)

(6)


 A! ⊗κ∨
A.

Each map in the diagram is an isomorphism of differential bigraded algebras. This completes the proof. 
Notice that by the following commutative diagram

Ω(A¡) ⊗ι A¡

(7) 


(6)


 A⊗κ A!

(7) 


A! ⊗ι∨ Ω(A¡)
(6)


 A! ⊗κ∨
A,

we have a sequence of isomorphisms of differential bigraded algebras

CH•(A;A) � A⊗κ A! � Ω(A¡) ⊗ι A¡ � CH•(A!;A!). � (26)

Remark 21. As in the homology case, the isomorphism in the above theorem preserves the bigrading, but 
not the usual grading.

Remark 22. We learned from Keller [22] that Buchweitz [8] had firstly proven the above isomorphism as 
graded algebras, while in the same paper Keller proved that this isomorphism is in fact an isomorphism of 
Gerstenhaber algebras, using the fact that the Gerstenhaber Lie bracket can be interpreted as the Lie algebra 
of the derived Picard group of the algebra. A little bit earlier than Keller, Beilinson–Ginzburg–Soergel [2]
proved that the isomorphism is an isomorphism of graded associative algebras. The proofs of Keller and 
Beilinson–Ginzburg–Soergel use derived categories, where they first showed that certain derived categories of 
a Koszul algebra and its Koszul dual are derived equivalent, and then proved that the Hochschild cohomology 
is an invariant of the derived category.
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5.3. Linear–quadratic Koszul algebras

In the original work of Priddy [34], being Koszul means linear–quadratic Koszul, where being Koszul in 
the sense of Definition 11 is a special case.

As before, V is a finite dimensional vector space. Let R ⊂ V ⊕ V ⊗2 and consider

A := T (V )/(R),

which is called a linear–quadratic algebra. Without loss of generality we may assume R ∩ V = {0} (by 
replacing V with V/(R∩V ), this can be satisfied without affecting A). Under this assumption, if we denote 
qR to be the image of the projection of R to V ⊗2, we obtain a map

φ : qR → V

such that R = {X − φ(X)|X ∈ qR}. Denote by (qA)¡ the quadratic dual coalgebra of T (V )/(qR), then this 
φ gives a map

dφ : (qA)¡ � qR → V,

which extends to a coderivation dφ : (qA)¡ → T (V ).
Now if

(R⊗ V + V ⊗R) ∩R⊗2 ⊂ qR,

then the image of dφ lies in (qA)¡. We in fact get a coderivation

dφ : (qA)¡ → (qA)¡.

And if furthermore,

(R⊗ V + V ⊗R) ∩R⊗2 ⊂ R⊗ V ⊗2, (27)

then (dφ)2 = 0, and we obtain a DG coalgebra ((qA)¡, dφ). For more details, see [29, §3.6].

Definition 23 (Linear–quadratic Koszul algebras). Let V , R and A be as above. The algebra A is called a 
linear–quadratic Koszul algebra if R satisfies (27) and the associated T (V )/(qR) is Koszul.

Example 24 (Universal enveloping algebras). Suppose g is a Lie algebra over k, then the universal enveloping 
algebra U(g) is a linear–quadratic Koszul algebra, whose Koszul dual DG coalgebra is the Chevalley–
Eilenberg chain complex C•(g) of g.

Remark 25. For most authors, an algebra being Koszul is in the sense of Definition 11 or 23. In the 
introduction, we mentioned Koszul duality in the general sense, where the Koszul dual of an algebra is 
defined to be Ext•A(k, k) (equipped with the associated A∞ structure), or even more generally, the dual 
space of its bar construction. Koszul duality in this general sense has been used in, for example, [30]
and [41].

6. Koszul Calabi–Yau algebras

In the following, for an associative algebra Λ, by D(Λ) we mean the derived category of left Λ-modules 
and Σ denotes the translation functor in the derived category.
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6.1. Definition of Calabi–Yau algebras

Definition 26. (See Ginzburg [15].) A (bi-)graded algebra A is said to be Calabi–Yau of dimension n (or 
n-Calabi–Yau for short) if A is homologically smooth and there exists an isomorphism

η : RHomAe(A,A⊗A) −→ ΣnA(�) (28)

in the derived category of (bi-)graded left bimodules D(Ae), where being homologically smooth means A
is a perfect Ae-module, i.e., A admits a bounded resolution of finitely generated projective (bi-)graded 
Ae-modules, and n, � are integers.

