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Abstract: Colourisation is a process of adding colour to greyscale images. In this study, the authors propose two new
colourisation models based on non-local total variation regularisation in the chromaticity and brightness (CB) colour space and
the YIQ colour space. Lagrange multiplier method is used to handle the sphere constraint of chromaticity in the CB colour
space. By introducing an extra variable and using the dual version of non-local total variation, they split the proposed
colourisation problems into two subproblems with closed-form solutions and get two iterative algorithms. Experimental results
and comparisons demonstrate that the advantage of the proposed methods is that they can preserve the colour edges better
than the closely related existing methods, especially the total variation methods.

1 Introduction
Colourisation is an art of adding colour to grey images or movies.
This problem was firstly considered by Fornasier in [1], who insists
on recovering paintings in an Italian church which was destroyed
in World War II. A major difficulty of colourisation lies in the fact
that colourisation may not have the ‘correct’ answers since the grey
image only has one-dimensional (1D) (luminance or intensity)
while the colour image involves 3D pixel values. Hence, human
interaction may play an important role in the colourisation process
which is time consuming and expensive. In recent years, various
methods are proposed to solve this problem, which are mainly
based on colour transfer, motion estimation, colour prediction,
probabilistic relaxation, segmentation, chrominance blending and
variational model based methods, see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
for more details. In this paper, we focus on variational model based
methods.

Lagodzinski and Smolka in [12] present a colourisation method
which uses the morphological distance transformation and image
structures to propagate colour within the greyscale image. Krishnan
and Szeliski [13] propose multigrid and multilevel preconditioners
to solve image colourisation problems. Uruma et al. [14] propose
an image colourisation algorithm based on norm minimisation of
the mixed l0/l1, and they assume that the difference of colour values
between neighbour pixels is given as a monotonically increasing
function of the difference of grey values between neighbour pixels.
Lee et al. [15] formulate the colourisation-based compression
problem into an optimisation problem by constructing the
colourisation matrix in a multiscale manner. Mishiba and
Yoshitome [16] propose a colourisation method by constructing a
matrix with high compression efficiency and using optimisation for
the colourisation-based coding. Pang et al. [17] propose a hybrid
scheme that combines both the example-based colourisation and
the scribble-based colourisation algorithms. Hua et al. [18] propose
an edge-aware gradient domain optimisation framework filtering
by local propagation, which can be used in image colourisation.

Levin et al. [9] present a colourisation method in the YIQ
colour space which requires neither region tracking nor precise
image segmentation. Their basic assumption is that neighbouring
pixels in an image with the similar intensities should have the
similar colour. Based on this assumption, the user just needs to
annotate the image with a few colour scribbles. This method can be
used not only in a still image but also image sequences. It is an
effective interactive colourisation method in many cases.

Kang and March [10] propose two variational models for image
colourisation in the chromaticity and brightness (CB) colour space.
The chromaticity component lives on the 2D sphere. To handle the
sphere constraint, quadratic penalisation method is adopted to
approximate the original problem. The first model is total variation
(TV) based which fails in colourisation images with many details.
The second model is a modified version of the first model via
weighted harmonic map which gives better results than their first
model.

Li et al. [19] also consider the TV-based colourisation model
with sphere constraint in the CB colour space. Different from [10],
they introduce the Lagrange multiplier method to handle the sphere
constraint which ensures that the chromaticity exactly lives on the
sphere. By adding a new variable and using the dual method, they
derive an approximate problem in which each subproblem has a
closed-form solution.

However, the above mentioned TV or harmonic map based
methods in [10, 19] introduce a weight function g to control the
speed of colour diffusion, where g is determined by the gradient of
the image. In the weak edge areas, g is relatively large. Hence, the
colour is easy to diffuse across the edges such that the colour is
mixed. To overcome this drawback, we propose to use non-local
TV (NLTV) in this work. Instead of g, the non-local weight is used
to control the diffusion speed which is determined by the known
luminance channel. Experimental results show that the edges of the
colour can be better preserved by the proposed method than the TV
based methods.

