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Introduction

Let A be an associative algebra over a field k. The Hochschild cohomology HH∗(A) :=
Ext∗Ae(A, A) of A has a very rich structure. It is a graded commutative algebra via the 
cup product or the Yoneda product, and it has a graded Lie bracket of degree −1 so that 
it becomes a graded Lie algebra; these give HH∗(A) the structure of a Gerstenhaber 
algebra [16]. Furthermore, Hochschild homology groups are endowed with two actions 
by the Hochschild cohomology algebra, which give the Hochschild homology groups the 
structure of graded module and graded Lie module over the Hochschild cohomology 
algebra. These structures are summarized by the notion of a differential calculus (see 
[15] and [31]); we explain in detail these structures in the first section.

During several decades, a new structure in Hochschild theory has been extensively 
studied in topology and mathematical physics, and recently this was introduced into al-
gebra, the so-called Batalin–Vilkovisky structure. Roughly speaking a Batalin–Vilkovisky 
(aka BV) structure is an operator on Hochschild cohomology which squares to zero and 
which, together with the cup product, can express the Lie bracket. A BV structure is 
known to exist over the Hochschild cohomology of certain special classes of algebras only.

T. Tradler first found that the Hochschild cohomology algebra of a finite dimensional 
symmetric algebra, such as a group algebra of a finite group, is a BV algebra [32]; for later 
proofs, see e.g. [12,28]. For a Calabi–Yau algebra, V. Ginzburg showed in [17] that the 
Hochschild cohomology of a Calabi–Yau algebra also has a Batalin–Vilkovisky structure.

Inspired by the result of V. Ginzburg, the first named author introduced in [25] the 
notion of a differential calculus with duality. This notion explains when BV structure 
exists and unifies the two known cases of symmetric algebras and Calabi–Yau algebras. 
Recently as an application of this notion, N. Kowalzig and U. Krähmer [24, Theorem 1.7]
proved that the Hochschild cohomology ring of a twisted Calabi–Yau algebra is also a 
Batalin–Vilkovisky algebra, provided a certain algebra automorphism is semisimple.

The main result of this paper is an analogous statement for Frobenius algebras with 
semisimple Nakayama automorphism. Our main result reads as follows.

Theorem 0.1. Let A be a Frobenius algebra with semisimple Nakayama automorphism. 
Then the Hochschild cohomology ring HH∗(A) of A is a Batalin–Vilkovisky algebra.

Observe that the semisimplicity is an open condition, and that any finite dimensional 
self-injective algebra defined over an algebraically closed field is Morita equivalent to 
its basic algebra which is a Frobenius algebra. Hence our main result shows that the 
Hochschild cohomology rings of large classes of self-injective algebras are BV algebras.

The paper is organized as follows. In Section 1 we explain the formalism of Tamarkin–
Tsygan calculi, calculi with duality and Batalin–Vilkovisky structures. Section 2 develops 
the Tamarkin–Tsygan structure on the Hochschild cohomology associated with an auto-
morphism of an algebra. We show that when the Nakayama automorphism of a Frobenius 
algebra is diagonalizable, then there is a differential calculus with duality which is a key 
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ingredient of the proof of our main result. Section 3 then studies the special case of a 
Frobenius algebra. We provide a proof of the main result in Section 4. Section 5 con-
tains many examples of Frobenius algebras with semisimple Nakayama automorphisms. 
For a Frobenius algebra given in terms of quiver with relations, we give a very useful 
combinatorial criterion to guarantee the semisimplicity of the Nakayama automorphism 
and apply it to some classes of tame Frobenius algebras. We then include other examples 
such as quantum complete intersections, finite dimensional Hopf algebras and the Koszul 
duals of Artin–Schelter regular algebras.

Throughout this paper, ⊗ is an abbreviation for ⊗k for k being a chosen base field.

Remark 0.2. After having finished this paper we learned that independently Y. Volkov 
proved in [34] a similar result with completely different methods. He works directly 
over Hochschild cohomology by defining an operator analogous to Tradler’s operator 
twisted by the Nakayama automorphism. However, our method uses the concept of 
Tamarkin–Tsygan calculi.

1. Tamarkin–Tsygan calculus, duality and Batalin–Vilkovisky structure

1.1. Gerstenhaber algebras

First we recall the definition of Gerstenhaber algebras and of differential calculi.

Definition 1.1. A Gerstenhaber algebra over a field k is the data (H∗, ∪, [ , ]), where 
H∗ = ⊕n∈ZHn is a graded k-vector space equipped with two bilinear maps: a cup 
product of degree zero

∪ : Hn ×Hm → Hn+m, (α, β) �→ α ∪ β

and a Lie bracket of degree −1

[ , ] : Hn ×Hm → Hn+m−1, (α, β) �→ [α, β]

such that

(i) (H∗, ∪) is a graded commutative associative algebra with unit 1 ∈ H0, in particular, 
α ∪ β = (−1)|α||β|β ∪ α;

(ii) (H∗[−1], [ , ]) is a graded Lie algebra, that is,

[α, β] = −(−1)(|α|−1)(|β|−1)[β, α]

and

(−1)(|α|−1)(|γ|−1)[[α, β], γ] + (−1)(|β|−1)(|α|−1)[[β, γ], α]

+ (−1)(|γ|−1)(|β|−1)[[γ, α], β] = 0;
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(iii) for each α ∈ H∗[−1] the map [α, −] is a graded derivation of the algebra (H∗, ∪), 
or more precisely

[α, β ∪ γ] = [α, β] ∪ γ + (−1)(|α|−1)|β|β ∪ [α, γ],

where α, β, γ are arbitrary homogeneous elements in H∗ and |α| is the degree of the 
homogeneous element α.

Remark 1.2. Let k′ be a field extension of k. Then for a Gerstenhaber algebra H∗ over k, 
H∗ ⊗ k′ is a Gerstenhaber algebra over k′. In fact, for homogeneous elements α, β ∈ H∗

and λ, ν ∈ k′, define

(α⊗ λ) ∪ (β ⊗ ν) = (α ∪ β) ⊗ (λν)

and

[α⊗ λ, β ⊗ ν] = [α, β] ⊗ (λν).

These two operations endow H∗ ⊗ k′ with a Gerstenhaber algebra structure over k′.

1.2. Tamarkin–Tsygan calculi

Definition 1.3. A differential calculus or a Tamarkin–Tsygan calculus is the data 
(H∗, ∪, [ , ], H∗, ∩, B) of Z-graded vector spaces satisfying the following properties:

(i) (H∗, ∪, [ , ]) is a Gerstenhaber algebra;
(ii) H∗ is a graded module over (H∗, ∪) via the map ∩ : Hr ⊗ Hp → Hr−p,

z ⊗ α �→ z ∩ α for z ∈ Hr and α ∈ Hp. That is, if we denote ια(z) = (−1)rpz ∩ α, 
then ια ∪ β = ιαιβ ;

(iii) There is a map B : H∗ → H∗+1 such that B2 = 0 and we have the Cartan relation

[Lα, ιβ ]gr = (−1)|α|−1ι[α,β]

where we denote

Lα = [B, ια]gr = Bια − (−1)|α|ιαB.

One of the first examples of differential calculi is Hochschild theory.
The cohomology theory of associative algebras was introduced by G. Hochschild [20]. 

Given a k-algebra A, its Hochschild cohomology groups of A with coefficients in a bi-
module M are defined as Hn(A, M) = ExtnAe(A, M) for n ≥ 0, where Ae = A ⊗ Aop

is the enveloping algebra of A, and the Hochschild homology groups of A with coef-
ficients in M are defined to be Hn(A, M) = TorA

e

n (A, M) for n ≥ 0. We shall write 
HHn(A) = Hn(A, A) and HHn(A) = Hn(A, A).
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Since A is unitary, denote by 1A its unity and write A = A/(k · 1A). For a ∈ A, 
write a for its image in A. There is a projective resolution of A as an Ae-module, the 
so-called normalized bar resolution Bar∗(A), whose r-th term is given by Barr(A) =
A ⊗ A

⊗r ⊗ A for r ≥ 0 and for which the differential b′r : Barr(A) → Barr−1(A) sends 
a0 ⊗ a1 ⊗ · · · ⊗ ar ⊗ ar+1 to

a0a1 ⊗ a2 ⊗ · · · ⊗ ar ⊗ ar+1

+
r−1∑
i=1

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar ⊗ ar+1

+ (−1)ra0 ⊗ a1 ⊗ · · · ⊗ ar−1 ⊗ arar+1

for all a0, · · · , ar+1 ∈ A.
The complex which is used to compute the Hochschild cohomology is C∗(A, M) =

HomAe(Bar∗(A), M). Note that for each r ≥ 0,

Cr(A,M) = HomAe(A⊗A
⊗r ⊗A,M) 
 Homk(A

⊗r
,M).

