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Abstract. We propose a total variation-based variational model for nonblind binary image deblurring. The binary
constraint is considered using the double-well function as the penalty term. We show the existence of a mini-
mizer for the proposed model. By using operator splitting and alternating split Bregman, we get an effective
numerical algorithm for the proposed model. Different from the existing methods in which the binary values
are assumed to be known, our method can estimate the binary values automatically in the iteration process.
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1 Introduction
The task of image deblurring is to recover a sharp image
from its observed one that is corrupted by the blurring oper-
ator and additive noise. The blur arises from many sources
such as an out-of-focus lens, atmosphere turbulence, relative
movement between scene and camera, or object motion
during exposure time.1–5 The noise arises due to errors of
the physical sensors or quantization in the image acquiring
process. Mathematically, the image degradation model can
be written as

EQ-TARGET;temp:intralink-;e001;63;373g ¼ Hf þ η; (1)

where g is the degraded image, f is the latent clean image, H
is the spatial invariant blurring operator, and η is the additive
Gaussian noise. In this paper, we focus on nonblind image
deblurring, i.e., H is assumed to be known. The deblurring
problem can be solved by the regularized least square model
described as

EQ-TARGET;temp:intralink-;e002;63;276min
f

1

2

Z
Ω
jHf − gj2dxþ γJðfÞ; (2)

where Ω ⊂ R2 is a bounded set, J is a regularizer, and γ is
a positive regularization parameter. The widely used regular-
izers are sparsity priors including total variation (TV),6,7 non-
local total variation,8,9 wavelet tight frames,10,11 generalized
Laplacian,12 l0 norm,13 and sorted l1.

14

In this paper, we study the problem of recovering a binary
image from its degraded observation. An image is binary if it
has only two possible values for each pixel. Binary images
are prevalent in digital systems and have a wide range of
applications including texts, fingerprint recognition hand-
written signatures, stellar astronomy, bar codes, and vehicle
license plates.15–17 There have been many attempts to deal

with binary image deblurring. A straightforward approach
is to treat the binary image as the gray-value image and post-
process it by thresholding. However, the drawback is that the
thresholding step often destroys the structures in the recov-
ered image. To enhance the binary image restoration quality,
the prior information of being binary has been considered in
a few works. Shen et al.18 proposed a positive semidefinite
programming approach for restoring the blurring and noisy
binary image. Pan et al.19 developed an effective l0 regular-
izer based on intensity and gradient prior for text image
deblurring, which performs favorably against the existing
text image deblurring methods. However, this prior might
not be suitable for binary images with two values away from
zero. Zhang20 investigated the modification of the double-
well function in order to guarantee the objective function
to be convex. An alternating minimization algorithm is pro-
posed to solve the binary image deblurring problem in which
the Newton method is used to solve one of the subproblem
inexactly. Mei et al.21 proposed an effective second-order
regularizer for the binary constraint. Both l0 regularization
of gradient and TV are considered as image regularizers in
their model. By operator splitting, the subproblem involving
binary constraint can be solved exactly by soft-rounding. In
addition, the statistical method was also employed for deblur-
ring the binary image. Li and Lii22 estimated the original
image and the pixel values using the higher-order statistics.

A potential limitation of some existing methods such as
Refs. 20 and 21 is that they assume that the two values of the
latent binary image are known. To overcome this limitation,
we propose a variational model for deblurring the binary
image with unknown pixel values. The proposed model is
based on the TV regularization of image and the double-
well function for binary constraint. Mathematically, we
prove the existence of minimizer for the proposed model.
We use the operator splitting scheme and the alternating split
Bregman (ASB) method to derive an efficient algorithm in
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which each subproblem has closed-form solution. Especially,
the binary values can be estimated automatically in the
iteration process.

