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1 Introduction

The task of image deblurring is to recover a sharp image
from its observed one that is corrupted by the blurring oper-
ator and additive noise. The blur arises from many sources
such as an out-of-focus lens, atmosphere turbulence, relative
movement between scene and camera, or object motion
during exposure time.'™ The noise arises due to errors of
the physical sensors or quantization in the image acquiring
process. Mathematically, the image degradation model can
be written as

g=Hf +n, 9]

where g is the degraded image, f is the latent clean image, H
is the spatial invariant blurring operator, and 7 is the additive
Gaussian noise. In this paper, we focus on nonblind image
deblurring, i.e., H is assumed to be known. The deblurring
problem can be solved by the regularized least square model
described as

1
minf/ |Hf — g|*dx + yJ(f), (2)
f 2 Ja

where Q c R? is a bounded set, J is a regularizer, and y is
a positive regularization parameter. The widely used regular-
izers are sparsity priors including total variation (TV),%’ non-
local total variation,®® wavelet tight frames, ! generalized
Laplacian,'? #, norm,"* and sorted #,.'*

In this paper, we study the problem of recovering a binary
image from its degraded observation. An image is binary if it
has only two possible values for each pixel. Binary images
are prevalent in digital systems and have a wide range of
applications including texts, fingerprint recognition hand-
written signatures, stellar astronomy, bar codes, and vehicle
license plates.'”!” There have been many attempts to deal
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with binary image deblurring. A straightforward approach
is to treat the binary image as the gray-value image and post-
process it by thresholding. However, the drawback is that the
thresholding step often destroys the structures in the recov-
ered image. To enhance the binary image restoration quality,
the prior information of being binary has been considered in
a few works. Shen et al.'® proposed a positive semidefinite
programming approach for restoring the blurring and noisy
binary image. Pan et al.'” developed an effective 7, regular-
izer based on intensity and gradient prior for text image
deblurring, which performs favorably against the existing
text image deblurring methods. However, this prior might
not be suitable for binary images with two values away from
zero. Zhang®® investigated the modification of the double-
well function in order to guarantee the objective function
to be convex. An alternating minimization algorithm is pro-
posed to solve the binary image deblurring problem in which
the Newton method is used to solve one of the subproblem
inexactly. Mei et al.>! proposed an effective second-order
regularizer for the binary constraint. Both £ regularization
of gradient and TV are considered as image regularizers in
their model. By operator splitting, the subproblem involving
binary constraint can be solved exactly by soft-rounding. In
addition, the statistical method was also employed for deblur-
ring the binary image. Li and Lii** estimated the original
image and the pixel values using the higher-order statistics.

A potential limitation of some existing methods such as
Refs. 20 and 21 is that they assume that the two values of the
latent binary image are known. To overcome this limitation,
we propose a variational model for deblurring the binary
image with unknown pixel values. The proposed model is
based on the TV regularization of image and the double-
well function for binary constraint. Mathematically, we
prove the existence of minimizer for the proposed model.
We use the operator splitting scheme and the alternating split
Bregman (ASB) method to derive an efficient algorithm in
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which each subproblem has closed-form solution. Especially,
the binary values can be estimated automatically in the
iteration process.

2 Proposed Model and Mathematical Analysis

In this paper, we propose to use the double-well function as
a regularizer for binary constraint which is defined as

#$1(z) = (z _ﬂl)z(z —/32)2,

For comparison, we recall two closely related functions
that were used in Refs. 20 and 21

z€R.

() = { (c=B2=p)% z<prorz> .

0, Pr<z<p
b1 -z, z<p

$3(z) =9 (2=B1)(Pr—2), Pi<z<Ph,.
2= po, z2>p,

In Fig. 1, we plot the three functions with #; = 0 and
pr=1

Obviously, the double-well regularizer ¢, (z) and the soft-
rounding regularizer ¢;(z) are nonconvex and they attain
their minimum at 0 and 1. Compared with the soft-rounding
regularizer ¢;(z), the double-well regularizer ¢(z) is
smooth. Optimization problems involving smooth functions
are much easier and more convenient to be solved. The reg-
ularizer ¢b,(z) is a convex version of ¢, (z). Although ¢,(z)
is convex, its drawback is that it relaxes z € [, 8,] which
makes z very far from binary. Compared with the convex
regularizer ¢,(z), the double-well regularizer ¢;(z) can
force the pixel values of the recovered image to approach
zero and one better.