We identify C0(A, M) with M . Thus C∗(A, M) has the following form:

C∗(A,M) : M b0−→ Homk(A,M) → · · · → Homk(A
⊗r

,M)
br−→ Homk(A

⊗(r+1)
,M) → · · · .

Given f in Homk( A
⊗r

, M), the map br(f) is defined by sending a1 ⊗ · · · ⊗ ar+1 to

(−1)r+1a1 · f(a2 ⊗ · · · ⊗ ar+1)

+
r∑

i=1
(−1)r+1−if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar+1)

+ f(a1 ⊗ · · · ⊗ ar) · ar+1.

For bimodules M and N , given α ∈ Cp(A, M) and β ∈ Cq(A, N), the cup product

α ∪ β ∈ Cp+q(A,M ⊗A N) = Homk(A
⊗(p+q)

,M ⊗A N)

is given by

(α ∪ β)(a1 ⊗ · · · ⊗ ap+q) := (−1)pqα(a1 ⊗ · · · ⊗ ap) ⊗A β(ap+1 ⊗ · · · ⊗ ap+q).

This cup product induces a well-defined product in Hochschild cohomology

∪ : Hp(A,M) ×Hq(A,N) −→ Hp+q(A,M ⊗A N)



108 T. Lambre et al. / Journal of Algebra 446 (2016) 103–131
which turns the graded k-vector space HH∗(A) =
⊕

n≥0 HHn(A) into a graded com-
mutative algebra [16, Corollary 1].

The Lie bracket is defined as follows. Let α ∈ Cn(A, A) and β ∈ Cm(A, A). If n, m ≥ 1, 
then for 1 ≤ i ≤ n, set α ◦i β ∈ Cn+m−1(A, A) by

(α ◦i β)(a1 ⊗ · · · ⊗ an+m−1) := α(a1 ⊗ · · · ⊗ ai−1 ⊗ β(ai ⊗ · · · ⊗ ai+m−1)

⊗ ai+m ⊗ · · · ⊗ an+m−1);

if n ≥ 1 and m = 0, then β ∈ A and for 1 ≤ i ≤ n, set

(α ◦i β)(a1 ⊗ · · · ⊗ an−1) := α(a1 ⊗ · · · ⊗ ai−1 ⊗ β ⊗ ai ⊗ · · · ⊗ an−1);

for any other case, set α ◦i β to be zero. Now define

α ◦β :=
n∑

i=1
(−1)(m−1)(i−1)α ◦i β

and

[α, β] := α ◦β − (−1)(n−1)(m−1)β ◦α.

Note that [α, β] ∈ Cn+m−1(A, A). The above [ , ] induces a well-defined Lie bracket in 
Hochschild cohomology

[ , ] : HHn(A) ×HHm(A) −→ HHn+m−1(A)

such that (HH∗(A), ∪, [ , ]) is a Gerstenhaber algebra [16, page 267, Theorem].
The complex used to compute the Hochschild homology H∗(A, M) is C∗(A, M) =

M ⊗Ae Bar∗(A). Notice that for r ≥ 0, Cr(A, M) = M ⊗Ae (A ⊗A
⊗r ⊗A) 
 M ⊗A

⊗r

and the differential

br : Cr(A,M) = M ⊗A
⊗r → Cr−1(A,M) = M ⊗A

⊗(r−1)

sends x ⊗ a1 ⊗ · · · ⊗ ar to

xa0 ⊗ a1 ⊗ · · · ⊗ ar +
∑r−1

i=1 (−1)ix⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar

+(−1)rarx⊗ a1 ⊗ · · · ⊗ ar−1.

There is an A. Connes’ B-operator in the Hochschild homology theory which is defined 
as follows. For a0 ⊗ a1 ⊗ · · · ⊗ ar ∈ Cr(A, A), let B(a0 ⊗ a1 ⊗ · · · ⊗ ar) ∈ Cr+1(A, A) be

r∑
(−1)ir1 ⊗ ai ⊗ · · · ⊗ ar ⊗ a0 ⊗ · · · ⊗ ai−1.
i=0
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It is easy to check that B is a chain map satisfying B ◦B = 0, which induces an operator 
B : HHr(A) → HHr+1(A).

There is a pairing between the Hochschild cohomology and Hochschild homology, 
which is called the cap product. For bimodules M and N , there is a bilinear map

∩ : Cr(A,N) ⊗ Cp(A,M) → Cr−p(A,N ⊗A M)

sending z ⊗ α to

z ∩ α = (−1)rp(x⊗A α(a1 ⊗ · · · ⊗ ap)) ⊗ ap+1 ⊗ · · · ⊗ ar

for z = x ⊗ a1 ⊗ · · · ⊗ ar ∈ Cr(A, N) and α ∈ Cp(A, M). One verifies easily that ∩
induces a well-defined map on the level of homology, still denoted by ∩,

∩ : Hr(A,N) ⊗Hp(A,M) → Hr−p(A,N ⊗A M).

I.M. Gelfand, Yu.L. Daletskii and B.L. Tsygan proved the following result; see
also [31].

Theorem 1.4. (See [15].) The data (HH∗(A), ∪, [ , ], HH∗(A), ∩, B) is a differential 
calculus.

1.3. Batalin–Vilkovisky algebras

In the last decade, a new structure in Hochschild theory has been observed, this is 
the so called Batalin–Vilkovisky structure.

Definition 1.5. A Batalin–Vilkovisky algebra (BV algebra for short) is a Gerstenhaber 
algebra (H∗, ∪, [ , ]) together with an operator Δ: H∗ → H∗−1 of degree −1 such that 
Δ ◦Δ = 0, Δ(1) = 0 and

[α, β] = (−1)|α|+1(Δ(α ∪ β) − Δ(α) ∪ β − (−1)|α|α ∪ Δ(β)),

for homogeneous elements α, β ∈ H∗. The BV-operator Δ : H∗ → H∗−1 is called a 
generator of the Gerstenhaber bracket [ , ].

For a Calabi–Yau algebra, V. Ginzburg showed in [17] that the Hochschild cohomol-
ogy of a Calabi–Yau algebra has a Batalin–Vilkovisky structure. More precisely, for a 
Calabi–Yau algebra A of global dimension d, there is a duality HHp(A) 
 HHd−p(A))
for p ≥ 0. Via this duality, we obtain an operator Δ: HHp(A) → HHp−1(A) which 
is the dual of Connes’ operator. This is just the operator Δ in the Batalin–Vilkovisky 
structure.

N. Kowalzig and U. Krähmer extended the result of V. Ginzburg to twisted Calabi–
Yau algebras under a certain condition. Let A be a twisted Calabi–Yau algebra with 
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semisimple algebra automorphism σ. Then the Hochschild cohomology ring of A is a 
Batalin–Vilkovisky algebra; see [24, Theorem 1.7].

T. Tradler showed that the Hochschild cohomology algebra of a symmetric algebra 
is a BV algebra [32]; L. Menichi [28] gave a conceptual proof using the formalism of 
cyclic operads with multiplications; for another proof, see also [12]. For a symmetric 
algebra A, he showed that the Δ-operator on the Hochschild cohomology corresponds 
to the Connes’ B-operator on the Hochschild homology via the duality between the 
Hochschild cohomology and the Hochschild homology.

1.4. Algebras with duality, Tamarkin–Tsygan calculi and BV-structures

Generalizing [25] we define.