This paper is organised as follows. In Section 2, we introduce
the basic conceptions about the CB colour space, the YIQ colour
space and NLTV regularisation. In Section 3, we propose the first
colourisation method in the CB colour space and derive the
iterative algorithm. In Section 4, we propose the second
colourisation method in YIQ space and derive the iterative
algorithm. In Section 5, we give the numerical experiments and
comparisons. Finally, we conclude the paper in Section 6.

2 Preliminaries
In this section, we briefly give the conceptions of the CB colour
space, the YIQ colour space [20] and the NLTV regularisation
method introduced in [21].

IET Image Process.
© The Institution of Engineering and Technology 2017

1



2.1 CB and YIQ colour spaces

A colour space is a specific organisation of colours. Colour images
can be represented in various colour spaces [20]. The typical linear
colour models include the red, green and blue (RGB) colour space
which is the most widely used; the cyan, magenta, yellow and
black (CMYK) colour space which is used in printing; the
luminance and two colour difference channels separated colour
spaces YCbCr and YIQ, which are widely used in standard colour
TV broadcasting and digital video, respectively. Non-linear colour
spaces include the hue, saturation, and value (HSV) colour space
and the CB colour space, which are close to human colour
perception.

In this paper, we use the CB and YIQ colour spaces.
Mathematically, assume Ω ⊂ ℝ2 is the image domain,
f = (r, g, b):Ω → ℝ3 is the given colour image in RGB colour
space. Then f can be transformed into the CB colour space as

B = | f | , C = f /B

where | ⋅ | is the Euclidean norm, B and C are the brightness and
chromaticity components, respectively. Note that the brightness
component B is a greyscale image, and the chromaticity
component stores the colour information which takes values on the
unit sphere S2 (i.e. |C | = 1). The chromaticity component can be
regarded as a three-channel image. The linear transform from the
RGB colour space to the YIQ colour space is

Y
I
Q

=
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

R
G
B

where Y contains the luminance information, I denotes the orange–
blue colour change and Q denotes the purple–green colour change.

In Fig. 1, we display one of our test image Nemo in the RGB,
CB and YIQ colour spaces, respectively. As can be seen from
Figs. 1c and d, the B channel and Y channel are similar which
contain the brightness/luminance information. In Fig. 1c, the
chromaticity channel C is displayed as a colour image since it
contains three channels. Both I and Q are single channels which
are displayed as greyscale images in Figs. 1e and f, respectively.
We remark that the single channel images are scaled into [0, 255]

for better visual effect. The motivation of this paper is to use the
brightness/luminance information contained in B and Y to guide
the image colourisation process in the CB and YIQ colour spaces,
respectively. 

2.2 NLTV regularisation

Assume that u:Ω ⊂ ℝ2 → ℝ is a function. The non-local gradient
of u is defined for the pair of points (x, y) ∈ Ω × Ω as

∇ωu(x, y) = (u(y) − u(x)) ω(x, y):Ω × Ω → ℝ,

where ω:Ω × Ω → ℝ+ is the weight between the points x, y and ∇ω
denotes the non-local gradient. The inner product between two
non-local vectors p1, p2:Ω × Ω → ℝ at point x ∈ Ω is defined as

⟨p1, p2⟩(x) = ∫
Ω

p1(x, y)p2(x, y) dy:Ω → ℝ

which induces the norm of a non-local vector p:Ω × Ω → ℝ at
point x ∈ Ω as follows:

|p | (x) = ∫
Ω

p(x, y)2 dy:Ω → ℝ+ .

Then the norm of the non-local gradient of a function u:Ω → ℝ at
x ∈ Ω is given by

|∇ωu | (x) = ∫
Ω

(u(y) − u(x))2ω(x, y) dy:Ω → ℝ+ .

The non-local divergence operator can be defined by the standard
adjoint relation with the non-local gradient

⟨∇ωu, p⟩ = − ⟨u, divω p⟩,

∀u:Ω → ℝ, ∀p:Ω × Ω → ℝ, which defines the non-local
divergence of the non-local vector p:Ω × Ω → ℝ at x ∈ Ω:

Fig. 1  Representation of Nemo image in different colour spaces
(a) Original image in RGB colour space, (b), (c) Chromaticity channel C and the brightness channel B, respectively, in the CB colour space, (d)–(f) Luminance channel Y, and the
colour difference channels I and Q, in the YIQ colour space
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)
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divω p(x) = ∫
Ω

(p(x, y) − p(y, x)) ω(x, y) dy:Ω → ℝ .