Assume g:Q — R? is the observed image where Q C R?
is a bounded set with the Lipschitz boundary. In this paper,
we propose the following variational model for binary image
deblurring:
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inf {E(fﬁﬂl’ﬁ2) :%fg |Hf—g|2dx }’ 3)

P\ +2 fo (f = BOP(f = Ba)dx + 7 (f)

where a and y are positive regularization parameters, f; and
B, are the pixel values to be estimated, and J(f) is the TV
seminorm defined as

J(f) = sup{fdiv(§)dx/{(x) € CF(Q.R?),

In the energy functional of Eq. (3), the first term is the
data fitting term, the second term is the double-well function
which acts as a binary regularizer and forces pixel values of
the recovered image to approach f; and f,, and the last
term is the TV regularizer which is especially suitable for
piecewise constant images including binary images.*?’

Note that the optimization Eq. (3) is nonconvex and
involves three set of variables. In the following, we show
that if f is bounded, the optimization Eq. (3) has at least one
solution (f, 1, 3,) such that f € BV(Q). Here BV (Q) is the
bounded variation space which is the subspace of functions
u € L*(Q) with bounded TV.

Theorem 1 Assume H:L?*(Q)— L?*(Q) is a linear
continuous operator. Let the given image g€ L?*(Q),
if a; <f <a,, then the optimization Eq. (3) has at
least one solution (f,,p.,f) such that f, € BV(Q),
ai £ f. < ay a1 £ P <ax and a; < fo, < a.

g <1}

Proof 1 Let f=a;, pi=a,, pr=a,, we have
E(ay,ay,a,) =4 [o(Ha, — g)*dx. Since g€ L*(Q) and
Q are bounded, E(a,) is finite. Hence the infimum of the
energy must be finite. Let us consider a minimizing sequence
{fnsBins Pon} for the energy of Eq. (3) which satisfies
fn EBV(Q), a Sf” Saz, that iS, E(fn’ﬁlnvﬂZn) Ed
inf E(f,p1,5,) as n —» oo. Then, we have

1
E(fnsﬂln»ﬁZn) :EA ‘an —g|2dx

a

+§/§; (fn _ﬂln)z(fn _ﬁZn)zdx + yJ(fn) < C?

where C > 0 is a constant. Therefore, we have that J(f,) is
uniformly bounded. Meanwhile, a; < f, < a, implies that
[full1(@) is uniformly bounded. Hence, we get that {f,}
is uniformly bounded in BV(Q). By using the compactness
property of BV space with to weak * topology, up to a
subsequence also denoted by {f,}, there exists a function
f+« € BV(Q) which satisfies a; < f, < a, such that

fn = f.strongly in L'(Q),
fn—=fe ae. xeQ,

Df, = Df,in the sense of measure.

Then by the lower semicontinuity of L? norm and TV, we get

z / |Hf, — g|*dx < lim inf/ |Hf, — g|*dx, 4)
n—oo
Fig. 1 The binary regularizers. The red solid line shows our double- Q Q
well regularizer ¢4 (x), the blue dotted line shows the regularizer ¢, (x)
in Ref. 20, and the magenta dashed line shows the regularizer ¢3(x) J(f,) <lim infJ(f,). 5)
in Ref. 21. n—oo
Journal of Electronic Imaging 033043-2 May/Jun 2018 « Vol. 27(3)
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On the other hand, we can derive from the energy model
Eq. (3) that the sequences {f;,} and {B,,} satisfy the
following first-order optimal conditions:

A(fn _ﬂln)(fn _ﬁZn)zd-x - 0»

/Q(fn _ﬂZn)(fn _ﬁln)zdx =0.