Definition 1.6. An algebra with duality is given by (H∗, ∪, H∗, c, ∂), where

• (H∗, ∪) is a graded commutative unitary algebra with unit 1 ∈ H0,
• H∗ is a graded vector space and c is an element of Hd,
• ∂ is an isomorphism of vector spaces ∂ : H∗ → Hd−∗ satisfying ∂(c) = 1.

Inspired by the result of V. Ginzburg, the first author gave the following result which 
shows for an algebra with duality there is an equivalence between BV-structure and 
Tamarkin–Tsygan calculus.

Lemma 1.7. Let (H∗, ∪, H∗, c, ∂) be an algebra with duality.

(1) We suppose that
(a) (H∗, ∪, [ , ], H∗, ∩, B) is a Tamarkin–Tsygan calculus,
(b) the duality ∂ is a homomorphism of H∗-right modules, i.e. we have the relation

∂(z ∩ α) = ∂(z) ∪ α.

Then the Gerstenhaber algebra (H∗, ∪, [ , ]) is a BV-algebra with generator Δ =
∂ ◦B ◦ ∂−1.

(2) We suppose that (H∗, ∪, [ , ], Δ) is a BV-algebra with generator Δ. Then posing 
B := ∂−1 ◦ Δ ◦ ∂ and z ∩ α := ∂−1(∂(z) ∪ α), the data (H∗, ∪, [ , ], H∗, ∩, B) is a 
Tamarkin–Tsygan calculus.

Proof. For (1) see [25, Lemme 1.6] and (2) is an easy verification. A similar idea also 
appeared in [12, Remark 2.3.67]. �
Remark 1.8.

(1) Regardless its simplicity the relation ∂(z ∩ α) = ∂(z) ∪ α, which was first noted 
by V. Ginzburg in [17, Theorem 34.3], is necessary. For this reason we call it the 
Ginzburg relation.
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(2) This lemma allows to establish the results of V. Ginzburg (for Calabi–Yau algebras), 
and of Kowalzig and Krähmer (for twisted Calabi–Yau algebras). We shall see that 
it applies also to the case of Frobenius algebras.

2. Tamarkin–Tsygan calculus associated with an automorphism of an algebra

Let A be an associative, finite dimensional and unitary k-algebra and let N : A → A

be an automorphism of this algebra. The aim of this paragraph is to construct a 
Tamarkin–Tsygan calculus associated to this automorphism N. Denote by AN the 
A-A-bimodule which is A as a k-vector space, and on which we define the bimodule 
action as a ·m · b := amN(b). Kowalzig and Krähmer define in [24, 2.18, 7.2] a morphism 
of k-vector spaces

βN : Cp(A,AN) → Cp+1(A,AN)

by

βN(a0 ⊗ a1 ⊗ · · · ⊗ ap) = Σp
i=0(−1)ip 1 ⊗ ai ⊗ · · · ⊗ ap ⊗ a0 ⊗N(a1) ⊗ · · · ⊗N(ai−1)

Let T : Cp(A, AN) → Cp(A, AN) be the morphism defined by

T (a0 ⊗ · · · ⊗ ap) = N(a0) ⊗N(a1) ⊗ · · · ⊗N(ap).

Proposition 2.1. (See N. Kowalzig and U. Krähmer [24].) On the space Cp(A, AN), we 
get the identity

bβN + βNb = 1 − T

where b is the Hochschild differential.

Proof. See [24, 2.19] in the setup of Hopf algebroids; for a proof in the setup of Hochschild 
cohomology, see [18, Section 4]. �
2.1. Decomposition of the homology associated with the spectrum of an automorphism

Let Λ be the set of eigenvalues of the automorphism N. Suppose that Λ ⊂ k. Fix an 
eigenvalue μ ∈ Λ of N and let Aμ be the eigenspace associated with μ. It is trivial to see 
that for μ, ν ∈ Λ, we get Aμ · Aν ⊆ Aμν . When μν /∈ Λ, it is understood that Aμν = 0. 
Denote by Λ̂ := 〈Λ〉 the submonoid of k× generated by Λ.

For μ ∈ Λ, write Aμ = Aμ for μ �= 1 and A1 = A1/(k · 1A), and for each μ ∈ Λ̂ put

Cμ
p (A,AN) := ⊕μi∈Λ,

∏
μi=μ Aμ0 ⊗Aμ1 ⊗ · · · ⊗Aμp

.
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The Hochschild differential b : Cp(A, AN) → Cp−1(A, AN) restricts to this subspace 
and denote its restriction by bμ, then (Cμ

∗ (A, AN), bμ) is a sub-complex of (C∗(A, A), b). 
Denote

Hμ
p (A,AN) := Hp(Cμ

∗ (A,AN), bμ).

We hence obtain a vector space homomorphism Hμ
∗ (A, AN) → H∗(A, AN).

Proposition 2.2.

(1) For each μ �= 1 ∈ Λ̂, we get

Hμ
∗ (A,AN) = 0.

(2) The restriction β1
N : C1

∗(A, AN) → C1
∗+1(A, AN) of the map βN to the sub-complex 

associated to the eigenvalue 1 induces a Connes operator

BN : H1
∗ (A,AN) → H1

∗+1(A,AN)

with coefficients in the twisted bimodule AN, and this map satisfies B2
N = 0.

Proof. For each eigenvalue μ ∈ Λ̂ of the automorphism N on Cμ
p (A, AN), we obtain the 

identity

bμβN + βNbμ = 1 − T.

However, the restriction of T to Cμ
∗ (A, AN) is μ · id, we get bμβN + βNbμ = (1 − μ) · id. 

Whenever μ �= 1 the complex (Cμ
∗ (A, AN), bμ) is acyclic with contracting homotopy βN. 

For μ = 1 we get b1β1
N + β1

Nb1 = 0, which defines BN. The relation B2
N = 0 is a 

consequence of [24, 2.19]. �
An analogous decomposition exists for cohomology. For μ ∈ Λ̂, let Cp

μ(A, A) be those 
Hochschild cochains ϕ ∈ Cp(A, A) such that we have ϕ(Aν1 ⊗ · · · ⊗ Aνp

) ⊂ Aμν1···νp

for all eigenvalues ν1, · · · , νp of N. The restriction bμ of the Hochschild differential b :
Cp(A, A) → Cp+1(A, A) to Cp

μ(A, A) has values in Cp+1
μ (A). Put

Hp
μ(A,A) := Hp(C∗

μ(A,A), bμ).

The sub-complex (C∗
μ(A, A), bμ) of (C∗(A, A), b) defines a morphism of graded vector 

spaces

H∗
μ(A,A) → HH∗(A).
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For μ, ν ∈ Λ̂, we verify that the cup-product ∪ : HHp(A) ⊗HHq(A) → HHp+q(A)
and the Gerstenhaber bracket [ , ] : HHp(A) ⊗HHq(A) → HHp+q−1(A) induce restric-
tions

∪μ,ν : Hp
μ(A,A) ⊗Hq

ν (A,A) → Hp+q
μν (A,A)

and

[ , ]μ,ν : Hp
μ(A,A) ⊗Hq

ν (A,A) → Hp+q−1
μν (A,A).

Analogously, the cap-product ∩ : HHp(A, AN) ⊗ HHq(A) → Hp−q(A, AN) induces re-
strictions

∩μ,ν : Hμ
p (A,AN) ⊗Hq

ν (A,A) → Hμν
p−q(A,AN).

2.2. The case of eigenvalue 1

Apply the results above to the case μ = ν = 1. We then get:

Theorem 2.3. Let N be an automorphism of the algebra A. Let Λ be the set of eigenvalues 
of the automorphism N. Suppose that Λ ⊂ k. Let ∪1 := ∪1,1, [ , ]1 := [ , ]1,1 and 
∩1 := ∩1,1 be the restrictions of the cup-products, Gerstenhaber bracket and cap-product 
to the homology and cohomology spaces associated with the eigenvalue 1. Then Connes’ 
operator BN gives

(H∗
1 (A,A),∪1, [ , ]1, H1

∗ (A,AN),∩1, BN)

the structure of a Tamarkin–Tsygan calculus.