2 Proposed Model and Mathematical Analysis
In this paper, we propose to use the double-well function as
a regularizer for binary constraint which is defined as

EQ-TARGET;temp:intralink-;sec2;63;674ϕ1ðzÞ ¼ ðz − β1Þ2ðz − β2Þ2; z ∈ R:

For comparison, we recall two closely related functions
that were used in Refs. 20 and 21
EQ-TARGET;temp:intralink-;sec2;63;621

ϕ2ðzÞ ¼
(
ðz − β1Þ2ðz − β2Þ2; z < β1 or z > β2;

0; β1 ≤ z ≤ β2

ϕ3ðzÞ ¼

8><
>:

β1 − z; z < β1

ðz − β1Þðβ2 − zÞ; β1 ≤ z ≤ β2

z − β2; z > β2

:

In Fig. 1, we plot the three functions with β1 ¼ 0 and
β2 ¼ 1.

Obviously, the double-well regularizer ϕ1ðzÞ and the soft-
rounding regularizer ϕ3ðzÞ are nonconvex and they attain
their minimum at 0 and 1. Compared with the soft-rounding
regularizer ϕ3ðzÞ, the double-well regularizer ϕ1ðzÞ is
smooth. Optimization problems involving smooth functions
are much easier and more convenient to be solved. The reg-
ularizer ϕ2ðzÞ is a convex version of ϕ1ðzÞ. Although ϕ2ðzÞ
is convex, its drawback is that it relaxes z ∈ ½β1; β2� which
makes z very far from binary. Compared with the convex
regularizer ϕ2ðzÞ, the double-well regularizer ϕ1ðzÞ can
force the pixel values of the recovered image to approach
zero and one better.

Assume g∶Ω → R2 is the observed image where Ω ⊂ R2

is a bounded set with the Lipschitz boundary. In this paper,
we propose the following variational model for binary image
deblurring:

EQ-TARGET;temp:intralink-;e003;326;752

inf
f;β1;β2

(
Eðf; β1; β2Þ ¼ 1

2

R
Ω jHf − gj2dx

þ α
2

R
Ω ðf − β1Þ2ðf − β2Þ2dxþ γJðfÞ

)
; (3)

where α and γ are positive regularization parameters, β1 and
β2 are the pixel values to be estimated, and JðfÞ is the TV
seminorm defined as

EQ-TARGET;temp:intralink-;sec2;326;677JðfÞ ¼ supffdivðξÞdx∕ξðxÞ ∈ C∞
0 ðΩ;R2Þ; jξj ≤ 1g:

In the energy functional of Eq. (3), the first term is the
data fitting term, the second term is the double-well function
which acts as a binary regularizer and forces pixel values of
the recovered image to approach β1 and β2, and the last
term is the TV regularizer which is especially suitable for
piecewise constant images including binary images.6,23

Note that the optimization Eq. (3) is nonconvex and
involves three set of variables. In the following, we show
that if f is bounded, the optimization Eq. (3) has at least one
solution ðf; β1; β2Þ such that f ∈ BVðΩÞ. Here BVðΩÞ is the
bounded variation space which is the subspace of functions
u ∈ L2ðΩÞ with bounded TV.

Theorem 1 Assume H∶L2ðΩÞ → L2ðΩÞ is a linear
continuous operator. Let the given image g ∈ L2ðΩÞ,
if a1 ≤ f ≤ a2, then the optimization Eq. (3) has at
least one solution ðf�; β1�; β2�Þ such that f� ∈ BVðΩÞ,
a1 ≤ f� ≤ a2, a1 ≤ β1� ≤ a2 and a1 ≤ β2� ≤ a2.