See [21, 22] for more details.
For the image denoising problem, Gilboa and Osher [21]

propose to use NLTV regularisation (defined as ∫Ω |∇ωu|) in the
following model:

inf
u

F(u) = ∫
Ω

|∇ωu | + λ
2(u − u0)2 dx, (1)

where u0 is the given noisy image, u is the desired clean image, and
λ > 0 is a balance parameter. In image denoising, the NLTV model
greatly outperforms the TV model in the aspect of fine structure
preserving. NLTV regularisation is generalised to image
deconvolution, compressed sensing and wavelet inpainting [23,
24].

In order to take use of the advantage of NLTV, we propose to
use NLTV as a regularisation term in the image colourisation
problem. Moreover, it is reasonable to consider NLTV in image
colourisation since similar patches are likely to have similar
colours.

3 Proposed method in the CB colour space
In this section, we propose the first variational model for image
colourisation based on NLTV in the CB colour space. Then an
iterative algorithm is derived based on the Lagrange multiplier
method and the operator splitting technique.

Let D ⊂ Ω be the colourisation domain where the colour
information is missing, and Dc = Ω∖D be the complement of Ω
where the colour is given.

3.1 Model in the CB colour space

We assume that the brightness component B is known. Image
colourisation in the CB colour space aims to recover the missing
chromaticity information C in the colour missing domain D. We
propose the following constrained model for image colourisation:

inf
|C | = 1

E(C) = ∫
Ω

|∇ωC | dx + 1
2∫Ω

λ
^ |C − C0 |2 dx, (2)

where

λ
^ = λ, x ∈ Dc

0, x ∈ D
(3)

In the model (2), C denotes the chromaticity component, C0 is the
given chromaticity, λ > 0 is a given parameter, ω(x, y) is the non-
local weight, and |∇ωC | := ∑k = 1

3 |∇ωCk| where Ck is the kth
channel of the chromaticity. Note that C0 is only given in Dc. For
the convenience of computation, we extend the values of C0 to the
colour missing region D as (1/ 3, 1/ 3, 1/ 3) in order to satisfy
the sphere constraint.

The weight ω(x, y) plays an important role in the proposed
method. Different from the NLTV denoising method where w is
decided by the noisy image [23], in our method we use the known
brightness channel B to define the weight. We denote Px(B) as the
patch of size (2m + 1) × (2m + 1) centred at a pixel x ∈ Ω in the
brightness image B

Px(B)(t) = B(x + t), t = −m, …, m 2,

where m is the half patch size, t is the pixel position in the patch
and Px(B)(t) is the pixel value at position t in the patch. As a
variant method of [23], we define the weight between two points x
and y as a function of the patch distance in the B channel

ω(B)(x, y) = e−(( ∥ Px(B) − Py(B) ∥F
2 )/2h2), (4)

where h is a filtering parameter and ∥ ⋅ ∥F denotes the Frobenius
norm of a matrix. To reduce the computational complexity, we
search for the similar patches of Px(B) only in the non-local
window centred at x with window size (2s + 1) × (2s + 1) where s 
> m.

Let us give some explanations of the proposed model (2). The
first term is the NLTV regularisation term which requires that the
recovered channel C should be smooth with a small NLTV value.
In other words, it requires that the centre pixels of similar patches
have similar chromaticity, which seems reasonable. The second
term is the data-fitting term which requires that the chromaticity
component C should be close to C0 in Dc. The two terms are
balanced by the parameter λ. Remark that the proposed model (2)
is different from the model (1) in three aspects. Firstly, in (1) the
fidelity parameter is a scalar, while in our model it is a function
which indicates the area with colour. Secondly, the definition of
weight is essentially different since in (1) the noisy image is used
to calculate the distance while in our model the known B channel is
used in the calculation. Thirdly, in our method C is constrained to
be on the sphere, i.e. |C | = 1.