Remark 2.4. This Tamarkin–Tsygan calculus applies in diverse types of algebras for 
which its Hochschild cohomology/homology are naturally equipped with a duality:

• Calabi–Yau algebras for which the dualizing module D is isomorphic to the module A. 
In this case the automorphism N is the identity and this is the situation studied by 
V. Ginzburg.

• Twisted Calabi–Yau algebras for which the dualizing module D is isomorphic to the 
module AN. This is the situation studied by N. Kowalzig and U. Krähmer.

• Symmetric algebras for which the Nakayama automorphism is N = id. This is the 
situation studied by T. Tradler.

• Frobenius algebras. This is the situation studied in this paper.



114 T. Lambre et al. / Journal of Algebra 446 (2016) 103–131
2.3. The diagonalizable case

Proposition 2.5. If N is diagonalizable, then

H1
∗ (A,AN) 
 H∗(A,AN).

Proof. Since A = ⊕μ∈ΛAμ, we get

(C∗(A,AN), b) = ⊕μ∈Λ̂(Cμ
∗ (A,AN), bμ)

and therefore H∗(A, AN) = ⊕μ∈Λ̂H
μ
∗ (A, AN). For μ �= 1, we get Hμ

∗ (A, AN) = 0. This 
proves H∗(A, AN) = H1

∗ (A, AN). �
3. The Hochschild cohomology ring of a Frobenius algebra

3.1. Algebra with duality associated with a Frobenius algebra

Let k be a field and let A be a finite dimensional k-algebra. Recall (cf. e.g. [37, Sec-
tion 1.10.1] or [35]) that A is a Frobenius algebra, if there is a non-degenerate associative 
bilinear form 〈−, −〉 : A ×A → k. Here the associativity means that 〈ab, c〉 = 〈a, bc〉 for 
all a, b and c in A. Endow D(A) = Homk(A, k), the k-dual of A, with the canonical 
bimodule structure

(afb)(c) = f(bca), for f ∈ D(A), a, b, c ∈ A.

The property of being Frobenius is equivalent to saying that D(A) = Homk(A, k) is 
isomorphic to A as left or as right modules. It is readily seen that the map a �→ 〈a, −〉
for a ∈ A gives an isomorphism of right modules between A and D(A), while the map 
a �→ 〈−, a〉 gives the isomorphism of left modules. For a ∈ A, there exists a unique 
N(a) ∈ A such that 〈a, −〉 = 〈−, N(a)〉 ∈ D(A). It is easy to see that N : A → A is 
an algebra isomorphism and we call it the Nakayama automorphism of A (associated to 
the bilinear form 〈−, −〉). As above we write AN for the A-A-bimodule whose underlying 
space is A and where the left A-module structure is given by left multiplication and the 
right A-module structure is given by x · a = x N(a) for x ∈ AN and a ∈ A. Then the 
map a �→ 〈−, a〉 is an isomorphism of bimodules AN 
 D(A). In fact for x ∈ AN and 
a ∈ A, via the isomorphism of left modules A 
 D(A), x N(a) is sent to

〈−, x N(a)〉 = 〈N−1(xN(a)), −〉
= 〈N−1(x) a, −〉 = 〈N−1(x), a −〉 = 〈a −, x〉 = 〈−, x〉a.

Using the isomorphism of bimodules D(A) 
 AN, we can establish a well known 
duality between Hochschild cohomology and Hochschild homology groups. In fact there 
are isomorphisms of complexes:
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D(C∗(A,AN)) = Homk(AN ⊗Ae Bar∗(A), k) 
 HomAe(Bar∗(A), D(AN))

 HomAe(Bar∗(A), A) = C∗(A,A),

where the third isomorphism is induced by the isomorphism AN 
 D(A). This induces 
an isomorphism

∂ : D(H∗(A,AN)) 	−→ HH∗(A).

This isomorphism comes from the pairing H∗(A, AN) ⊗ HH∗(A) → k. Explicitly for 
a0 ⊗ a1 ⊗ · · · ⊗ ap ∈ Cp(A, AN) and α ∈ Cp(A, A), the pairing is given by

〈a0 ⊗ a1 ⊗ · · · ⊗ ap, α〉 = (−1)p〈a0, α(a1 ⊗ · · · ⊗ ap)〉.

Remark 3.1. The isomorphism ∂ is not easy to describe, but its inverse ∂−1 : HH∗(A) 	−→
D(H∗(A, AN)) is given by ∂−1(α) = (−1)|α|〈−, α〉. In particular for α = 1A ∈ HH0(A)
we put c := ∂−1(1A) = 〈−, 1A〉. In other words, the class c ∈ D(H∗(A, AN)) is chosen 
such that ∂(c) = 1A.

Definition 3.2. The element c ∈ D(H∗(A, AN)) from Remark 3.1 is called the fundamental 
class of the Frobenius algebra A.

Proposition 3.3. Let A be a Frobenius algebra with Nakayama automorphism N. Put 
H−∗ := D(H∗(A, AN)), H∗ = HH∗(A) and c = 〈−, 1A〉 ∈ H0.

(1) There is a cap product ∩ : H−p ⊗ Hq → H−(p+q) for which the isomorphism ∂−1 :
H∗ → H∗ is the cap product by the fundamental class, i.e. for all α ∈ H∗ it satisfies 
the equation ∂−1(α) = c ∩ α.

(2) The inverse isomorphism ∂ : H−∗ → H∗ is a morphism of H∗-modules i.e. it satisfies 
the Ginzburg relation ∂(z ∩ α) = ∂(z) ∪ α.

Proof. (1). For z ∈ H−p and α ∈ Hq, define z ∩ α ∈ H−(p+q) as follows. For t ∈
Hp+q(A, AN) we have t ∩ α ∈ Hp(A, AN). The map z ∩ α : Hp+q(A, AN) → k is defined 
by (z ∩ α)(t) := (−1)(p+q)qz(t ∩ α), that is,

z ∩ α(−) = (−1)(|z|+|α|)·|α|z(− ∩ α).

We claim that α ∈ Hp, the equality ∂−1(α) = c ∩ α holds. In fact, we know from the 
previous remark that ∂−1(α) = (−1)|α|〈− , α〉. Suppose that α = cl(f) is the cohomology 
class of f : A⊗p → A and u = cl(a0 ⊗ a1 ⊗ · · · ⊗ ap) the homological class of a0 ⊗ a1 ⊗
· · · ⊗ ap ∈ AN ⊗A

⊗p. Then we get u ∩ α = (−1)pa0f(a1 ⊗ · · · ⊗ ap) ∈ A and

(c ∩ α)(u) = (−1)(0+p)pc(u ∩ α) = (−1)p〈u ∩ α, 1A〉
= (−1)p〈(−1)pa0f(a1 ⊗ · · · ⊗ ap), 1A〉;
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on the other hand,

∂−1(α)(u) = (−1)p〈u, α〉 = (−1)p〈a0 ⊗ a1 ⊗ · · · ⊗ ap, f〉
= (−1)p(−1)p〈a0, f(a1 ⊗ · · · ⊗ ap)〉 = (c ∩ α)(u).

This proves that for all α ∈ HHp(A) one has the equality ∂−1(α) = c ∩ α in 
D(Hp(A, AN)).

(2). For z ∈ H−p, α ∈ Hr and β ∈ Hq, we verify that in H−p+q+r, the equality 
z ∩ (α ∪ β) = (z ∩ α) ∩ β holds. It follows that ∂−1 (and also ∂) is an isomorphism of 
H∗-modules. �

An alternative and very short proof can be given by defining ∩ by the Ginzburg 
relation. Then ∂(c ∩ α) = ∂(c) ∪ α = 1 ∪ α = α and we get 1). The above proof however 
gives a much more detailed clarification of the structures in the sense that the cap 
product claimed in the statement of the proposition is indeed the standard cap product 
of Hochschild cohomology.

As a whole we obtained the following.

Proposition 3.4. Let A be a Frobenius algebra with Nakayama automorphism N. Put 
H−∗ := D(H∗(A, AN)), H∗ = HH∗(A), ∂ : D(H∗(A, AN)) 	−→ HH∗(A) and c =
〈−, 1A〉 ∈ H0. Then (H∗, ∪, H−∗, c, ∂) is an algebra with duality.