Notice that in the above definition, A ⊗ A is considered as a left Ae-module, using the outer structure, 
that is, (a ⊗ bop) · (x ⊗ y) = (−1)|b|(|x|+|y|)ax ⊗ yb for x ⊗ y ∈ A ⊗A and a ⊗ bop ∈ Ae; it is thus an object in 
D(Ae) and the expression RHomAe(A, A ⊗ A) makes sense. It has another Ae-module structure using the 
internal structure, that is, (a ⊗ bop) · (x ⊗ y) = (−1)|a||b|+|a||x|+|x||b|xb ⊗ ay; this second module structure 
induces a left Ae-module structure over RHomAe(A, A ⊗A), which implies that the isomorphism (28) makes 
sense.

In the original definition of Ginzburg the isomorphism η is required to be self-dual, which is proved by 
Van den Bergh [41, Appendix C] to be automatically satisfied. However, on the other hand, the isomorphism 
(28) may not be unique.

Suppose A is Koszul. Recall that

K ′(A) = A⊗κ A¡
• ⊗κ A = {· · · −→ A⊗A¡

1 ⊗A −→ A⊗A¡
0 ⊗A} (29)

is a free resolution of A as an Ae-module, and therefore

RHomAe(A,A⊗A) � HomAe(A⊗κ A¡
• ⊗κ A,A⊗A)

� Homk(A¡
•, A⊗A)

� (A⊗A!
−• ⊗A, ∂) (30)

in D(Ae). Notice that in the third isomorphism, we changed the position of two A’s, so the original internal 
structure becomes the outer structure and the differential in the complex (A ⊗A!

−• ⊗A, ∂) is given by

∂(1 ⊗ a⊗ 1) =
∑
j

(ej ⊗ e∗ja⊗ 1 + (−1)|a|1 ⊗ ae∗j ⊗ ej), (31)

where {ei} is a chosen basis of V , and {e∗i } is the dual basis of V ∗.
Now if furthermore A is Calabi–Yau, then

A⊗A!
−• ⊗A

(30)
� RHomAe(A,A⊗A)

(28)
� ΣnA(�)

(29)
� Σn(A⊗κ A¡(�)• ⊗κ A) (32)

in D(Ae), which implies

ψ : A!
−• � A¡

•−n(�) (33)

in D(k).

Remark 27. The isomorphism (33) shows that for i ≥ 0, A!
i = A!

−i,−i lying in complete degree (−i, −i) is 
isomorphic to A¡

n−i = A¡
n−i,n−i placed in complete degree (n − i − �, n − i − �). Since all the isomorphisms 
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in (32) preserve the bigrading, we obtain that n = �. This means that for (bi)graded Koszul Calabi–Yau 
algebras, the Calabi–Yau dimension n is equal to the shift � in Definition 26. This fact, well-known to the 
expert, seems not have been written out explicitly.

The isomorphism (33) leads to the following result, which is originally due to Van den Bergh [39,41]:

Proposition 28 (Van den Bergh). Suppose that A is a Koszul algebra. Then A is n-Calabi–Yau if and only 
if A! is a cyclic algebra of degree n.

Recall that a (bi-)graded associative algebra A is cyclic of degree n if it admits a non-degenerate bilinear 
pairing 〈−, −〉 : A ×A → k(n) such that

〈a · b, c〉 = (−1)(|a|+|b|)|c|〈c · a, b〉, for a, b, c ∈ A.

If A is a DG algebra, then the pairing should furthermore satisfy

〈d(a), b〉 + (−1)|a|〈a, d(b)〉 = 0.