3.2 Algorithm in the CB colour space

In this section, we derive the algorithm of the proposed method. By
introducing an extra variable C

~
, we approximate the problem (1)

by the following problem:

inf
C, |C~ | = 1

Eθ(C, C
~) = ∫

Ω
|∇ωC | dx + θ

2∫Ω
|C − C

~ |2 dx

+ 1
2∫Ω

λ
^(C~ − C0)2 dx

(5)

where θ is big enough to ensure that C
~
 is close to C. Then we use

the Lagrange multiplier method and relax the constraints in the
approximate problem (5) as

inf
C, C~, μ

Eθ(C, C~) = ∫
Ω

|∇ωC | dx + θ
2∫Ω

|C − C~ |2 dx

+ 1
2∫Ω

λ
^ (C~ − C0)

2 dx + 1
2∫Ω

μ( |C~ |2 − 1) dx
(6)

where μ(x) is the Lagrange multiplier at pixel x which corresponds
to the constraint |C~(x) | = 1.

The above unconstrained approximate problem (6) can be
decomposed into two subproblems

inf
C~, μ

θ
2∫Ω

|C − C~ |2 dx + 1
2∫Ω

λ
^ (C~ − C0)2 dx

+ 1
2∫Ω

μ( |C~ |2 − 1) dx
(7)

inf
C

∫
Ω

|∇ωC | dx + θ
2∫Ω

|C − C
~ |2 dx (8)

In the first subproblem (7), by taking the derivative of energy in (7)
with respect to C

~
 and setting the result to zero, we have

θ(C~ − C) + λ
^ (C~ − C0) + μC~ = 0. (9)

Multiplying (9) by vector C
~
 and using the constraint |C~ |2 = 1

yields

μ(x) = θ⟨C
~, C⟩ + λ

^⟨C
~, C0⟩ − θ − λ

^ (10)

where ⟨C
~(x), C(x)⟩ := ∑k = 1

3 C
~

k(x)Ck(x) denotes the inner product
of vectors in ℝ3. From (9) and (10), the solution of C

~
 is given by

the following formula:
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C
~ = θC + λ

^
C0

θ + λ
^ + μ

. (11)

For fixed C
~
, the second subproblem (8) is the NLTV denoising

problem for vector-valued images. In the following, we use the
dual version of NLTV to derive the numerical scheme for this
subproblem, which is a generalisation in the case of TV denoising
for greyscale image [25]. As shown by Chan et al. [26], the dual
version of the problem (8) about C is equivalent to the following
dual min–max problem:

inf
C

sup
|p | ≤ 1 ∫Ω

⟨∇ωC, p⟩ + θ
2 |C − C

~ |2 dx (12)

where ∇ωC, p = (p1, p2, p3):Ω × Ω → ℝ3 are non-local vectors.
According to the mini–max theorem in [27], the inf and sup can be
swapped here since the functional in (12) is convex in C and
concave in p. Hence we get that (12) is equivalent to

sup
|p | ≤ 1

inf
C

∫
Ω

⟨C, divω p⟩ + θ
2 |C − C

~ |2 dx, (13)

where the non-local divergence operator for vectors is defined as
divω p := (divω p1, divω p2, divω p3). The Euler–Lagrange equation
about C is

divω p + θ(C − C
~) = 0.

Then the solution of C is given by

C = C
~ − divω p/θ . (14)

Substituting (14) into (13), we get the following problem of p:

sup
|p | ≤ 1 ∫Ω

⟨θC
~, divω p⟩ − 1

2 |divω p |2 dx .

By the Lagrange multipliers method, the constrained problem is
changed to the following unconstrained problem:

sup ∫
Ω

⟨θC
~, divω p⟩ + α

2 ( | p |2 − 1) − 1
2 |divω p |2 dx .

The Euler–Lagrange equation about p is

−(∇ω(divω p − θC
~)) + αp = 0,

where either |α | > 0 and |p | = 1, or α = 0 and |p | < 1. In the latter
case, it holds that ∇ω(divω p − θC

~) = 0. Then, we have that in any
case

α = |∇ω(divω p − θC
~) | .