3.2. The spectrum of the Nakayama automorphism of a Frobenius algebra

Let A be a Frobenius algebra with Nakayama automorphism N. Let Λ be the set of 
eigenvalues of N (in the algebraic closure k of k) considered as a linear transformation 
of the finite dimensional k-vector space A. Notice that elements of Λ are not necessarily 
in k.

Since N is an automorphism, 0 /∈ Λ; since N(1A) = 1A with 1A the unit element of A, 
we have 1 ∈ Λ; for some eigenvectors x, y ∈ A with eigenvalues μ, ν ∈ Λ respectively, we 
have N(xy) = N(x)N(y) = μνxy and therefore, if xy �= 0 then μν ∈ Λ.

Lemma 3.5. Let A be a Frobenius k-algebra with diagonalizable Nakayama automor-
phism N. Let Λ be the set of eigenvalues of N. For μ ∈ Λ, denote by Aμ the corresponding 
eigenspace.

(i) For μ ∈ Λ, we have μ−1 ∈ Λ.
(ii) The isomorphism of bimodules D(A) 
 AN induces an isomorphism of vector spaces 

D(Aμ) 
 Aμ−1 , for any μ ∈ Λ.

Proof. (i). Since for 0 �= x ∈ Aμ, 〈x, −〉 ∈ D(A) is not the zero linear transformation 
and A = ⊕ν∈ΛAν , there exist ν ∈ Λ and y ∈ Aν such that 〈x, y〉 �= 0. Now

〈x, y〉 = 〈y,N(x)〉 = μ〈y, x〉 = μ〈x,N(y)〉 = μ〈x, νy〉 = μν〈x, y〉.



T. Lambre et al. / Journal of Algebra 446 (2016) 103–131 117
We see that μν = 1 and ν = μ−1. This proves (i) in case that N is diagonalizable.
(ii). In course of the proof of (i), we showed that for μ ∈ Λ and 0 �= x ∈ Aμ, 

〈−, x〉 is zero on Aν for ν �= μ−1. This shows that D(Aμ) ⊆ Aμ−1 . By exchanging the 
role of μ and μ−1, we get that the isomorphism D(A) 
 AN induces an isomorphism 
D(Aμ) 
 Aμ−1 . �
Remark 3.6. In the spirit of Lemma 3.5, one intends to think that Λ is a group. However, 
this is not true. A counterexample is given by the algebra

A(μ) = k〈X,Y 〉/(X2, Y 2, XY − μY X)

with μ ∈ k−{0}. A direct computation shows that Λ = {1, μ, μ−1} which is not a group 
unless μ = 1, or μ is a square or cubic root of 1, i.e. (μ + 1)(μ3 − 1) = 0.

3.3. BV-structure for Frobenius algebras

Let A be a Frobenius algebra with Nakayama automorphism N. Let Λ be the set of 
eigenvalues of the automorphism N and suppose that Λ ⊂ k. In Section 2 we obtained a 
Tamarkin–Tsygan calculus

(H∗
1 (A,A),∪1, [ , ]1, H1

∗ (A,AN),∩1, BN)

associated to the eigenvalue 1 of N. We have constructed in Section 3.1 the algebra with 
duality

(H∗,∪,H−∗, c, ∂).

These two structures give an algebra with duality and a Tamarkin–Tsygan calculus 
satisfying the Ginzburg relation from Lemma 1.7.

Let H∗
1 := H∗

1 (A, A) and H1
−∗ := D(H1

∗ (A, AN)). The transpose of the cap product

∩1 : H1
p (A,AN) ⊗Hq

1 (A,A) → H1
p−q(A,AN)

yields a cap-product, still denoted by ∩1,

∩1 : H1
−p ⊗Hq

1 → H1
−(p+q).

We have c = 〈−, 1A〉 ∈ H1
−0 and the restriction c ∩1 − : Hp

1 → H1
−p of c ∩ − to Hp

1 is 
the isomorphism D(Hp(A, AN)) 
 Hp

1 (A, A). This shows (H∗
1, ∪1, H∗

1, c, ∂1) is an al-
gebra with duality. The transpose of Connes’ operator BN : H1

p (A, AN) → H1
p+1(A, AN)

induces a map B1 : H1
−(∗+1) → H1

−∗.

Theorem 3.7. Let A be a Frobenius algebra with Nakayama automorphism N. Let Λ be 
the set of eigenvalues of the automorphism N. Suppose that Λ ⊂ k. Let H∗

1 (A, A) be the 
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Hochschild cohomology space associated to the eigenvalue 1 of the Nakayama automor-
phism N. Then the Gerstenhaber algebra H∗

1 (A, A) is a BV-algebra.

Proof. This is because the algebra with duality (H∗
1, ∪1, H1

∗, c, ∂1) and the Tamarkin–
Tsygan calculus (H∗

1, ∪1, [ , ]1, H1
∗, B1) satisfy the hypotheses of Lemma 1.7. �

Corollary 3.8. Let A be a Frobenius algebra with Nakayama automorphism N. If N is 
diagonalizable then the Hochschild cohomology HH∗(A) is a BV algebra.

Proof. If N is diagonalizable we have seen in Proposition 2.5 that H∗
1 (A, A) =

HH∗(A). �
4. Proof of the main result

Let us recall the statement of our main result of this paper.

Theorem 4.1. Let A be a Frobenius algebra with semisimple Nakayama automorphism. 
Then the Hochschild cohomology ring HH∗(A) of A is a Batalin–Vilkovisky algebra.

The proof of this theorem occupies the rest of this section.
If the Nakayama automorphism is diagonalizable, this is the statement of Corol-

lary 3.8.
Now suppose that the Nakayama automorphism of a Frobenius algebra is semisimple, 

that is, it is diagonalizable over the algebraic closure k of k.
Let C = A ⊗ k. As is readily verified, C is still a Frobenius algebra with respect to 

the induced bilinear form

〈a⊗ μ, b⊗ ν〉 = μν〈a, b〉, a, b ∈ A,μ, ν ∈ k.

Therefore, the Nakayama automorphism of C is NC = N ⊗ idk. We shall write Dk =
Homk(−, k).

Notice that

Dk(C) = Homk(A⊗k k, k) 
 Homk(A, k) 
 Homk(A, k) ⊗ k = D(A) ⊗ k,

where the inverse of the isomorphism Homk(A, k) 
 Homk(A, k) ⊗k is given by f ⊗μ �→
(x �→ f(x) ⊗ μ) for f ∈ Homk(A, k) and μ ∈ k. We also have an isomorphism of 
bimodules CNC


 AN⊗k. For the Frobenius k-algebra C, the isomorphism of bimodules 
D(C) 
 CNC

fits into a commutative diagram

Dk(C) 	

	

CNC

	

D(A) ⊗ k 	 AN ⊗ k

where the vertical isomorphisms are explicitly given above.
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The diagonalizable case of Theorem 0.1 applies to C and therefore HH∗
k
(C) is a BV 

algebra, where HH∗
k
(C) is the Hochschild cohomology of C considered as a k-algebra. 

Denote by ΔC the BV-operator over HH∗
k
(C).

Let us explain the idea of the proof. It is true that HH∗
k
(C) 
 HH∗(A) ⊗ k as 

Gerstenhaber algebras; see Proposition 4.2 below. In order to show that HH∗(A) is a 
BV algebra, we shall prove that the ΔC-operator sends HH∗(A) ⊗ 1 = HH∗(A) into 
itself (see Lemma 4.3 below), then we have ΔC = ΔA ⊗ k, where ΔA denotes the 
restriction of ΔC to HH∗(A).

Proposition 4.2. Let A be an algebra defined over a field k. Denote C = A ⊗ k. Then 
there is an isomorphism of Gerstenhaber algebras

HH∗
k
(C) 
 HH∗(A) ⊗ k,

where HH∗
k
(C) is the Hochschild cohomology of C considered as a k-algebra and the 

Gerstenhaber algebra structure on HH∗(A) ⊗ k is defined in Remark 1.2.