Proof of Proposition 28. It is well-known that

A!
• � A¡

n−•(n)

as A!-bimodule is equivalent to that A! is cyclic (see, for example, Rickard [35, Theorem 3.1]). Therefore, we 
only need to show the isomorphism given by (33) is compatible with the A! actions (see, for example, Smith 
[36, Proposition 5.10]). This is true because the resolution A ⊗κ A

¡ ⊗κ A of A as Ae-module is minimal (the 
differential has no linear terms), which is then unique up to isomorphism, and the differential corresponds 
to the multiplication of generators of A! on A! and A¡ respectively. More precisely, for a ∈ A!

i,

b(IdA ⊗ ψ ⊗ IdA)(1 ⊗ a⊗ 1) = b(1 ⊗ ψ(a) ⊗ 1)

=
∑
j

(ej ⊗ e∗jψ(a) ⊗ 1 + (−1)i1 ⊗ ψ(a)e∗j ⊗ ej),

and

(1A ⊗ ψ ⊗ 1A)∂(1 ⊗ a⊗ 1) = (1A ⊗ ψ ⊗ 1A)
(∑

j

(ej ⊗ e∗ja⊗ 1 + (−1)i1 ⊗ ae∗j ⊗ ej)
)

=
∑
j

(ej ⊗ ψ(e∗ja) ⊗ 1 + (−1)i1 ⊗ ψ(ae∗j ) ⊗ ej).

That is, we have the following commutative diagram

A⊗A!
i ⊗A

(32)

1A⊗ψ⊗1A

∂(31)

A⊗κ A¡
n−i ⊗κ A

(17) b

A⊗A!
i+1 ⊗A

(32)

1A⊗ψ⊗1A

A⊗κ A¡
n−i−1 ⊗κ A.

This shows that ψ is an isomorphism of A!-bimodules, which completes the proof. �
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6.2. The noncommutative Poincaré duality

The noncommutative Poincaré duality, due to Van den Bergh, arose from his study of dualizing complexes 
in noncommutative projective geometry [38–40]. Lambre understood it from the viewpoint of differential 
calculus with duality [25] and he expressed the Poincaré duality via the cap product with the fundamental 
class (also called the volume form). This was also given recently by de Thanhoffer de Völcsey and Van den 
Bergh [11, Proposition 5.5].

Theorem 29 (Poincaré duality of Van den Bergh). Let A be an n-Calabi–Yau algebra. Then there is an 
isomorphism

PD : HHi(A;A) 
−→ HHn−i(A)

for each i.

Proof of the Koszul case. For the Koszul case, by comparing the differentials (18) and (23), since (33) is an 
isomorphism of A!-bimodules, it induces an isomorphism of complexes

(A⊗κ A!, δ) � Σ−n(A⊗A¡, b), (34)

and so we have

HHij(A;A)
(22)
� H−i,−j(A⊗A!, δ)

(34)
� Hn−i,n−j(A⊗A¡, b) = HHn−i,n−j(A). (35)

This is an isomorphism with respect to the bigrading. For the classical grading, we have

HHi(A)
(24)
�

⊕
j

HHi,i−j(A)
(35)
�

⊕
j

HHn−i,n−i+j(A)
(20)
� HHn−i(A).

This completes the proof. �
6.3. Examples: universal enveloping algebras

Recall that a finite dimensional Lie algebra g is called unimodular if the traces of the adjoint actions 
are zero, i.e. Tr(adg(−)) = 0, for all a ∈ g. Examples of unimodular Lie algebras are semi-simple Lie 
algebras, Heisenberg Lie algebras, Lie algebras of compact Lie groups, etc. However, not all Lie algebras are 
unimodular; for example, consider g = Span

k
{x, y} with [x, y] = x, it is not unimodular.

It is nowadays well-known that the universal enveloping algebra U(g) of a unimodular Lie algebra g is 
Calabi–Yau (cf. [7,17,38]). In the following we give a proof of this fact by Koszul duality.

Assume g is an n-dimensional Lie algebra over k. The Koszul dual algebra and coalgebra of U(g) are 
the Chevalley–Eilenberg cochain complex (C•(g), δ) and chain complex (C•(g), ∂), respectively. Choose a 
nonzero element Ω ∈ Cn(g), then we have an isomorphism

ψ : Ci(g) −→ Cn−i(g)

f 	−→ f ∩ Ω,

of vector spaces, for i = 0, 1, · · · , n.
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Lemma 30. Let g be an n-dimensional Lie algebra. Then

ψ : C•(g) −→ Cn−•(g)

defined above is an isomorphism of chain complexes if and only if g is unimodular.