Choosing τ > 0 and letting p0 = 0, for any k > 0, we thus use the
following semi-implicit gradient descent algorithm of p:

pk + 1 = pk + τ∇ω(divω pk − θC
~)

1 + τ |∇ω(divω pk − θC
~)|

. (15)

Based on the formulas (10), (11), (14) and (15), we summarise the
proposed NLTV colourisation algorithm in the CB colour space in
Algorithm 1 (NLTV_CB for short). Note that in Algorithm 1, θ > 0
is a given parameter and kmax is the maximum iteration defined by
the user.
 
Algorithm 1: NLTV_CB colourisation algorithm

1. Initialisation: p0 = 0, τ = 0.5, C
~0 = C0, θ > 0;

2. Iteration: for k = 0, 1, 2, . . .

pk + 1 = pk + τ∇ω(divω pk − θC
~k)

1 + τ |∇ω(divω pk − θC
~k|

,

Ck + 1 = C
~k − divω pk + 1/θ,

μk + 1 = θ⟨C
~k, Ck + 1⟩ + λ

^⟨C
~k, C0⟩ − θ − λ

^,

C
~k + 1 = θCk + 1 + λ

^
C0

θ + λ
^ + μk + 1

,

3. Termination criterion: k > kmax.

4 Proposed method in the YIQ colour space
For image colourisation problem in the YIQ colour space, the
luminance channel Y is assumed to be known. Hence one need
only to recover the other two colour channels, namely, I and Q.
Note that the YIQ colour space is also used in [9, 28]. We make use
of the information of Y channel to guide the colourisation process
of I and Q channels.

Let C denotes the colour difference channel I or Q, C0 is the
given colour information in the I or Q channel and λ > 0 is a given
parameter. We propose the second model for image colourisation

inf
C

E(C) = ∫
Ω

|∇ωC | dx + 1
2∫Ω

λ
^ |C − C0 |2 dx, (16)

where the parameter λ
^
 is defined by (3) and the non-local weight ω

is defined as in (4) by replacing B with Y.
Remark that the model (16) is different from the model (2) in

the two aspects. Firstly, the model (16) is componentwise since I
and Q are processed separately. Secondly, the model (16) is
unconstrained. Hence solving the model (16) is easier than solving
the model (2).

By introducing an extra variable C
~
, we approximate the

problem (16) by the following problem:

inf
C, C~

∫
Ω

|∇ωC | dx + θ
2∫Ω

|C − C~ |2 dx + 1
2∫Ω

λ
^ (C~ − C0)2 dx (17)

where θ is big enough to ensure that C
~
 is close to C. Then C and C

~

can be solved by the alternating minimisation method.
For fixed C, it is easy to get the solution of C

~
:

C~ = θC + λ
^
C0

θ + λ
^ . (18)

For fixed C
~
, the subproblem for C is the standard NLTV denoising

problem

inf
C

∫
Ω

|∇ωC | dx + θ
2∫Ω

|C − C
~ |2 dx . (19)

The solution can be derived by a similar deduction as in Section 3.
Based on formulas (14), (15) and (18), we can summarise the
proposed NLTV colourisation algorithm in the YIQ colour space in
Algorithm 2 (NLTV_YIQ for short).
 
Algorithm 2: NLTV_YIQ colourisation algorithm

1. Initialisation: p0 = 0, τ = 0.5, C
~0 = C0, θ > 0;

2. Iteration: for k = 0, 1, 2, …

4 IET Image Process.
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pk + 1 = pk + τ∇ω(divω pk − θC
~k)

1 + τ |∇ω(divω pk − θC
~k)|

,

Ck + 1 = C
~k − divω pk + 1/θ,

C
~k + 1 = θCk + 1 + λ

^
C0

θ + λ
^ ,

3. Termination criterion: k > kmax.

5 Experiments and comparisons
In this section, we compare our methods with three closely related
methods including the optimisation based methods in [9] and the
TV based methods in [10, 19]. All the experiments are performed
under Windows 8 and MATLAB R2012a with Intel Core i7-4500
CPU@1.80 GHz and 8 GB memory. The test images are Nemo,
Goldy, Peppers, and Shirley as shown in Figs. 2a, 3a, 4a and 5a, in
which some colour scribbles are given. The maximum iteration
numbers of the methods in [10, 19] are set as 20,000 and 500,
respectively. For a fair comparison, the other parameters in each
method are tuned in order to get the optimal results for each image.
In our experiments, unless otherwise specified, the default setting
of parameters for our methods is

λ = 10000, m = 5, s = 10, h = 30−1, θ−1 = 0.05,
kmax = 1000.