The solution is given as

_ fgfn(fn - ﬁ2n>2dx
fQ (fn _ﬂZn)zdx ’

_ fgfn(fn _ﬁln)zdx

‘BI" B fQ(fn_ﬂln)2dx ’

ﬁ2n

Itis easy to see that a; < f3;, < a,, i = 1,2. Hence up to sub-
sequences, also denoted by {f,,} and {f,,}, there exist 5,
and p,, such that

Pin = Prs € [ay, aa), Pon = P € [ay. ay).

Then (fn _ﬂln)z(fn _ﬂZn)z - (f* _ﬁl*)z(f* _ﬁZ*)z a.c.

x € Q. By the Fotou lemma, we get

[ o= ps. s

n—oo

<lim inf A (= Buu)(f — o). ©)

Summing up Egs. (4)—(6), we get
E(fs, Bres o) Slil;l_}gonfE(fn) = inf E(f). (7

Hence (f., f1.., B»,) must be a minimizer of the optimiza-
tion Eq. (3) satisfying f, € BV(Q) and a; < f, < a,. This
completes the proof.

It should be noted that in Theorem 1, we assume
f € |ay,a,]. The bounded condition is often satisfied in
the practical problems. Hence, this assumption can be
removed in the proposed model and the corresponding
numerical scheme.

3 Algorithm

The proposed minimization Eq. (3) is difficult to solve
directly since it is nonconvex, nonsmooth, and contains
a fourth-order polynomial. In order to solve it efficiently,
we use the popular operator splitting scheme and the ASB
method. It has been proved in Ref. 24 that ASB is equivalent
to the classical alternating direction method of multipliers.

Note that in the numerical implementation, the TV of f is
equivalent to the L' norm of the gradient of f, that is,
J(f) = |IVSf]l;- Then we can rewrite the proposed model
Eq. (3) as

.1
min S |IHf - gl +g/ﬂ(f—ﬂl)z(f—ﬁz)zdx+y||Vf||l.
®)

First, we introduce three auxiliary variables and rewrite
model Eq. (8) as the following equivalent formulation with
constraints:
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o1
in S1HF ol +5 [ (=g il
st. f=u, f=v, Vf=w. ©)

Following the framework of ASB, we define the function

L(f,P1,Prsu, v, w) as

oo {é|Hf—g||%+;fg<u—m>2<v—ﬁ2>2dx+y||w||1 }
S —ut b3+~ ot el 35V —wdl [
(10)

where b, ¢, d are the Lagrangian multipliers and
6; (i=1, 2, 3) are the penalty parameters.”” In fact,
L(f, By, Po,u,v,w) is equivalent to the augmented
Lagrangian of the original constrained Eq. (9). Then the
ASB method for the minimization Eq. (9) is given by the
following iteration scheme:

! = arg mfin L(f,B5, B5, uk, vk, wh), (11)
Pyt = arg min L(F By, B b o, wh), (12)
ﬂlzcﬂ =arg I%inﬁ(fk+l7ﬁ]f+lvﬂ2’ uk, Uk, Wk), (13)
W+ — arg muinﬂ(karl,ﬁll(H, KL ok, wh), (14)
phtl = arg mgnﬁ(fkﬂ,ﬂ]fﬂ, §+1,uk+1, v,wk), (15)
Wkt = arg mwinﬁ(ka,ﬂ]f“,ﬂ]z‘“, WL T ) (16)

In the following, we give the solutions of Egs. (11)—(16).
The first subproblem corresponds to the following optimiza-
tion problem:

o1 o
arg min > |[Hf = g3 + 5|1 - u* + b3
o O
+ I = o KR VS =+ . a7

The minimizer can be obtained by equivalently solving
a linear system

(HTH + 61 + 0,1 +o3VV)f
= H"g+ o, (uk — b*) + 6, (v* — c*) + o3 VT (WK — d*).
(18)

Note that K, V have block circulant with circulant blocks
(BCCB) structure when the periodic boundary conditions are
used. We know that the computations with BCCB matrices
can be very efficient using fast Fourier transforms (FFTs).
Let F denote the FFT. We have

May/Jun 2018 « Vol. 27(3)
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fhr = }——1{-7:[HT9 + 01 (uf = b*) + 0 (v* = *) + o3 (WF - dk)]}' (19)

F(HTH+O'11+62]+O'3VTV)