Proof. Define the intersection product Ci(g) × Cn−i(g) → k by

(u, v) 	→ 〈u, v〉 := u ∧ v/Ω,

where the right-hand side means the scalar multiplicity of u ∧v with respect to Ω. That ψ is an isomorphism 
of chain complexes is equivalent to that the intersection product respects the differential. In fact, without 
loss of generality, we may assume u = g1 ∧ · · · ∧ gi, v = gi ∧ · · · ∧ gn. Then

∂(u) ∧ v =
∑

1≤j<i

(−1)j+i[gj , gi] ∧ g1 ∧ · · · ĝj · · · ∧ gn

=
∑

1≤j<i

(−1)ig1 ∧ · · · gj−1 ∧ [gj , gi] ∧ gj+1 ∧ · · · ∧ gn

= (−1)iTr(adgi |span{g1,··· ,gi−1}) · g1 ∧ · · · ∧ gn.

Similarly, one may check

u ∧ ∂(v) = −Tr(adgi |span{gi+1,··· ,gn}) · g1 ∧ · · · ∧ gn.

Thus 〈∂(u), v〉 + (−1)i〈u, ∂(v)〉 = (−1)iTr(adgi), which is zero if and only if g is unimodular. �
Alternatively, g is unimodular if and only if any nonzero top chain Ω ∈ Cn(g) is a Chevalley–Eilenberg 

cycle. This is a chain version of the fact that the cohomology of finite dimensional unimodular Lie algebras 
admits Poincaré duality (cf. [16, Chapter V]).

Theorem 31. (See Brown and Zhang [7], He, Van Oystaeyen and Zhang [17], Van den Bergh [38].) Let g be 
an n-dimensional Lie algebra over k. Then U(g) is n-Calabi–Yau if and only if g is unimodular.

Proof. That U(g) is homologically smooth follows from the fact that the Koszul resolution of U(g) is of 
length n + 1.

By Proposition 28 and Lemma 30,

C•(g) � Cn−•(g)

implies

RHomU(g)e(U(g), U(g)e) � Σ−nU(g)

in D(U(g)e), and vice versa. �
In particular, as we mentioned in Section 1, the algebra of polynomials k[x1, x2, · · · , xn] is n-Calabi–Yau.
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7. Proof of the main theorem

7.1. Batalin–Vilkovisky algebras

Definition 32 (Batalin–Vilkovisky algebra). Let (V, �) be a graded commutative algebra. A Batalin–Vilkovisky 
operator on V is a degree −1 map

Δ : V• → V•−1

such that Δ ◦ Δ = 0 and that the deviation from being a derivation

[a, b] := (−1)|a|+1(Δ(a•b) − Δ(a)•b− (−1)|a|a•Δ(b)), for all a, b ∈ V (36)

is a derivation for each component, i.e.

[a, b•c] = [a, b]•c + (−1)|b|(|a|−1)b•[a, c], for all a, b, c ∈ V.

The triple (V, •, Δ) is called a Batalin–Vilkovisky algebra.

For a graded associative algebra V , a linear operator Δ : V → V (not necessarily a differential) satisfying 
(36) is said to be of second order. Suppose (V, �, Δ) is a Batalin–Vilkovisky algebra. Then by definition, 
(V, �, [−, −]), where [−, −] is given by (36), is a Gerstenhaber algebra. In other words, a Batalin–Vilkovisky 
algebra is a special class of Gerstenhaber algebras. Also Δ being of second order means

Δ(a �b �c) = Δ(a �b) �c + (−1)|b|·|c|Δ(a �c) �b + (−1)|a|a �Δ(b �c)

− Δ(a) �b �c− (−1)|a|a �Δ(b) �c− (−1)|a|+|b|a �b �Δ(c). (37)

The reader may also refer to Getzler [14] for more details.
The following Theorems 33 and 35 are due to Ginzburg and Tradler respectively. Since each theorem has 

at least two proofs appeared in literature, we will only sketch them in the following, just for the reader’s 
convenience.

Theorem 33. (See Ginzburg [15, Theorem 3.4.3].) Suppose that A is an n-Calabi–Yau algebra. Then the 
Hochschild cohomology HH•(A; A) has a Batalin–Vilkovisky algebra structure.