Here λ is the fidelity parameter in (3), m is the patch window
radius, s is the search window radius, and h is the filtering
parameter in the non-local weight defined in (4). The parameter θ−1

controls the extent of NLTV regularisation in (8), or equivalently,
the diffusion speed. Generally, bigger θ−1 means faster
colourisation speed, however, bigger θ−1 also tends to result in
colour blending phenomena across the edges. Hence the choice of a
suitable θ is important.

In Figs. 2b–f, we display the numerical results on Nemo image
by different methods. For a detailed comparison, we enlarge the
white rectangle areas in the images in Figs. 6b–f. It can be seen that
in Figs. 2b, c and 6b, c, the methods in [9, 10] lead to colour
diffusion across the edges of Nemo's body such that the colour
blending phenomenon occurs in some regions. The result by the
method in [19] seems better, as shown in Fig. 2d. However, in the
enlarged region, as displayed in Fig. 6d, the colour blending
phenomenon also occurs along the white stripes on Nemo. By
contrast, the colourisation results of our methods are much clearer
than the others with almost no colour blending phenomenon, as
shown in Figs. 2e and f and the enlarged details shown in Figs. 6e
and f. 

Fig. 2  Colourisation results by different methods on Nemo image
(a) Marked image, (b) Result of [9], PSNR = 28.67 dB, (c) Result of [10], PSNR = 22.18 dB, (d) Result of [19], PSNR = 29.14 dB, (e) Result of the proposed method NLTV_CB,
PSNR = 30.20 dB (parameters: h = 40−1, θ−1 = 0.04), (f) Result of the proposed method NLTV_YIQ, PSNR = 32.46 dB (parameter: h = 40−1)
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)

 

Fig. 3  Colourisation results by different methods on Goldy image
(a) Marked image, (b) Result of [9], PSNR = 30.00 dB, (c) Result of [10], PSNR = 25.63 dB, (d) Result of [19], PSNR = 29.11 dB, (e) Result of the proposed method NLTV_CB,
PSNR = 30.30 dB (parameter: θ−1 = 0.03), (f) Result of the proposed method NLTV_YIQ, PSNR = 30.60 dB (parameter: θ−1 = 0.03)
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)
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Fig. 3 shows the results on Goldy image by different methods.
We can see that in the results by the methods in [9, 10, 19] the
colour blending phenomenon occurs. While in the results by the
proposed methods, the colour edges are better preserved than
others. In particular, the text area with ‘GOLDY’ is enlarged for
detail comparison in Fig. 7. It is obvious that the proposed methods
keep the letters much better than others. 

In Fig. 4, we display the colourisation results on Peppers image
by different methods. The colour blending effect can also be
observed in the results by the methods in [9, 10, 19]. The proposed
method can preserve the edges of colour better. In particular, in the
enlarged region as displayed in Fig. 8, it is obvious that the
colourisation results by methods in [9, 10, 19] are not reasonable
for the front pepper since it is expected to be in green colour. By
contrast, the results by the proposed methods are more reasonable
and satisfactory. 

Fig. 5 shows the colourisation results on Shirley image by
different methods. The colour blending effect is obvious in the
results by the methods in [9, 10]. The results of the other three
methods seem similar. However, by careful comparison of the
zoomed arm regions in Fig. 9, we find that our methods give more
satisfactory results in the shadow of the arm than others. 