As for 1 and f,, we have

1 = arg min 5 / (= Br)*(v* = B5)?dx (20)
A 2 Ja
and
K1 = arg min g/ (uk — B2 (0F = B,)2dx. (1)
B 2 Ja

Taking the derivatives with respect to f; and f,, respec-
tively, and setting the results to be zero, we get

a A (u = Br)(v* = B5)* =0, (22)

and

a A (k=g (k= o) = 0. (23)
So we have

and

[
o fg k k ﬁk+1)2dx

2 Jo (k= FF 2y 25)
For u and v, we have
W = arg mjn g/g (u — B2 (0k — BEH1)2dx
+ LA — w53 (26)
and
S mvm g/g (k1 — )2 (p — 24y
+ 2 - @7
So the minimizers #**! and v*! can be easily obtained as

U — api ! (vF = A5 + oy (f4HT + bF)
(Z(’Uk _ﬂ§+l)2 s

(28)

and

aﬂlzcﬂ(uk“ _ﬂllcﬂ)z + Gz(fk+] 4 ck)
a(ukt! _ﬂllc+1)2 to

ST 29)

Algorithm 1 Binary image deblurring with automatic binary value estimation.

® Initialization: 1 =g, f2=0,3=0, W’ =g, VO =g, w0 =VF, b°=0,¢c°=0,d° =0

®*Fork=0,1,2,...,

bk) + 62(Vk - Ck) + 63(Wk -

repeat until stopping criterion is reached

fk+1 :f_1 {f[HTg+U1(Uk—

F(HTH + 611 + 651 +63V'V)

o UH(VF = pE)Pdx

ﬂk+1 —
1 Jo (V€= p5)2dx °
ﬂk+1 _ fg Vk(uk _ﬂﬁ(+1 )de
2 ol =g Rdx
e aﬂﬁ‘*‘(vk ﬁk+1) + o4 (fk+1 + bk)
a(vk - p5)% +
it aﬂ12<+1(uk+1 _ﬁ4<+1 )2 4 02(fk+1 + Ck)

),

a(uk+1 —/5:(“)2 +o
Wkt = S(Vf"” + d",y/as),
bRt = pk Rt _ ket
okl = ok 4 fkt1 _ kit
adk+t1 = gk + Vk+1 — wk+1,

° OUtpUt fk+1, ﬂl1(+17 ﬂ12(+1

’
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As for w, we have
Wi = arg miny|wl + S VAT —w G G0)

The minimizer is given by the following soft shrinkage
equation:

W = SV + db v o), @)
where the soft shrinkage operator is defined as
S(t,7) == max(|7| — 7, 0)sign(z)
) 1
= arg msmr||s||1 +§|\s—t|\%. (32)

The updating scheme of the Lagrangian multipliers can be
written specifically as

bk+1 — bk +fk+l _ uk+1’
okl = ok _|_fk+1 _ UkJrl’

dRHl = gk 4 VT ket 33)
The final numerical scheme for the proposed model is
summarized in Algorithm 1.

4 Numerical Results

In this section, we give some numerical tests to illustrate
the effectiveness of the proposed method for binary image
deblurring. We compare the proposed method with some
existing deblurring methods including the classical TV
method in Ref. 26, the /) regularized intensity and gradient
prior method (/y) in Ref. 19, the alternating minimization
method (AM) in Ref. 20, and the soft rounding-based
method (SR) in Ref. 21. In order to have fair comparisons
in all tests, we adjust parameters and report the best overall
performance for the five methods.

We use the stopping criterion when the maximum number
of allowed outer iterations N = 500 has been carried out
or the relative differences between consecutive iterates

Table 1 Test on “barcode” image: estimation capabilities of {1, f2}.