Sketch of proof. The proof is a combination of the following three facts:

(1) HH•(A; A) together with the Gerstenhaber cup product ∪ is a graded commutative algebra.
(2) Via the noncommutative Poincaré duality PD : HH•(A; A) 
−→ HHn−•(A), define a differential operator

Δ : HH•(A;A) −→ HH•−1(A;A)

by letting Δ := PD−1 ◦B ◦ PD.
(3) Δ is a second order operator with respect to the Gerstenhaber cup product.

In summary, (HH•(A; A), ∪, Δ) is a Batalin–Vilkovisky algebra.
The proof of Ginzburg uses the Tamarkin–Tsygan calculus, and we refer the reader to the original paper 

as well as Lambre [25] for more details. �
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7.2. Hochschild (co)homology of cyclic algebras

For cyclic algebras, we also have a version of Poincaré duality, due to Tradler [37]:

Lemma 34. Let A! be a cyclic (not necessarily Koszul) algebra of degree n. Denote by A¡ := Homk(A, k) its 
dual coalgebra. Then there is an isomorphism

PD : HH•(A!;A!) 
−→ HHn−•(A¡).

Proof. First, we have an isomorphism of vector spaces

CH•(A!;A!) � Homπ′
(B(A!), A!)

(4)
� A! ⊗π′

B(A!)∨

(16)
� A! ⊗π′

Ω(A¡)
(7)
� Ω(A¡) ⊗ι A!

(33)
� Σ−n(Ω(A¡) ⊗A¡, b) = Σ−nCH•(A¡). (38)

We next show that

Ω(A¡) ⊗ι A! (33)
� Σ−n(Ω(A¡) ⊗A¡, b) (39)

is an isomorphism of chain complexes. Choose a basis {ei} for A¡, and denote its dual by {ei}. The differential 
on CH•(A!; A!) � Ω(A¡) ⊗ι A! is given as follows: for (a1, · · · , an, x) ∈ Ω(A¡) ⊗A!,

δ(a1, · · · , an, x) = (d(a1, · · · , an), x) +
∑
i

(−1)|a1|+···+|an|+|ei|
(
a1, · · · , an, ei, x · ei

)

+
∑
i

(−1)(|a1|+···+|an|)|ei|
(
ei, a1, · · · , an, ei · x

)
, (40)

where d is the differential on the cobar construction, and ei is the image of the projection A¡ → A
¡ = A¡/k. 

Let ψ : A! → Σ−nA¡ be the isomorphism (33), then under (38) the right-hand side of (40) is mapped to

(d(a1, · · · , an), ψ(x)) +
∑
i

(−1)|a1|+···+|an|+|ei|
(
a1, · · · , an, ei, ψ(x · ei)

)

+
∑
i

(−1)(|a1|+···+|an|)|ei|
(
ei, a1, · · · , an, ψ(ei · x)

)
. (41)

On the other hand, the Hochschild boundary on (a1, · · · , an, ψ(v)) ∈ CH•(A¡) is

b(a1, · · · , an, ψ(x)) = (d(a1, · · · , an), ψ(x)) +
∑

(ψ(x))

(−1)|a1|+···+|an|+|ψ(x)′|
(
a1, · · · , an, ψ(x)

′
, ψ(x)′′

)

+
∑

(ψ(x))

(−1)(|a1|+···+|an|)|ψ(x)′′|
(
ψ(x)

′′
, a1, · · · , an, ψ(x)′

)
. (42)

Therefore, to show (41) equals the left-hand side of (42), it suffices to show that in A¡ ⊗A¡,

∑
ei ⊗ ψ(xei) =

∑
ψ(x)′ ⊗ ψ(x)′′,

∑
ei ⊗ ψ(eix) =

∑
ψ(x)′′ ⊗ ψ(x)′. (43)
i (ψ(x)) i (ψ(x))
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For any two elements ej , ek of the basis of A!, the evaluation
(∑

i

ei ⊗ ψ(xei)
)
(ej , ek) =

∑
i

δji · ψ(xei)(ek)

= ψ(xej)(ek)

= ψ(x)(ej · ek), (44)

where the last equality holds since ψ is a map of A!-bimodules. On the other hand,
( ∑

(ψ(x))

ψ(x)′ ⊗ ψ(x)′′
)
(ej , ek) = ψ(x)(ej · ek) (45)

automatically. Comparing (44) and (45), we obtain the first equality of (43). The second equality is proved 
similarly. This completes the proof. �
Theorem 35. (See Tradler [37, Theorem 1].) Let A! be a cyclic algebra and let A¡ be its dual coalgebra. Then 
the Hochschild cohomology HH•(A!; A!) has a Batalin–Vilkovisky algebra structure.