By the visual comparison in Figs. 2–9, we can conclude that the
proposed methods can prevent the colour blending effect in the

process of colourisation and can preserve the edges of the colour
well especially in the slenderness areas. For quantitative
comparison, we use the peak signal-to-noise ratio (PSNR) index
for colour image as a measure, which is defined by

PSNR = 10log10
2552 ⋅ 3N

∑(i, j, k) |Xi jk − Yi jk|2
,

where (i, j) denotes the pixel location, k = 1,2,3 denotes the
channel, N is the total number of pixels, X is the ground truth
image, and Y is the computed result image. Since the ground truth
images of Nemo and Goldy are available, we can compare the
PSNR values of the result by each method for them. The PSNR
values are reported in Figs. 2 and 3. Among all the compared
methods, the method in [10] has the lowest PSNR values. The
methods in [9, 19] gain much higher PSNR values than the method
in [10]. The proposed methods outperform the others in terms of
PSNR values. Moreover, the proposed method NLTV_YIQ has
higher PSNR values than the proposed method NLTV_CB.

In Figs. 10, we display the intermediate results of our method
NLTV_CB on Nemo image. From the left to the right are the
brightness components, the initial chromaticity components with
marks and the colourised chromaticity components. In Fig. 10c, it

Fig. 4  Colourisation results by different methods on Peppers image
(a) Marked image, (b) Result of [9], (c) Result of [10], (d) Result of [19],
(e) Result of the proposed method NLTV_CB (parameter: h = 40−1),
(f) Result of the proposed method NLTV_YIQ

 

Fig. 5  Colourisation results by different methods on Shirley image
(a) Marked image, (b) Result of [9], (c) Result of [10], (d) Result of [19],
(e) Result of the proposed method NLTV_CB (parameters: m = 2, s = 3, h = 50−1, θ = 0.09),
(f) Result of the proposed method NLTV_YIQ (parameters: m = 1, s = 3, θ = 0.05)
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is obvious that the colour edges are well preserved by our method
NLTV_CB. 

In Figs. 11, we show the initial Y, I, Q channels and the
colourised I, Q channels by our method NLTV_YIQ for Nemo
image. From the results of I and Q channels in the second row, we
find that the proposed method can preserve the edges in the I and Q
channels well while diffusing the colour information. Therefore our
method can preserve the colour edges well 

To compare the computational efficiency, we take Nemo image
with size 264 × 324 as an example. The method in [9] needs no
iteration and it takes about 8 s to finish the colourisation process.
The other three methods are iterative methods and are more time
consuming. The method in [10] takes about 464 s for 20,000
iterations, the method in [19] takes about 13 s for 500 iterations,
the proposed method NLTV_CB takes about 162 s for 1000
iterations and the proposed method NLTV_YIQ takes about 77 s

Fig. 6  Enlarged rectangle regions of Figs. 2a–f, respectively
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)

 

Fig. 7  Enlarged rectangle regions of Figs. 3a–f, respectively
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)

 

Fig. 8  Enlarged rectangle regions of Figs. 4a–f, respectively
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Fig. 9  Enlarged rectangle regions of Figs. 5a–f, respectively
 

Fig. 10  Intermediate colourisation results of the proposed method NLTV_CB on Nemo image
(a) Given brightness components,
(b) Initial marked chromaticity components,
(c) Colourised chromaticity components by our method NLTV_CB
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)

 

Fig. 11  Intermediate colourisation results of the proposed method NLTV_YIQ on Nemo image
(a) Given Y channel, (b), (c) Initial I and Q channels of the marked images, respectively,
(e), (f) Colourised I and Q channels by our method NLTV_YIQ, respectively
(© 2018 IEEE. Reprinted, with permission, from L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," in IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1120-1129, May 2006. doi: 10.1109/TIP.2005.864231)
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for 1000 iterations. As a limitation, our method appears to be much
more time consuming than methods in [9, 19]. We remark that the
proposed algorithms can speed up by including some parallel
computing techniques. We leave it as our future work.

6 Conclusion
In this paper, we propose two new colourisation methods based on
NLTV in the CB colour space and YIQ colour space, respectively.
The non-local weight is computed by the known brightness/
luminance channel B or Y. The advantage of the proposed methods
is that they are good at preserving the edges of colour in the
process of colourisation. The proposed methods can be extended to
other colour spaces in which the luminance information and colour
information can be separated. The basic idea is using the luminance
channel to guide the interpolation of colour channels. In the future
work, we will consider other regularisation techniques in order to
enhance both the image colourisation quality and the
computational efficiency.
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