Noise Blur True = {0, 1} True = {-1, 1}
1% Gauss {0.0000, 1.0000} {~1.0014, 1.0009}
Defocus {0.0000, 1.0000} {~1.0015, 1.0013}
Motion {0.0000, 1.0000} {~0.9996, 0.9996}
2% Gauss {0.0000, 1.0000} {~1.0002, 1.0015}
Defocus {~0.0008, 1.0002} {~1.0008, 1.0011}
Motion {0.0000, 0.9999} {~0.9994, 0.9994}
3% Gauss {0.0000, 0.9995} {~1.0007, 0.9967}
Defocus {0.0000, 0.9995} {~1.0005, 0.9978}
Motion {0.0001, 0.9997} {~1.0000, 0.9971}
4% Gauss {0.0001, 0.9996} {~1.0003, 1.0023}
Defocus {0.0002, 0.9999} {~1.0001, 1.0013}
Motion {0.0002, 0.9996} {~0.9986, 0.9987}
5% Gauss {0.0002, 0.9991} {~1.0000, 1.0020}
Defocus {~0.0006, 0.9995} {~0.9999, 1.0008}
Motion {0.0003, 0.9994} {~0.9982, 0.9983}
6% Gauss {0.0001, 0.9988} {~0.9999, 1.0017}
Defocus {~0.0008, 0.9998} {~0.9991, 1.0007}
Motion {0.0001, 0.9994} {~0.9979, 0.9983}

In the iteration process, we increase the parameter a to

two times every 30 iterations for speeding up convergence.

L2 3, satisfy In the experiments, we apply three kinds of commonly used
PSFs generated by the MATLAB routines: (i) fspecial

||f’<Jrl _fk||2 s (“Gaussian,’11,5), the 11 X 11 Gaussian blur with standard
[ fk+l I <107 deviation 5; (ii) fspecial(“disk,”5), the out-of-focus (defocus)

blur with size 11 x 11; (iii) fspecial(“motion,”7,45), the

that, using a Bregman iteration technique,
* unconstrained problems of the form

= min o) + £ RFu -
fk-H — fk ¥ f _ Rf‘ltkﬂ.

128
192
5
320
384
448

problem that we wish to solve using the split
1t the regularization term that we are using
Several authors have observed that superio
V and Besov regularizers is used. Following

(b) () (d)

Fig. 2 Test images. (a) Barcode, (b) text, (c) QR code, and (d) ruler.

(@)
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motion blur with size 7 X 7. To evaluate the quality of the
restoration results quantitatively, we use the peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM).

binary image “barcode” in Fig. 2 are {0, 1} and {-1,1},
respectively. The estimated pixel values produced by the pro-
posed method are given under the three different blurs and

§ee Iie‘f‘. 2.7 for more details. Foui test i‘r‘n agei “barcode,” six noise levels in Table 1. The noise level is defined by Uj”z .
text,” “quick response (QR) code,” and “ruler” are shown . #2111
in Fig. 2. It is easy to see from the table that our method has a strong

In the first test, we show the estimation capabilities of f;
and f, and the convergence behavior of the proposed
method. In this test, we compute $; and f, using the pro-
posed method when the true pixel values {f;,f,} of the

binary value estimation ability for 1% to 6% noise levels.
Especially, we can estimate the values exactly under the
1% noise level when the true pixel values are {0, 1}.
In Fig. 3, we plot the numerical convergence results of

15 15 15
19— 1) — 1~ —
o5t | sl Sl os A
‘ —a)| —a| —5,
0f- 0f 0.
05 05 05
0 100 200 0 100 200 300 0 100 200 300 400
Iteration Iteration Iteration
(a) (b) ()
2 2 2
1~ 1 11—
..... ,3 _ﬁ _'@
0 oo oo !
—B, —5, _'82
bk 1 , 1 F
2 " " " 2 " " " " ~
0 100 200 300 0 100 200 300 400 0 100 200 300 400 500
lteration Iteration Iteration
(d) (e) (f)

Fig. 3 Convergence behavior of #; and f,. (a) Gauss, 1% noise, (b) defocus, 2% noise, (c) motion,
3% noise, (d) Gauss, 4% noise, (e) defocus, 5% noise, and (f) motion, 6% noise.