Proof. In fact for each p ≥ 0,

Cp(C,C) = Homk((C/k · 1)⊗kp, C) 
 Homk((A/k · 1)⊗p ⊗ k,C)


 Homk((A/k · 1)⊗p, C) 
 Cp(A,A) ⊗ k.

One see easily that this is an isomorphism of complexes. This induces an isomorphism 
of graded vector spaces HH∗

k
(C) 
 HH∗(A) ⊗ k.

Moreover, a careful examination on the definition of cup product and Lie bracket 
shows that this is also an isomorphism of Gerstenhaber algebras. In fact, this can be 
seen via the isomorphism of the cochain complexes above. We show that the isomorphism 
preserves cup products. The Lie product is dealt with analogously. For f ∈ Cp(A, A), 
g ∈ Cq(A, A) and μ, ν ∈ k, ai ∈ A, γj ∈ k, ai,j := ai ⊗ · · · ⊗ aj via the isomorphism, we 
obtain

((f ⊗ μ) ∪ (g ⊗ ν))((a1 ⊗ γ1) ⊗ · · · ⊗ (ap+q ⊗ γp+q))

= (−1)pq(f ⊗ μ)((a1 ⊗ γ1) ⊗ · · · ⊗ (ap ⊗ γp))(g ⊗ ν)

((ap+1 ⊗ γp+1) ⊗ · · · ⊗ (ap+q ⊗ γp+q))

= (−1)pq(f(a1,p) ⊗ μγ1 · · · γp)(g(ap+1,p+q) ⊗ νγp+1 · · · γp+q))

= (−1)pqf(a1,p)g(ap+1,p+q) ⊗ μνγ1 · · · γp+q

= (f ∪ g)(a1,p+q) ⊗ μνγ1 · · · γp+q. �
The proof of the main result then deduces from the following result.
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Lemma 4.3.

(i) There is an isomorphism of complexes C∗(C, CNC
) 
 C∗(A, AN) ⊗ k.

(ii) There is an isomorphism of complexes Dk(C∗(C, CNC
)) 
 D(C∗(A, AN)) ⊗ k.

(iii) There is a commutative diagram of isomorphisms of complexes

Dk(C∗(C,CNC
)) 	

	

D(C∗(A,AN)) ⊗ k

	

Cp(C,C) 	
Cp(A,A) ⊗ k,

where the upper horizontal isomorphism is introduced in (ii), and where the lower 
horizontal morphism arises from the proof of Proposition 4.2, and the vertical iso-
morphisms are (induced by) duality isomorphisms. This means that the duality is 
compatible with extensions of scalars.

(iv) For each p ≥ 0, there is a commutative diagram involving Connes operators over C
and A

Cp(C,CNC
))

Bp

	

Cp+1(C,CNC
))

	

Cp(A,AN) ⊗ k
Bp⊗idk

Cp+1(A,AN) ⊗ k,

where the vertical isomorphisms are introduced in (ii).

Proof. (i). For each p ≥ 0,

Cp(C,CNC
) = CNC

⊗k (C/k · 1)⊗kp 
 (AN ⊗ (A/k · 1)⊗p) ⊗ k = Cp(A,AN) ⊗ k.

One then verifies that these isomorphisms commute with the differential.
(ii). By (i) for each p ≥ 0,

Dk(Cp(C,CNC
)) = Homk(Cp(A,AN)⊗ k, k) 
 Homk(Cp(A,AN), k) 
 DCp(A,AN)⊗ k,

where Dk denotes the k-dual Homk(−, k).
(iii)–(iv). The proofs can be done by chasing the diagrams. Let us prove (iv) and 

the proof of (iii) is left to the reader. Let a0 ⊗ a1,p ∈ Cp(A, AN) and μ ∈ k. The 
element (a0 ⊗ a1,p) ⊗μ ∈ Cp(A, AN) ⊗ k is sent by the inverse of the left vertical map to 
(a0 ⊗ μ) ⊗k (a1 ⊗ 1) ⊗k · · · ⊗k (ap ⊗ 1) ∈ Cp(C, CNC

). Now
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Bp((a0 ⊗ μ) ⊗k (a1 ⊗ 1) ⊗k · · · ⊗k (ap ⊗ 1))

= (1 ⊗ 1) ⊗k (a0 ⊗ μ) ⊗k (a1 ⊗ 1) ⊗k · · · ⊗k (ap ⊗ 1)

+
p∑

i=1
(−1)ip(1 ⊗ 1) ⊗k (ai ⊗ 1) ⊗k · · · ⊗k (ap ⊗ 1) ⊗k (a0 ⊗ μ) ⊗k (N(a1) ⊗ 1)

⊗k · · · ⊗k (N(ap) ⊗ 1)

=
p∑

i=0
(−1)ip(1 ⊗ μ) ⊗k (ai ⊗ 1) ⊗k · · · ⊗k (ap ⊗ 1) ⊗ (a0 ⊗ 1) ⊗k (N(a1) ⊗ 1) ⊗k · · ·

⊗k (N(ai−1) ⊗ 1),

which is obviously the image of

(Bp ⊗ idk)(a0 ⊗ a1,p) =
p∑

i=0
(−1)ip(1 ⊗ ai,p ⊗ a0 ⊗N(a1) ⊗ · · · ⊗N(ai−1)) ⊗ μ

under the inverse of the right vertical map. �
Now the theorem follows from the diagrams in (iii)–(iv) of the above lemma, since the 

Δ-operator and Connes operator B are dual to each other.

5. Examples

5.1. Frobenius algebras given by quiver and relation

As a first series of examples we shall consider Frobenius algebras given by quiver and 
relations.

5.1.1. A criterion of when Frobenius algebras given by quiver with relations have 
semisimple Nakayama automorphisms

Let A = kQ/I be a finite dimensional algebra given by quiver with relations. As is 
well known, we can choose a basis B of A consisting of paths which also contains a 
basis for the socle of each indecomposable projective A-module. Suppose now that A is a 
Frobenius algebra. Then by [22, Proposition 2.8], there is a natural choice of the defining 
bilinear form 〈a, b〉 = tr(ab) for a, b ∈ A induced by the trace map

tr : A → k, p ∈ B �→
{

1 if p ∈ Soc(A) ∩ B
0 otherwise.

Assume that the basis B satisfies two further conditions:

(1) for arbitrary two paths p, q ∈ B, there exist another path r ∈ B and a constant λ ∈ k

such that p · q = λr ∈ A,
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(2) for each path p ∈ B, there exists a unique element p∗ ∈ B such that 0 �= p · p∗ ∈
Soc(A).

We can prove the following rather useful result, as we will see in the next subsection.

Criterion 5.1. Within the above setup, suppose that k is a field of characteristic 0 or 
of characteristic p with p strictly bigger than the number of arrows of Q. Then the two 
conditions (1) and (2) imply that the Nakayama automorphism of A is semisimple and 
the Hochschild cohomology of A is a BV algebra.

Proof. For p ∈ B, by (2), let p∗ be the unique path in B such that p ·p∗ = λ(p)r ∈ Soc(A)
with λ(p) ∈ k \ {0} and r ∈ Soc(A) ∩ B. Then for p, q ∈ B we get,

〈p, q〉 =
{

λ(p) if q = p∗

0 otherwise.

Since 〈p, q〉 = 〈q, N(p)〉, the Nakayama automorphism sends p to λ(p)
λ(p∗)p

∗∗. Since B is 
finite, the Nakayama automorphism N, restricted to B, is a permutation of B, modulo 
scalars.

We will show that the Nakayama automorphism N is diagonalizable if k is an alge-
braically closed field of characteristic 0 or algebraically closed of characteristic p where 
p > dim(rad(A)/rad2(A)) =: d. Recall that the arrows Q1 of the quiver of A form a 
k-basis of rad(A)/rad2(A). Since N is an algebra automorphism, and since A satisfies 
the conditions (1) and (2), for each p ∈ Q1 we get p∗∗ ∈ Q1. We will show that the action 
of N on the k-vector space M = rad(A)/rad2(A) generated by Q1 is diagonalizable. Let 
G be the infinite cyclic group, generated by c. Then kG acts on rad(A)/rad2(A) when 
we define the action of c on M by N.