Proof 1 Let f ≡ a1, β1 ≡ a1, β2 ≡ a2, we have
Eða1; a1; a2Þ ¼ 1

2
∫ ΩðHa1 − gÞ2dx. Since g ∈ L2ðΩÞ and

Ω are bounded, Eða1Þ is finite. Hence the infimum of the
energy must be finite. Let us consider a minimizing sequence
ffn; β1n; β2ng for the energy of Eq. (3) which satisfies
fn ∈ BVðΩÞ, a1 ≤ fn ≤ a2, that is, Eðfn; β1n; β2nÞ →
inf Eðf; β1; β2Þ as n → ∞. Then, we have
EQ-TARGET;temp:intralink-;st2;326;362

Eðfn; β1n; β2nÞ ¼
1

2

Z
Ω
jHfn − gj2dx

þ α

2

Z
Ω
ðfn − β1nÞ2ðfn − β2nÞ2dxþ γJðfnÞ < C;

where C > 0 is a constant. Therefore, we have that JðfnÞ is
uniformly bounded. Meanwhile, a1 ≤ fn ≤ a2 implies that
kfnkL1ðΩÞ is uniformly bounded. Hence, we get that ffng
is uniformly bounded in BVðΩÞ. By using the compactness
property of BV space with to weak * topology, up to a
subsequence also denoted by ffng, there exists a function
f� ∈ BVðΩÞ which satisfies a1 ≤ f� ≤ a2 such that
EQ-TARGET;temp:intralink-;st2;326;213

fn → f� strongly inL1ðΩÞ;
fn → f� a:e: x ∈ Ω;

Dfn ⇀ Df� in the sense of measure:

Then by the lower semicontinuity of L2 norm and TV, we get

EQ-TARGET;temp:intralink-;e004;326;134

Z
Ω
jHf� − gj2dx ≤ lim inf

n→∞

Z
Ω
jHfn − gj2dx; (4)

EQ-TARGET;temp:intralink-;e005;326;90Jðf�Þ ≤ lim inf
n→∞

JðfnÞ: (5)
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Fig. 1 The binary regularizers. The red solid line shows our double-
well regularizer ϕ1ðxÞ, the blue dotted line shows the regularizer ϕ2ðxÞ
in Ref. 20, and the magenta dashed line shows the regularizer ϕ3ðxÞ
in Ref. 21.
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On the other hand, we can derive from the energy model
Eq. (3) that the sequences fβ1ng and fβ2ng satisfy the
following first-order optimal conditions:
EQ-TARGET;temp:intralink-;st2;63;719 Z

Ω
ðfn − β1nÞðfn − β2nÞ2dx ¼ 0;Z

Ω
ðfn − β2nÞðfn − β1nÞ2dx ¼ 0:

The solution is given as

EQ-TARGET;temp:intralink-;st2;63;638β1n ¼
R
Ω fnðfn − β2nÞ2dxR
Ω ðfn − β2nÞ2dx

; β2n ¼
R
Ω fnðfn − β1nÞ2dxR
Ω ðfn − β1nÞ2dx

:

It is easy to see that a1 ≤ βin ≤ a2, i ¼ 1;2. Hence up to sub-
sequences, also denoted by fβ1ng and fβ2ng, there exist β1�
and β2� such that

EQ-TARGET;temp:intralink-;st2;63;554β1n → β1� ∈ ½a1; a2�; β2n → β2� ∈ ½a1; a2�:

Then ðfn − β1nÞ2ðfn − β2nÞ2 → ðf� − β1�Þ2ðf� − β2�Þ2 a.e.
x ∈ Ω. By the Fotou lemma, we get
EQ-TARGET;temp:intralink-;e006;63;500 Z

Ω
ðf� − β1�Þ2ðf� − β2�Þ2dx

≤ lim inf
n→∞

Z
Ω
ðfn − β1nÞ2ðfn − β2nÞ2dx: (6)

Summing up Eqs. (4)–(6), we get

EQ-TARGET;temp:intralink-;e007;63;419Eðf�; β1�; β2�Þ ≤ lim inf
n→∞

EðfnÞ ¼ inf EðfÞ: (7)

Hence ðf�; β1�; β2�Þ must be a minimizer of the optimiza-
tion Eq. (3) satisfying f� ∈ BVðΩÞ and a1 ≤ f� ≤ a2. This
completes the proof.

It should be noted that in Theorem 1, we assume
f ∈ ½a1; a2�. The bounded condition is often satisfied in
the practical problems. Hence, this assumption can be
removed in the proposed model and the corresponding
numerical scheme.