50 60
40
40 50
€ % £ 30 40
n 7 7]
o o 0.30
20
10 10
0 100 200 100 200 300 0 100 200 300 400
Iteration Iteration Iteration
(a) (b) (c)
40 35 50
30 40
130 x 25 o
& & %30
o
%20 =20
15 20
10 10 10
0 100 200 300 0 100 200 300 400 0 100 200 300 400 500
Iteration Iteration Iteration
(d) (e) (f)

Fig. 4 Convergence behavior of the estimated image. (a) Gauss, 1% noise, (b) defocus, 2% noise,
(c) motion, 3% noise, (d) Gauss, 4% noise, (e) defocus, 5% noise, and (f) motion, 6% noise.
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the binary pixel values {f;,,} for 1% to 6% noise levels.
The true pixel values of the first row in Fig. 3 are 0 and 1
while the true pixel values of the second row are —1 and 1.
As can be seen from Fig. 3, the iteration sequences about the
estimated pixel values are convergent. To show the conver-
gence behavior of our method for binary image deblurring,
we report the PSNR values of the restored images for each
iteration in Fig. 4. It is not difficult to see from the figure that
the proposed method is numerically convergent.

In the second test, we compare the restoration results by
TV, Iy, and the proposed method when the pixel values of the
binary image are unknown. In Table 2, we give the PSNR
and SSIM results for TV, [, and the proposed method.
Note that in Table 2 the best results are marked in bold.
From the table, we know that our method behaves much bet-
ter in terms of PSNR and SSIM. We show the resorted binary
images for “text” under the Gaussian blur and 1% noise level
in Fig. 5 while the motion blur and 6% noise level in Fig. 6.
It is not difficult to see from the visual quality of restored
images in the figures that the proposed method is better
than the other methods. See the marked rectangles for a bet-
ter visual comparison.

In the third test, we compare the restoration results when
the pixel values of the binary images are known. The pixel
values of the two images “QR barcode” and “tuler” are
known to be 16 and 224. In Table 3, we report the PSNR
and SSIM values by AM, SR, and the proposed method
under three different blurs and 1% to 6% noise levels for
“QR code” and “ruler” images, respectively. We observe
from Table 3 that the PSNR and SSIM values obtained by

Table 2 Test on “text” image: comparison of the performance for
unknown binary pixel values.

B g & B ot langw,  {hint, using o Bregman iteration techniqur,
R T T R M Ry “unrnostrained problews of the form

~” .:ua.;w. M (1 = minJi) + EIRFu— 2

[t ST /m:f“rf—ﬂf' .
R probleny that we wish to &
» e i the rrgulsrization term
T s L Several authors huve obs
Nl D o 'V and Besov regularizers
(a) (b)

that, using a Bregman iteration techuique, that, using a Bregman iteration technique,
*unroustrained prohlans of the farm - " uneonstrained problems of the form

H_ mjﬂ.](u) + %"H.F'H -,

- 4 PR Dhlﬂm

= min Ju) + 5RFu 1
fk+1:fk+f_R}',

probleny that we wish to
1t the rpgularization term

flle 'r Several authors have obs

'V and Besov regularizers

problen] that we wish to s
1t the rreulmization term:
Several authors have ol

Y und Besav regulrrizers

(c) (d)

Fig. 5 Restoration results for unknown binary pixel values (Gauss,
1% noise). (a) Degraded, (b) TV,2 (c) /o,'® and (d) ours.

the proposed method are the highest among the three meth-
ods. Especially, under the Gaussian and motion blurs with
1% and 3% noise levels, respectively, our method recovers
the original image “QR code” exactly. In Figs. 7 and 8, we
display the restoration results when AM, SR, and the

that, wsing o Progman eration technie, that, using a Bregman iteration technique,