Let α ∈ Q1. Then there is a tα ∈ N \{0} such that ctα ·α = uα ·α for some uα ∈ k\{0}. 
Choose tα minimal possible. Let xi := ci ·α for i ∈ {0, 1, . . . , tα − 1}. The k-vector space 
Tα generated by x0, · · · , xtα−1 is then a kG-module and c acts by the matrix Cα, say. 
Using the basis {x0, · · · , xtα−1} of Tα it is easily seen that the characteristic polynomial 
of Cα is Xtα ± u and this polynomial has only simple roots in k since the characteristic 
of k is either 0 or bigger than d and d ≥ tα. Now M =

⊕
some α Tα. Let Q′

1 be the 
basis of M for which the action of N is given by a diagonal matrix. This shows that 
N acts diagonally on all paths formed by the elements in Q′

1. We may suppose that A
is indecomposable as algebra (i.e. Q is connected) since the Nakayama automorphism 
acts on each indecomposable factor. Let Q0 be the set of vertices in the quiver. If A is 
indecomposable, then |Q1| ≥ |Q0| − 1 and equality holds if and only if Q is a tree. The 
quiver of a selfinjective algebra is not a tree, and hence |Q1| ≥ |Q0|. Since N permutes Q0, 
the action of N on kQ0 is diagonalizable, using that the characteristic of the field is 0
or bigger than |Q1|. A basis of A is given by Q0 and paths of elements of Q1. Let Q′

0
be a basis of kQ0 and let Q′

1 be a basis of M with diagonal action of N. Then N acts 
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diagonally on paths produced by elements of Q′
1 and the set of paths of elements of Q′

1
forms a generating set of rad(A). Eliminating superfluous elements we produce this way 
a basis Br of rad(A) on which N acts diagonally. Hence Br ∪Q′

0 is a basis of A on which 
N acts diagonally. By our main result Theorem 0.1 the Hochschild cohomology of A is 
a BV algebra. �

These seemingly rather strong conditions (1) and (2) are in fact satisfied by many 
interesting classes of algebras, as we will see in Section 5.1.2.

5.1.2. Tame Frobenius algebras
In this subsection k denotes an algebraically closed field. We shall apply Criterion 5.1

to deal with tame Frobenius algebras.

Lemma 5.2. Each self-injective algebra of finite representation type is Morita equivalent 
to an algebra kQ/I given by a quiver Q modulo admissible relations I verifying the 
conditions (1) and (2).

Proof. Each representation-finite algebra has a multiplicative basis (cf. [3]), thus the first 
condition holds. For the second condition, suppose that for a path p ∈ B, there exist two 
paths q1, q2 ∈ B such that 0 �= pq1 = λpq2 ∈ Soc(A) with λ ∈ k. We can assume that p
has positive length, otherwise q1 and q2 would not be linearly independent in A, using 
that the socle of each indecomposable projective module is one-dimensional. Now q1 and 
q2 are parallel paths, by reducing suitably their lengths and enlarging p if necessary, one 
can assume that they have no common arrows. However, this shows that A is of infinite 
representation type, as there are infinitely many string modules of the form M((q1q−1

2 )n), 
n ∈ N, which is a contradiction.

One can also prove this result using a case-by-case analysis based on the list given in 
terms of quiver with relations in [2]. �

However, the Nakayama automorphism of a self-injective algebra of finite representa-
tion type is not necessarily semisimple.

Example 5.3. Let k be a field of characteristic two. Consider the algebra defined by the 
quiver with relations

1
α

2
β

αβαβ = 0 = βαβα

Thus A is a self-injective Nakayama algebra. Then the indecomposable projective 
A-modules are uniserial and have the following form
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1

α

2

β

1

α

2

2

β

1

α

2

β

1

Under the basis {e1, e2, α, β, αβ, βα}, the matrix of the Nakayama automorphism is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the Nakayama automorphism of A is not semisimple. It would be interesting 
to see whether HH∗(A) is a BV algebra.

For each prime number p, one can construct such a selfinjective Nakayama algebra 
over a field of characteristic p.

Another class of algebras is the so-called self-injective special biserial algebras. A pair 
(Q, I) of a quiver Q and admissible relations I is called special biserial, if the following 
conditions hold:

(a) Each vertex has at most two leaving arrows and at most two entering arrows.
(b) Given an arbitrary arrow α, there exists at most one arrow β such that t(α) = s(β)

and αβ /∈ I and at most one arrow γ such that t(γ) = s(α) and γα /∈ I.

An algebra is called a special biserial algebra if it is Morita equivalent to kQ/I for a 
special biserial pair (Q, I).

Lemma 5.4. For a special biserial pair (Q, I) the algebra kQ/I satisfies the two conditions 
(1) and (2).

Proof. It is not difficult to see, and actually well-known (cf. e.g. [9]), that an indecom-
posable projective module over a self-injective special biserial algebra is either a uniserial 
module or a module for which the quotient of the radical by its socle is the direct sum of 
two uniserial modules. The first case is induced by a monomial relation and the second 
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by a commutation relation. For the choice of the basis B, one simply takes representa-
tives of elements in kQ/I given by paths except that for each indecomposable projective 
non-uniserial module, where we choose one of the two paths from its top to its socle. 
Now the two conditions hold trivially. �

Now let us look at weakly symmetric algebras of domestic representation type. R. Bo-
cian, T. Holm and A. Skowroński [6,7,21] classified all weakly symmetric algebras of 
domestic type over k up to derived equivalence and the last two authors of the present 
paper gave a classification up to stable equivalences [36]. In Bocian–Holm–Skowroński 
classification, a domestic weakly symmetric standard algebra with singular Cartan ma-
trix is derived equivalent to the trivial extension T (C) of a canonical algebra C of 
Euclidean type and is thus symmetric; see [6, Theorem 1]. By [6, Theorem 2] a domestic 
weakly symmetric standard algebra with nonsingular Cartan matrix is derived equiv-
alent to some algebras explicitly given in terms of quiver with relations, denoted by 
A(λ), A(p, q), Λ(n) and Γ(n). Note that these algebras are symmetric except A(λ) with 
λ ∈ k \ {0, 1}. However,

A(λ) = k〈X,Y 〉/(X2, Y 2, XY − λY X)

for λ /∈ {0, 1} has a semisimple Nakayama automorphism, given by a diagonal matrix 
with coefficients (1, λ−1, λ, 1) with respect to the basis {1, X, Y, XY } as is easily ver-
ified. One may use the result of the next subsection, as A(λ) is a quantum complete 
intersection.

By [7, Theorem 1] any nonstandard self-injective algebra of domestic type is derived 
equivalent (and also stably equivalent) to an algebra Ω(n) with n ≥ 1. Let us recall the 
quiver with relations of Ω(n).

� � � � �
� � � � �

� � � � � � � � � �
β1 �
���

β2 ����β3

�
β4
����

βn−3���	 βn−2

βn−1
����

βn

�
��
 ��

���
α

Ω(n)

n ≥ 1

α2 = αβ1β2 · · ·βn = −β1β2 · · ·βnα,

βnβ1 = 0, βjβj+1 · · ·βnβ1 · · ·βnαβ1 · · ·βj−1βj = 0, 2 ≤ j ≤ n

Notice that we cannot use the Criterion 5.1 for the algebra Ω(n). However, we can 
still prove the semisimplicity of its Nakayama automorphism.
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Lemma 5.5. The Nakayama automorphism of Ω(n) is diagonalizable.

Proof. The indecomposable projective modules of Ω(n) are of the following shape:

α β1

β1

α

β2

βn−1 βn

βn
α

βi

βn

α

β1

βi−1

with 2 ≤ i ≤ n. This algebra does not satisfy the two conditions of Criterion 5.1, but 
we can compute explicitly its Nakayama automorphism. For B, one can take the obvious 
basis containing α, β1 · · ·βn, αβ1 · · ·βn = α2 = −β1 · · ·βnα etc. However, the dual basis 
B∗ does not consist of paths. In fact, one obtains α∗ = β1 · · ·βn and (β1 · · ·βn)∗ = −α+
β1 · · ·βn etc. From this, the Nakayama automorphism is given by N(α) = −α+2β1 · · ·βn

and for any other path p ∈ B, we get N(p) = p. Hence, in characteristic two, the 
Nakayama automorphism is the identity map (in fact Ω(n) is symmetric), and in odd 
characteristic it is diagonalizable. Therefore, the Nakayama automorphism of Ω(n) is 
diagonalizable. �

We have shown that each weakly symmetric algebra of domestic type is derived equiv-
alent to a weakly symmetric algebra of domestic type whose Nakayama automorphism 
is semisimple.