3 Algorithm
The proposed minimization Eq. (3) is difficult to solve
directly since it is nonconvex, nonsmooth, and contains
a fourth-order polynomial. In order to solve it efficiently,
we use the popular operator splitting scheme and the ASB
method. It has been proved in Ref. 24 that ASB is equivalent
to the classical alternating direction method of multipliers.

Note that in the numerical implementation, the TVof f is
equivalent to the L1 norm of the gradient of f, that is,
JðfÞ ¼ k∇fk1. Then we can rewrite the proposed model
Eq. (3) as

EQ-TARGET;temp:intralink-;e008;63;162 min
f;β1;β2

1

2
kHf − gk22 þ

α

2

Z
Ω
ðf − β1Þ2ðf − β2Þ2dxþ γk∇fk1:

(8)

First, we introduce three auxiliary variables and rewrite
model Eq. (8) as the following equivalent formulation with
constraints:

EQ-TARGET;temp:intralink-;e009;326;752

min
f;β1;β2

1

2
kHf − gk22 þ

α

2

Z
Ω
ðu − β1Þ2ðv − β2Þ2dxþ γkwk1

s:t: f ¼ u; f ¼ v; ∇f ¼ w: (9)

Following the framework of ASB, we define the function
Lðf; β1; β2; u; v; wÞ as
EQ-TARGET;temp:intralink-;e010;326;679

L¼
(

1
2
kHf−gk22þα

2

R
Ω ðu−β1Þ2ðv−β2Þ2dxþγkwk1

þσ1
2
kf−uþbk22þσ2

2
kf−vþck22þσ3

2
k∇f−wþdk22

)
;

(10)

where b, c, d are the Lagrangian multipliers and
σi (i ¼ 1, 2, 3) are the penalty parameters.25 In fact,
Lðf; β1; β2; u; v; wÞ is equivalent to the augmented
Lagrangian of the original constrained Eq. (9). Then the
ASB method for the minimization Eq. (9) is given by the
following iteration scheme:

EQ-TARGET;temp:intralink-;e011;326;536fkþ1 ¼ arg min
f

Lðf; βk1; βk2; uk; vk; wkÞ; (11)

EQ-TARGET;temp:intralink-;e012;326;496βkþ1
1 ¼ arg min

β1
Lðfkþ1; β1; βk2; u

k; vk; wkÞ; (12)

EQ-TARGET;temp:intralink-;e013;326;460βkþ1
2 ¼ arg min

β2
Lðfkþ1; βkþ1

1 ; β2; uk; vk; wkÞ; (13)

EQ-TARGET;temp:intralink-;e014;326;425ukþ1 ¼ arg min
u

Lðfkþ1; βkþ1
1 ; βkþ1

2 ; u; vk; wkÞ; (14)

EQ-TARGET;temp:intralink-;e015;326;391vkþ1 ¼ arg min
v

Lðfkþ1; βkþ1
1 ; βkþ1

2 ; ukþ1; v; wkÞ; (15)

EQ-TARGET;temp:intralink-;e016;326;357wkþ1 ¼ arg min
w

Lðfkþ1; βkþ1
1 ; βkþ1

2 ; ukþ1; vkþ1; wÞ: (16)

In the following, we give the solutions of Eqs. (11)–(16).
The first subproblem corresponds to the following optimiza-
tion problem:

EQ-TARGET;temp:intralink-;e017;326;293 arg min
f

1

2
kHf − gk22 þ

σ1
2
kf − uk þ bkk22

þ σ2
2
kf − vk þ ckk22 þ

σ3
2
k∇f − wk þ dkk22: (17)

The minimizer can be obtained by equivalently solving
a linear system

EQ-TARGET;temp:intralink-;e018;326;198ðHTH þ σ1I þ σ2I þ σ3∇T∇Þf
¼ HTgþ σ1ðuk − bkÞ þ σ2ðvk − ckÞ þ σ3∇Tðwk − dkÞ:

(18)

Note that K, ∇ have block circulant with circulant blocks
(BCCB) structure when the periodic boundary conditions are
used. We know that the computations with BCCB matrices
can be very efficient using fast Fourier transforms (FFTs).
Let F denote the FFT. We have
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EQ-TARGET;temp:intralink-;e019;63;740fkþ1 ¼ F−1
�
F ½HTgþ σ1ðuk − bkÞ þ σ2ðvk − ckÞ þ σ3ðwk − dkÞ�

FðHTH þ σ1I þ σ2I þ σ3∇T∇Þ
�
: (19)

As for β1 and β2, we have

EQ-TARGET;temp:intralink-;e020;63;695βkþ1
1 ¼ arg min

β1

α

2

Z
Ω
ðuk − β1Þ2ðvk − βk2Þ2dx (20)

and

EQ-TARGET;temp:intralink-;e021;63;641βkþ1
2 ¼ arg min

β1

α

2

Z
Ω
ðuk − βkþ1

1 Þ2ðvk − β2Þ2dx: (21)

Taking the derivatives with respect to β1 and β2, respec-
tively, and setting the results to be zero, we get

EQ-TARGET;temp:intralink-;e022;63;580α

Z
Ω
ðuk − β1Þðvk − βk2Þ2 ¼ 0; (22)

and

EQ-TARGET;temp:intralink-;e023;63;526α

Z
Ω
ðuk − βkþ1

1 Þ2ðvk − β2Þ ¼ 0: (23)

So we have

EQ-TARGET;temp:intralink-;e024;63;477βkþ1
1 ¼

R
Ω ukðvk − βk2Þ2dxR
Ω ðvk − βk2Þ2dx

(24)

and

EQ-TARGET;temp:intralink-;e025;326;706βkþ1
2 ¼

R
Ω vkðuk − βkþ1

1 Þ2dxR
Ω ðuk − βkþ1

1 Þ2dx : (25)

For u and v, we have

EQ-TARGET;temp:intralink-;e026;326;657ukþ1 ¼ arg min
u

α

2

Z
Ω
ðu − βkþ1

1 Þ2ðvk − βkþ1
2 Þ2dx

þ σ1
2
kfkþ1 − uþ bkk22 (26)

and

EQ-TARGET;temp:intralink-;e027;326;579vkþ1 ¼ arg min
v

α

2

Z
Ω
ðukþ1 − βkþ1

1 Þ2ðv − βkþ1
2 Þ2dx

þ σ2
2
kfkþ1 − vþ ckk22: (27)

So the minimizers ukþ1 and vkþ1 can be easily obtained as

EQ-TARGET;temp:intralink-;e028;326;506ukþ1 ¼ αβkþ1
1 ðvk − βkþ1

2 Þ2 þ σ1ðfkþ1 þ bkÞ
αðvk − βkþ1

2 Þ2 þ σ1
(28)

and

EQ-TARGET;temp:intralink-;e029;326;448vkþ1 ¼ αβkþ1
2 ðukþ1 − βkþ1

1 Þ2 þ σ2ðfkþ1 þ ckÞ
αðukþ1 − βkþ1

1 Þ2 þ σ2
: (29)

Algorithm 1 Binary image deblurring with automatic binary value estimation.

• Initialization: f 0 ¼ g, β01 ¼ 0, β02 ¼ 0, u0 ¼ g, v0 ¼ g, w0 ¼ ∇f , b0 ¼ 0, c0 ¼ 0, d0 ¼ 0.