Sketch of proof. The proof is also a combination of the following three facts:

(1) HHi(A!; A!) together with the Gerstenhaber cup product is a graded commutative algebra.
(2) Via the isomorphism PD : HH•(A!; A!) 
−→ HHn−•(A¡), we may define a differential operator

Δ : HH•(A!;A!) −→ HH•−1(A!;A!)

by letting Δ := PD−1 ◦ B ◦ PD.
(3) Δ is a second order operator with respect to the Gerstenhaber cup product.

In summary, (HH•(A!; A!), ∪, Δ) is a Batalin–Vilkovisky algebra. �
The reader may also refer to Menichi [31] and Abbaspour [1] for different proofs of this theorem.

7.3. The main theorem

Now we reach the main theorem of the current paper:

Theorem 36 (Theorem A). Let A be a Koszul n-Calabi–Yau algebra, and let A! be its Koszul dual algebra. 
Then there is an isomorphism

HH••(A;A) � HH••(A!;A!)

of Batalin–Vilkovisky algebras.

Proof. Since A is Koszul Calabi–Yau, we have the following commutative diagram

CH••(A;A)

Theorem 20 




A⊗κ A! 


(34) 


Ω(A¡) ⊗ι A!

(39)


CH••(A!;A!)


Lemma 34


CHn−•,n−•(A)
(19)


 Σ−n(A⊗A¡, b) 
 Σ−n(Ω(A¡) ⊗A¡, b) CHn−•,n−•(A¡)
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of chain complexes. In fact, the top line induces on Hochschild cohomology the isomorphisms of graded 
commutative algebras (Theorem 20), the bottom line induces on Hochschild homology the isomorphisms 
of graded vector spaces which commute with B (Theorem 15); the leftmost square appeared in the proof 
of Theorem 28 and the rightmost square in the proof of Lemma 34, and the middle square is obviously 
commutative. Combining with Theorems 33 and 35 the conclusion follows. �
7.4. Remark

In this paper we have only considered Koszul Calabi–Yau algebras. It is very likely that the above 
theorem holds for N -Koszul Calabi–Yau algebras in the sense of Berger [3], or more generally, exact complete 
Calabi–Yau algebras in the sense of Van den Bergh [41].

8. An application to cyclic homology

In the mathematical literature, Batalin–Vilkovisky algebras are often related to deformation theory (the 
Tian–Todorov Lemma). However, the Batalin–Vilkovisky algebras on both sides of Theorem A are not 
directly (but indirectly) related to the deformations of A or A!. Indeed, due to the work of de Thanhoffer de 
Völcsey and Van den Bergh [11], the deformations of A are controlled by a DG Lie algebra whose homology 
is the negative cyclic homology HC−

• (A), while the deformations of the cyclic algebra A! are controlled by 
the cyclic cohomology HC•(A!), which is contained in a work of Penkava and Schwarz [33]. The theorem 
below, which is essentially a corollary of Theorem A, gives an isomorphism of Lie algebras on these to cyclic 
(co)homology groups:

Theorem 37. Let A be a Koszul n-Calabi–Yau algebra, and let A! be its Koszul dual algebra. Then there is 
an isomorphism

HC−
• (A) � HC−•(A!) (46)

of Lie algebras between the negative cyclic homology of A and the cyclic cohomology of A!.

Consider the short exact sequence

0 −→ u · CC−
•+2(A) ι−→ CC−

• (A) π−→ CH•(A) −→ 0,

where ι : u · CC−
•+2(A) → CC−

• (A) is the embedding and

π : CC−
• (A) −→ CH•(A)∑

i

xi · ui 	−→ x0

is the projection. It induces a long exact sequence (observe that this is the cohomological version of the 
Connes long exact sequence)

· · · −→ HC−
•+2(A) −→ HC−

• (A) π∗−→ HH•(A) β−→ HC−
•+1(A) −→ · · · ,

where we observe that H•(u · CC−
•+2(A)) � HC−

•+2(A). It is obvious that β ◦ π∗ = 0 and we claim that

π∗ ◦ β = B : HH•(A) → HH•+1(A).
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In fact, for any x ∈ CH•(A) which is b-closed, from the following diagram

0 u · CC−
• (A) ι

b+uB

CC−
• (A)

b+uB

π CH•(A)

b

0

0 u · CC−
•−1(A) ι

b+uB

CC−
•−1(A)

b+uB

π CH•−1(A)

b

0

we have (up to a boundary)

ι−1 ◦ (b + uB) ◦ π−1(x) = ι−1 ◦ (b + uB)(x) = ι−1(u ·B(x)) = u ·B(x) ∈ u · CC−
•−1(A).