Blur Gauss Defocus Motion ! b ;
uneonsieained problems of the form " unconstrained problems of the form
Noise 1% 2% 3%
o e i /() 4 fWa -, WP i J(u) + £ |RFu - 4
PSNR TV 11.43 14.40 20.14 u 2 | -
Misf o/ - RF1 TR T - RA
I 11.99 17.30 27.14 / |
problem that we wish to @._' m problem that we wish to o rn ] [I
Ours 16.37 25.99 45.23 it the regnlarization berm™ 1t the regularization t.erm‘
Beveral anthors have ‘ Several authors bave obs¢ u
SSIiM TV 0.8433 0.7750 0.8828 "V and Besow reglarioers | 'V and Besov regularizers |
o) g ‘
o 0.8937 0.9641 0.9861 (@) (b)
Ours 0.9529 0.9914 0.9880 that, using a Bregman iteration technique, that, using a Bregman iteration technique,
“unconstrained problems of the form “unconstrained problems of the form
Noise 4% 5% 6%
uk“J(u)#—;uRfu—fﬂé, L i)+ EjRE—
PSNR TV 9.31 10.26 15.33 Ei u [ i1 [
PRy P
Io*® 9.70 10.42 20.67
0 problem that we wish to s, m]ﬂ problem that we wish to S— m]]]
Ours 10.13 1153 34.84 1t the regularization term| ™ 1t the regularization term[—
Several authors have obse U | Several authors have obsg u
SSIM TV 0.7826 0.8118 0.9772 'V and Besov regularizers | 'V and Besov regularizers |
o 0.7820 0.7977 0.9813 ©) (d)
Ours 0.7826 0.8246 0.9995 Fig. 6 Restoration results for unknown binary pixel values (motion,
6% noise). (a) Degraded, (b) TV,% (c) /o,'® and (d) ours.
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Table 3 Test on “QR code” and “ruler” images: comparison of the
performance for known binary pixel values.

Image Blur Gauss Defocus Motion
Noise 1% 2% 3%

QR code PSNR AMZ 37.38 33.60 49.93
SR?! 45.16 39.93 inf
Ours inf 42.94 inf

AMZ 0.9670 0.9945 0.9999
SSIM SR*! 0.9999 0.9989 1.0000

Ours 1.0000 0.9996 1.0000

Ruler PSNR  AMZ 25.30 17.64 27.67
SR?*' 27.41 18.82 28.12
Ours 27.68 19.29 30.97

AMZ 0.9871 0.9245 0.9931

SSIM R2! 474 41 Fig. 7 Restoration results for known binary pixel values (defocus
S 0.9936 0.9 0.99 2% noise). (a) Degraded, (b) AM,% (c) SR,?' and (d) ours.

Ours 0.9937 0.9539 0.9966

Noise 4% 5% 6% ,
QRcode PSNR  AM® 23.14 25.21 30.54 P e
mlj mE : 125LJ i
SR*! 24.87 25.27 32.28 " nEc— IoEEE
Ours 26,61 28.03  36.32 I T fefidelitadityd [ T T il
- r " [ 50 1 ; N
AMZ 0.9542 0.9670 0.9917 [ & & I !
| = = e
SSIM SR?! 0.9765 0.9735 0.9946 i EEEEEEEEEEEE
[ B B s sessssssssasll = —— —— —— — T
Ours 0.9766 0.9845 0.9980 (a) (b)
Ruler PSNR  AM?® 13.75 13.69 17.19 HREHEC B i EORET
T T i 64 [ ; 64Nl
SR*! 14.15 13.93 17.38 ‘ : | ] I
! = 1251 12581
A = EEE B o 1 = 1
Ours 1461 14.15 19.58 2R ! T ]
AM® 06559 07343  0.8909 ' Sty [ eutn
20 R0
SSIM - gRe! 07963 07353  0.8942 EEaREEaEEEEas PEEEAREEaRaa
Ours  0.8066 07478  0.9535 ‘ B s
Note: The best results are marked in bold. (C) (d)
proposed method are applied to the binary image deblurring Fig. 8 Restoration results for known binary pixel values (motion,

problem. We show the restoration images of “QR code” 3% noise). (a) Degraded, (b) AM,** (c) SR,*" and (d) ours.

under the defocus blur and 2% noise level in Figs. 7(b)-7(d)
while the restoration images of “ruler” under the motion

blur and 3% noise level in Figs. 8(b)-8(d). After a visual 5 Conclusion

inspection of the restored images, it is easy to check that In conclusion, we propose a TV and binary constraint-based
the proposed approach yields better results than the AM and variational method with automatic binary value estimation
SR methods. for binary image deblurring. The numerical experiments
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on binary images demonstrate the effectiveness of the pro-
posed method. In future work, we will consider the conver-
gence property of the related algorithms for the nonconvex
optimization problem. Moreover, we will extend the pro-
posed method to deblur pattern images which takes more
than two pixel values.
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