• For k ¼ 0;1;2; : : : , repeat until stopping criterion is reached

EQ-TARGET;temp:intralink-;t001;134;313

f kþ1 ¼ F−1
�
F ½HTg þ σ1ðuk − bk Þ þ σ2ðvk − ck Þ þ σ3ðwk − dk Þ�

FðHTH þ σ1I þ σ2I þ σ3∇T∇Þ
�
;

βkþ1
1 ¼

R
Ω uk ðvk − βk2Þ2dxR
Ω ðvk − βk2Þ2dx

;

βkþ1
2 ¼

R
Ω vk ðuk − βkþ1

1 Þ2dxR
Ω ðuk − βkþ1

1 Þ2dx ;

ukþ1 ¼ αβkþ1
1 ðvk − βkþ1

2 Þ2 þ σ1ðf kþ1 þ bk Þ
αðvk − βkþ1

2 Þ2 þ σ1
;

vkþ1 ¼ αβkþ1
2 ðukþ1 − βkþ1

1 Þ2 þ σ2ðf kþ1 þ ck Þ
αðukþ1 − βkþ1

1 Þ2 þ σ2
;

wkþ1 ¼ Sð∇f kþ1 þ dk ; γ∕σ3Þ;
bkþ1 ¼ bk þ f kþ1 − ukþ1;

ckþ1 ¼ ck þ f kþ1 − vkþ1;

dkþ1 ¼ dk þ ∇f kþ1 − wkþ1:

• Output: f kþ1, βkþ1
1 , βkþ1

2
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As for w, we have

EQ-TARGET;temp:intralink-;e030;63;741wkþ1 ¼ arg min
w

γkwk1 þ
σ3
2
k∇fkþ1 − wþ dkk22: (30)

The minimizer is given by the following soft shrinkage
equation:

EQ-TARGET;temp:intralink-;e031;63;680wkþ1 ¼ Sð∇fkþ1 þ dk; γ∕σ3Þ; (31)

where the soft shrinkage operator is defined as

EQ-TARGET;temp:intralink-;e032;63;638Sðt; τÞ ≔ maxðjtj − τ; 0ÞsignðtÞ

¼ arg min
s

τksk1 þ
1

2
ks − tk22: (32)

The updating scheme of the Lagrangian multipliers can be
written specifically as
EQ-TARGET;temp:intralink-;e033;63;561

bkþ1 ¼ bk þ fkþ1 − ukþ1;

ckþ1 ¼ ck þ fkþ1 − vkþ1;

dkþ1 ¼ dk þ ∇fkþ1 − wkþ1: (33)

The final numerical scheme for the proposed model is
summarized in Algorithm 1.

4 Numerical Results
In this section, we give some numerical tests to illustrate
the effectiveness of the proposed method for binary image
deblurring. We compare the proposed method with some
existing deblurring methods including the classical TV
method in Ref. 26, the l0 regularized intensity and gradient
prior method (l0) in Ref. 19, the alternating minimization
method (AM) in Ref. 20, and the soft rounding-based
method (SR) in Ref. 21. In order to have fair comparisons
in all tests, we adjust parameters and report the best overall
performance for the five methods.

We use the stopping criterion when the maximum number
of allowed outer iterations N ¼ 500 has been carried out
or the relative differences between consecutive iterates
f1; f2; f3; : : : satisfy

EQ-TARGET;temp:intralink-;sec4;63;295

kfkþ1 − fkk2
kfkþ1k2

< 10−5:

In the iteration process, we increase the parameter α to
two times every 30 iterations for speeding up convergence.
In the experiments, we apply three kinds of commonly used
PSFs generated by the MATLAB routines: (i) fspecial
(“Gaussian,”11,5), the 11 × 11 Gaussian blur with standard
deviation 5; (ii) fspecial(“disk,”5), the out-of-focus (defocus)
blur with size 11 × 11; (iii) fspecial(“motion,”7,45), the

Fig. 2 Test images. (a) Barcode, (b) text, (c) QR code, and (d) ruler.

Table 1 Test on “barcode” image: estimation capabilities of fβ1; β2g.