Via the isomorphism u · CC−
• (A) � CC−

•+2(A), this element u · B(x) is mapped to B(x) ∈ CC−
•+1(A), and 

under π it is mapped to B(x). Thus π∗ ◦ β = B as claimed.

Lemma 38. (See [11].) Suppose A is an associative algebra. If (HH•(A), �, B) is a Batalin–Vilkovisky algebra, 
where � is a graded commutative associative product, then

{a, b} := (−1)|a|β(π∗(a) �π∗(b)), for homogeneous a, b ∈ HC−
• (A)

defines a degree one graded Lie algebra structure on HC−
• (A).

Proof. We first show the graded skew-symmetry. In fact, for two homogeneous elements a, b ∈ HC−
• (A),

{a, b} + (−1)(|a|+1)(|b|+1){b, a} = (−1)|a|β(π∗(a) �π∗(b)) + (−1)(|a|+1)(|b|+1)+|b|β(π∗(b) �π∗(a))

= (−1)|a|β(π∗(a) �π∗(b)) + (−1)(|a|+1)(|b|+1)+|b|+|a|·|b|β(π∗(a) �π∗(b))

= 0.

Next, we show graded Jacobi identity: for homogeneous elements a, b, c ∈ HC−
• (A),

{{a, b}, c} = (−1)|b|+1β(π∗(β(π∗(a) �π∗(b))) �π∗(c))

= (−1)|b|+1β(B(π∗(a) �π∗(b)) �π∗(c)).

Similarly,

{{c, a}, b} = (−1)|a|+1β(B(π∗(c) �π∗(a)) �π∗(b)),

{{b, c}, a} = (−1)|c|+1β(B(π∗(b) �π∗(c)) �π∗(a)).

Now since (HH•(A), �, B) is a Batalin–Vilkovisky algebra, by (37) we obtain

(−1)(|a|+1)(|c|+1){{a, b}, c} + (−1)(|c|+1)(|b|+1){{c, a}, b} + (−1)(|b|+1)(|a|+1){{b, c}, a}
= (−1)(|a|+1)(|c|+1)+|b|+1β(B(π∗(a) �π∗(b)) �π∗(c))

+ (−1)(|c|+1)(|b|+1)+|a|+1β(B(π∗(c) �π∗(a)) �π∗(b))

+ (−1)(|b|+1)(|a|+1)+|c|+1β(B(π∗(b) �π∗(c)) �π∗(a))
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(37)= (−1)|a|+|b|+|c|+|a|·|c|
(
β(B(π∗(a) �π∗(b) �π∗(c))) − β(B(π∗(a)) �π∗(b) �π∗(c))

− (−1)|a|β(π∗(a) �B(π∗(b)) �π∗(c)) − (−1)|a|+|b|β(π∗(a) �π∗(b) �B(π∗(c)))
)

= 0,

where the last equality holds since B = π∗ ◦ β and therefore β ◦B = B ◦ π∗ = 0. �
From the Connes long exact sequence for cyclic cohomology (see the last paragraph of Section 3.1)

· · · −→ HH•(A;A∗) β−→ HC•−1(A) −→ HC•+1(A) π∗−→ HH•+1(A;A∗) −→ · · · ,

we have the following lemma, for which we omit the proof. Recall that HH•(A, A∗) � Hom(HH•(A), k) by 
Proposition 7 and the Connes differential B on HH•(A) induces an operator B∗ on HH•(A, A∗).

Lemma 39. Suppose A! is an associative algebra. Suppose (HH•(A!; A∗), �, B∗) is a Batalin–Vilkovisky alge-
bra, where � is a graded commutative associative product, then HC•(A!) has a degree minus one Lie algebra 
structure, where for any x, y ∈ HC•(A!),

{x, y} := (−1)|x|β(π∗(x) �π∗(y)).