Now we consider self-injective algebras of polynomial growth which are not of do-
mestic type. The derived equivalence classification of the standard (resp. non-standard) 
non-domestic weakly symmetric (resp. self-injective) algebras of polynomial growth over 
k is achieved in [4, page 653, Theorem] (resp. [5, Theorem 3.1]).

By [4, page 653, Theorem], an indecomposable standard non-domestic weakly sym-
metric algebra of polynomial growth is always derived equivalent to a symmetric algebra 
except that it may be derived equivalent to Λ′

9 in characteristic not two. For the quiver 



T. Lambre et al. / Journal of Algebra 446 (2016) 103–131 127
with relations of the algebra Λ′
9, we refer to [4]. From this description, we know that 

Λ′
9 is the preprojective algebra of type D4 and that its Nakayama automorphism is 

diagonalizable (and is of order two) by [10, Section 5.2.1]; see also Example 5.11.
By [5, Theorem 3.1], an indecomposable non-standard non-domestic self-injective alge-

bra of polynomial growth is always derived equivalent to a symmetric algebra except the 
possibility of Λ10 in characteristic two. Let us recall its quiver with relation Λ10 = kQ/I:

1 2

4

5

3������ �����	�� 
 

������������

η μ

βα

γ δ

σζ

and

Λ10 = KQ/(βα− δγ, ζσ − ημ, αη, μβ, σδ − γζ, δσδσ).

Lemma 5.6. The Nakayama automorphism of Λ10 in characteristic two is not semisimple.

Proof. The indecomposable projective modules of Λ10 are of the following shape:

1

ζη

4

μ

2

γσ

3

δ

1

ηζ

2

σ

4

μ

3

3

δ β

2

γσ

5

α

3

δβ

1

ζ

5

α

2

γ

1

4

μ

3

δ

2

σ

3

β

5

2

σγ

1

ζη

3

βδ

4

μ

2

γσ

5

α

3

δ

1

ζ

2

5

α

1

ζ

2

γ

1

η

4
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Notice that in the above diagrams, each square is commutative. From this, we observe 
that N is of order 2. However, one sees that the Nakayama automorphism permutes the 

vertices 1 and 3, hence its matrix under a suitable basis has a block 

(
0 1
1 0

)
and this 

matrix is not diagonalizable in characteristic two. �
Since derived equivalent algebras have isomorphic Hochschild cohomology rings [30,

23], we have proved in this subsection the following:

Proposition 5.7. Let A be an algebra falling into one of the following classes of algebras

• representation-finite self-injective algebras in characteristic zero;
• self-injective special biserial algebras in characteristic zero;
• standard weakly symmetric algebras of domestic type which are not representation-

finite;
• nonstandard self-injective algebras of domestic type which are not representation-

finite;
• standard non-domestic weakly symmetric algebras of polynomial growth;
• nonstandard non-domestic self-injective algebras of polynomial growth over fields of 

characteristic different from 2, or over fields of characteristic 2 as long as they are 
not derived equivalent to Λ10.

Then A is derived equivalent to a Frobenius algebra whose Nakayama automorphism is 
semisimple. Therefore, the Hochschild cohomology ring of A is a BV algebra.

We actually proved a slightly more precise statement concerning the characteristic 
of k.

We do not know whether BV structures exist or not on the Hochschild cohomology 
ring of Example 5.3 or that of Λ10 in characteristic 2.

5.2. Quantum complete intersections

In [19], D. Happel asked whether an algebra has finite global dimension whenever its 
Hochschild cohomology is finite dimensional. Although Happel’s conjecture was verified 
for many classes of algebras, it is wrong in general. A counter-example was exhibited 
in [8]. This example is in fact our algebra A(μ) from Remark 3.6.

This example has been generalized the so-called quantum complete intersections, which 
are extensively studied by P.A. Bergh, K. Erdmann, S. Oppermann etc. Let N ≥ 2 and 
a = (a1, · · · , aN ) with aj ≥ 1. Let q = (qij , 1 ≤ i, j ≤ N) be a family of nonzero 
constants in k such that qii = 1 and qijqji = 1. Now define

A(q,a) = k〈X1, · · · , XN 〉
ai+1 .
(Xi , XiXj − qijXjXi, 1 ≤ i, j ≤ N)
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Obviously this algebra is a local weakly symmetric algebra, and is thus a Frobenius 
algebra. A direct computation shows that for each 1 ≤ i ≤ N , N(Xi) =

(∏N
j=1 q

aj

ij

)
Xi

and so it is diagonalizable.

Corollary 5.8. The Hochschild cohomology ring of a quantum complete intersection 
A(q, a) is a BV algebra.

5.3. Finite dimensional Hopf algebras

Let k be an algebraically closed field of characteristic zero. Let H be a finite dimen-
sional Hopf algebra over k. By [26] we get that H is Frobenius. Indeed, given a right 
integral ϕ ∈ H∗, a Frobenius bilinear form is given by 〈a, b〉 = ϕ(ab). Since the antipode 
S of H has finite order by [29], its Nakayama automorphism also has finite order.

Corollary 5.9. The Hochschild cohomology ring of a finite dimensional Hopf algebra 
defined over an algebraically closed field of characteristic zero is a Batalin–Vilkovisky 
algebra.

It would be an interesting question to know when the usual cohomology groups of H
is a BV subalgebra of HH∗(H); a sufficient condition was provided by L. Menichi in [28, 
Theorem 50].

5.4. Other examples

There are many other examples of Frobenius algebras related to Calabi–Yau algebras 
and Artin–Schelter regular algebras.

Example 5.10. In the classical paper [1], M. Artin and W.F. Schelter classified three 
dimensional Artin–Schelter regular algebras. These algebras are twisted Calabi–Yau 
algebras, which implies that there is an algebra automorphism σ of A such that 
HHd−∗(A) 
 H∗(A, Aσ). In the classification, they use a generic condition which im-
plies the semisimplicity of the algebra automorphisms σ of these algebras. When these 
algebras are Koszul, their Koszul duals are Frobenius by [27, Corollary D] and the 
Nakayama automorphism of A! and the algebra automorphism σ of A are related by 
[33, Theorem 9.2]. Therefore, whenever σ is semisimple, the Koszul duals are Frobenius 
algebras with semisimple Nakayama automorphisms. The Hochschild cohomology ring 
of the Koszul dual of a three dimensional Artin–Schelter regular algebra is BV algebra. 
We do not know the explicit BV structure over the Hochschild cohomology rings of these 
algebras.

Example 5.11. The preprojective algebras of Dynkin quivers ADE are Frobenius algebras 
whose Nakayama automorphism has finite order; for details see [10]. Except the cases that 
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char k = 2, and the type Dn, n odd or E6, the Nakayama automorphism is diagonalizable. 
Therefore, except these cases their Hochschild cohomology rings are BV algebras. This 
is a well known fact (at least over a field of characteristic zero) and our main result gives 
a structural explanation of the existence of BV structure. This BV structure (over a field 
of characteristic zero) has been computed by C.-H. Eu in [11].

Example 5.12. Another class of Frobenius algebras, called almost Calabi–Yau algebras, 
was extensively studied by D.E. Evans and M. Pugh (cf. [13,14]). These algebras are 
related to SU (3) modular invariants and MacKay correspondence. Their Nakayama au-
tomorphisms have also finite order and is thus semisimple over a field of characteristic 
zero; the authors in fact work over C. Therefore, the Hochschild cohomology ring of an 
almost Calabi–Yau algebra defined over a field of characteristic zero is a BV algebra. It 
would be interesting to compute the BV structure over the Hochschild cohomology rings 
of these algebras.
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