Noise Blur True = {0, 1} True = {−1, 1}

1% Gauss {0.0000, 1.0000} {−1.0014, 1.0009}

Defocus {0.0000, 1.0000} {−1.0015, 1.0013}

Motion {0.0000, 1.0000} {−0.9996, 0.9996}

2% Gauss {0.0000, 1.0000} {−1.0002, 1.0015}

Defocus {−0.0006, 1.0002} {−1.0006, 1.0011}

Motion {0.0000, 0.9999} {−0.9994, 0.9994}

3% Gauss {0.0000, 0.9995} {−1.0007, 0.9967}

Defocus {0.0000, 0.9995} {−1.0005, 0.9978}

Motion {0.0001, 0.9997} {−1.0000, 0.9971}

4% Gauss {0.0001, 0.9996} {−1.0003, 1.0023}

Defocus {0.0002, 0.9999} {−1.0001, 1.0013}

Motion {0.0002, 0.9996} {−0.9986, 0.9987}

5% Gauss {0.0002, 0.9991} {−1.0000, 1.0020}

Defocus {−0.0006, 0.9995} {−0.9999, 1.0008}

Motion {0.0003, 0.9994} {−0.9982, 0.9983}

6% Gauss {0.0001, 0.9988} {−0.9999, 1.0017}

Defocus {−0.0008, 0.9998} {−0.9991, 1.0007}

Motion {0.0001, 0.9994} {−0.9979, 0.9983}
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motion blur with size 7 × 7. To evaluate the quality of the
restoration results quantitatively, we use the peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM).
See Ref. 27 for more details. Four test images “barcode,”
“text,” “quick response (QR) code,” and “ruler” are shown
in Fig. 2.

In the first test, we show the estimation capabilities of β1
and β2 and the convergence behavior of the proposed
method. In this test, we compute β1 and β2 using the pro-
posed method when the true pixel values fβ1; β2g of the

binary image “barcode” in Fig. 2 are {0, 1} and f−1; 1g,
respectively. The estimated pixel values produced by the pro-
posed method are given under the three different blurs and

six noise levels in Table 1. The noise level is defined by kηk2
kHfk2.

It is easy to see from the table that our method has a strong
binary value estimation ability for 1% to 6% noise levels.
Especially, we can estimate the values exactly under the
1% noise level when the true pixel values are {0, 1}.
In Fig. 3, we plot the numerical convergence results of

Fig. 3 Convergence behavior of β1 and β2. (a) Gauss, 1% noise, (b) defocus, 2% noise, (c) motion,
3% noise, (d) Gauss, 4% noise, (e) defocus, 5% noise, and (f) motion, 6% noise.

Fig. 4 Convergence behavior of the estimated image. (a) Gauss, 1% noise, (b) defocus, 2% noise,
(c) motion, 3% noise, (d) Gauss, 4% noise, (e) defocus, 5% noise, and (f) motion, 6% noise.
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the binary pixel values fβ1; β2g for 1% to 6% noise levels.
The true pixel values of the first row in Fig. 3 are 0 and 1
while the true pixel values of the second row are −1 and 1.
As can be seen from Fig. 3, the iteration sequences about the
estimated pixel values are convergent. To show the conver-
gence behavior of our method for binary image deblurring,
we report the PSNR values of the restored images for each
iteration in Fig. 4. It is not difficult to see from the figure that
the proposed method is numerically convergent.

In the second test, we compare the restoration results by
TV, l0, and the proposed method when the pixel values of the
binary image are unknown. In Table 2, we give the PSNR
and SSIM results for TV, l0, and the proposed method.
Note that in Table 2 the best results are marked in bold.
From the table, we know that our method behaves much bet-
ter in terms of PSNR and SSIM. We show the resorted binary
images for “text” under the Gaussian blur and 1% noise level
in Fig. 5 while the motion blur and 6% noise level in Fig. 6.
It is not difficult to see from the visual quality of restored
images in the figures that the proposed method is better
than the other methods. See the marked rectangles for a bet-
ter visual comparison.