The key point of the above two lemmas is that there is no a priori graded commutative associative 
product on HH•(A) and/or HH•(A!; A∗). If A is n-Calabi–Yau, then HH•(A) has a product induced from 
the Gerstenhaber product on HH•(A; A) via Van den Bergh’s Poincaré duality, and similarly, if A! is a 
cyclic associative algebra, then HH•(A!; A∗) has a product induced from the Gerstenhaber product on 
HH•(A!; A!) via Tradler’s isomorphism. However, during this process one has to notice that the induced 
product has a degree. For example, since the Gerstenhaber product on HH•(A; A) is of degree zero, the 
induced product on HH•(A) has degree −n. Therefore we have to shift the degree of HH•(A) down by −n

to get a Batalin–Vilkovisky algebra. Let us take this degree shift in the following.

Proof of Theorem 37. Since A is Calabi–Yau, HH•(A) admits a Batalin–Vilkovisky algebra structure via 
Van den Bergh’s duality

HH•(A) � HHn−•(A;A).

The Lie bracket on HC−
• (A) is given by Lemma 38 (see [11, Theorem 10.2]), while the Lie bracket on 

HC•(A!) is given by Lemma 39 (see a brief discussion in [33, §8]).
We have shown that HH•(A; A) and HH•(A!; A!) are isomorphic as Batalin–Vilkovisky algebras, and 

therefore to show the Lie algebra isomorphism, we have to compare β and π∗. In fact, by Lemma 16 and 
Proposition 9, we have quasi-isomorphisms of mixed complexes

(HC•(A), b, B) � (HC•(A¡), b, B) � (HC−•(A!), δ, B∗),

and therefore a commutative long exact sequence

· · · HH•(A)
β

HC−
•+1(A) HC−

•−1(A)
π∗ HH•−1(A) · · ·

· · · HH−•(A!; k)
β

HC−•−1(A!) HC−•+1(A!)
π∗ HH−•+1(A!; k) · · ·

where the vertical maps are all isomorphisms. This completes the proof. �
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Example 40. For an n-Calabi–Yau algebra A, its negative cyclic homology HC−
• (A) is in general non-trivial, 

and hence so is the isomorphism (46) for A being Koszul. In fact, it has been shown in [11, Proposition 5.7]
that for such A,

HC−
n (A) ∼= HHn(A), HC−

i (A) = 0 for i > n.

Note that HHn(A) is non-trivial since it is where the volume form lies. For example, take A =
k[x1, x2, · · · , xn], then via the above isomorphism we have

HC−
n (A) ∼= HHn(A) ∼= Ωn

A|k
∼= A⊗k ∧n(x1, · · · , xn),

where Ωn
A|k is the set of degree n Kähler differentials of A, and the last two identities follow from the 

Hochschild–Kostant–Rosenberg theorem (see Loday [27, Theorem 3.2.2] for the precise statement and a 
proof).

Remark 41. As been observed in [11], the above Lemmas 38 and 39 are very much similar to the ones given 
by Menichi [31], which has its precursor in string topology [9]. However, there is a slight difference between 
them, especially the degree of the bracket in the above lemmas is one or minus one, while the degree of 
the one of Menichi is −2. In fact, Menichi showed that the negative cyclic cohomology of a cyclic operad 
with multiplication, in particular, the negative cyclic cohomology of a cyclic algebra, has a Lie bracket of 
degree −2. This Lie algebra is also interesting, since it gives an algebraic interpretation of the Lie algebra 
on the S1-equivariant homology of the free loop space of a compact smooth manifold, discovered in string 
topology [9]. It would be interesting to know the relation between these Lie brackets.

Later in another paper [32], Menichi also showed that the cyclic cohomology of a cyclic operad with 
multiplication, in particular, the cyclic cohomology of a cyclic algebra, has a Lie bracket of degree −1 and 
he used Connes’ cyclic cochains to define the Lie bracket. Since we work over a field of characteristic zero, 
the complex of cyclic cochains is quasi-isomorphic to the usual complex computing cyclic cohomology, so 
this Lie bracket coincides with the one constructed in Lemma 39.
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