In the third test, we compare the restoration results when
the pixel values of the binary images are known. The pixel
values of the two images “QR barcode” and “tuler” are
known to be 16 and 224. In Table 3, we report the PSNR
and SSIM values by AM, SR, and the proposed method
under three different blurs and 1% to 6% noise levels for
“QR code” and “ruler” images, respectively. We observe
from Table 3 that the PSNR and SSIM values obtained by

the proposed method are the highest among the three meth-
ods. Especially, under the Gaussian and motion blurs with
1% and 3% noise levels, respectively, our method recovers
the original image “QR code” exactly. In Figs. 7 and 8, we
display the restoration results when AM, SR, and theTable 2 Test on “text” image: comparison of the performance for

unknown binary pixel values.

Blur Gauss Defocus Motion

Noise 1% 2% 3%

PSNR TV26 11.43 14.40 20.14

l0
19 11.99 17.30 27.14

Ours 16.37 25.99 45.23

SSIM TV26 0.8433 0.7750 0.8828

l0
19 0.8937 0.9641 0.9861

Ours 0.9529 0.9914 0.9880

Noise 4% 5% 6%

PSNR TV26 9.31 10.26 15.33

l0
19 9.70 10.42 20.67

Ours 10.13 11.53 34.84

SSIM TV26 0.7826 0.8118 0.9772

l0
19 0.7820 0.7977 0.9813

Ours 0.7826 0.8246 0.9995

Fig. 5 Restoration results for unknown binary pixel values (Gauss,
1% noise). (a) Degraded, (b) TV,26 (c) l0,

19 and (d) ours.

Fig. 6 Restoration results for unknown binary pixel values (motion,
6% noise). (a) Degraded, (b) TV,26 (c) l0,

19 and (d) ours.
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proposed method are applied to the binary image deblurring
problem. We show the restoration images of “QR code”
under the defocus blur and 2% noise level in Figs. 7(b)–7(d)
while the restoration images of “ruler” under the motion
blur and 3% noise level in Figs. 8(b)–8(d). After a visual
inspection of the restored images, it is easy to check that
the proposed approach yields better results than the AM and
SR methods.

5 Conclusion
In conclusion, we propose a TV and binary constraint-based
variational method with automatic binary value estimation
for binary image deblurring. The numerical experiments

Table 3 Test on “QR code” and “ruler” images: comparison of the
performance for known binary pixel values.

Image Blur Gauss Defocus Motion

Noise 1% 2% 3%

QR code PSNR AM20 37.38 33.60 49.93

SR21 45.16 39.93 inf

Ours inf 42.94 inf

AM20 0.9670 0.9945 0.9999

SSIM SR21 0.9999 0.9989 1.0000

Ours 1.0000 0.9996 1.0000

Ruler PSNR AM20 25.30 17.64 27.67

SR21 27.41 18.82 28.12

Ours 27.68 19.29 30.97

AM20 0.9871 0.9245 0.9931

SSIM SR21 0.9936 0.9474 0.9941

Ours 0.9937 0.9539 0.9966

Noise 4% 5% 6%

QR code PSNR AM20 23.14 25.21 30.54

SR21 24.87 25.27 32.28

Ours 26.61 28.03 36.32

AM20 0.9542 0.9670 0.9917

SSIM SR21 0.9765 0.9735 0.9946

Ours 0.9766 0.9845 0.9980

Ruler PSNR AM20 13.75 13.69 17.19

SR21 14.15 13.93 17.38

Ours 14.61 14.15 19.58

AM20 0.6559 0.7343 0.8909

SSIM SR21 0.7963 0.7353 0.8942

Ours 0.8066 0.7478 0.9535

Note: The best results are marked in bold.

Fig. 7 Restoration results for known binary pixel values (defocus
2% noise). (a) Degraded, (b) AM,20 (c) SR,21 and (d) ours.

Fig. 8 Restoration results for known binary pixel values (motion,
3% noise). (a) Degraded, (b) AM,20 (c) SR,21 and (d) ours.
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on binary images demonstrate the effectiveness of the pro-
posed method. In future work, we will consider the conver-
gence property of the related algorithms for the nonconvex
optimization problem. Moreover, we will extend the pro-
posed method to deblur pattern images which takes more
than two pixel values.
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