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Abstract: A variant of fuzzy c-means (FCM) clustering algorithm for image segmentation is provided. Unlike the L2-norm
distance in FCM, Lp with p ∈ 0, 1  norm is used to measure the distance of the pixel intensity to its cluster centre in the energy
functional. Moreover, local spatial information and colour information are incorporated into the model to enhance the robustness
to noise and outliers. The proposed algorithm is called fuzzy local information Lp (FLILp) clustering. To overcome the difficulty of
finding cluster centres, Lp-norm distance is approximated by weighted L2 distance. The advantages of FLILp are: (i) it is strongly
robust to noise and outliers, (ii) it is applied to the original image and (iii) it preserves image edges. Numerical examples and
comparisons of image segmentation on both synthetic and real images illustrate the outstanding performance and robustness of
the proposed method.

1 Introduction
Image segmentation is one of the most important topics in image
processing and computer vision. It aims to partition an image into
non-overlapped, consistent regions which are homogeneous with
respect to some characteristics such as intensity, colour or texture.
Various methods have been proposed in the literature for image
segmentation which can be mainly classified into five categories:
thresholding, clustering, edge detection, region extraction and
saliency detection, see [1–9] and references therein. In this paper,
we focus on clustering methods for image segmentation.

There are two major types of clustering methods: hard
clustering methods and fuzzy clustering methods [10–15]. In hard
clustering, each point of the data set belongs exclusively to one
cluster. By contrast, in fuzzy clustering, each point can be
simultaneously in several classes with some probability which is
represented by a fuzzy membership function. In many real
applications such as medical imaging and remote sensing imaging,
the acquired images usually have limited spatial resolution and low
contrast such that hard clustering may fail to identify clusters.
Hence, fuzzy clustering is more appropriate than hard clustering
for solving image segmentation problems.

One of the most popular fuzzy clustering methods is the fuzzy
c-means (FCM) clustering algorithm, which was introduced by
Dunn [11] and then developed by Bezdek [10, 16]. FCM is widely
used in data mining and image segmentation. The advantages of
FCM include a straightforward implementation, fairly robust
behaviour, applicability in multichannel data and the ability to
model uncertainty within the data [17]. FCM works well on most
noise-free images. However, a major disadvantage of FCM when
used in image segmentation is its extreme sensitivity to noise and
other imaging artefacts. The reason is that the clustering process of
FCM is totally decided by image intensity/colour information
without considering the spatial connection of pixels.

One natural approach to enhance the robustness of FCM in
image segmentation is to smooth the image before applying FCM.
However, it is very difficult to control the trade-off between
smoothing and clustering. Thus, many other approaches consider to
incorporate local spatial information into FCM to enhance the
segmentation accuracy (SA) [17–31]. In this paper, we focus on the
FCM variants which have the simple solution framework as FCM.
That is, the membership functions can be solved directly from the

energy minimisation problem in a similar way as FCM. In what
follows, we will briefly review those methods.

Pham [17, 28] generalised the FCM objective function to
include a spatial penalty term on the membership functions to
enforce the spatial smoothness, which is called the robust fuzzy C-
means algorithm.

Ahmed et al. [18] proposed FCM_S by modifying the objective
function of the standard FCM to compensate the intensity
inhomogeneity and allow the labelling of a pixel to be influenced
by the labels in its immediate neighbourhood.

To reduce the computational complexity of FCM_S, Chen and
Zhang [21] proposed two variants, FCM_S1 and FCM_S2, which
simplifies the neighbourhood term of the objective function of
FCM_S by introducing the extra mean-filtered image and median-
filtered image to replace the neighbourhood term of FCM_S.

Szilágyi et al. [30] proposed the enhanced fuzzy c-mean
(EnFCM) algorithm to accelerate the image segmentation process.
Firstly, a linearly weighted sum image is formed in advance from
both original image and its local neighbour average grey image.
Then EnFCM performs clustering on the grey-level histogram
instead of pixels in the summed image. Since the number of grey
levels is much smaller than the number of pixels, EnFCM is much
faster than FCM_S. Besides, the quality of image segmented by
EnFCM is comparable to that of FCM_S.

Cai et al. [20] proposed the fast generalised fuzzy c-means
(FGFCM) algorithm for fast and robust image segmentation.
FGFCM incorporates local spatial and grey information to form a
new image in advance. The clustering process is then performed on
the histogram of the new image. Furthermore, Cai et al. also
proposed two variants of FGFCM, FGFCM_S1 and FGFCM_S2,
by modifying the local similarity measure as mean and median.

More recently, Krinidis and Chatzis [24] proposed a robust
fuzzy local information c-means clustering algorithm (FLICM).
Specifically, the key ingredient of FLICM is the use of a fuzzy
local (both spatial and grey level) similarity measure, which is
aimed at guaranteeing noise insensitiveness and image detail
preservation. Thus FLICM has advantages such as noise immunity
and free of artificial parameters. However, the noise immunity of
FLICM is still limited, especially for high levels of noise.

In the aforementioned algorithms, L2-norm-based distance is
used in the objective functions. By contrast, Lp-norm (0 < p ≤ 1)-
based distance is rarely studied in fuzzy clustering algorithms [32–
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35]. In particular, the subproblem involving cluster centres is in
general difficult to solve. One of the most common methods is
bisection searching method point by point which is time
consuming. However, Lp-norm (p = 1)-based fidelity has shown to
be more robust to impulse noise, outliers and other artefacts than
its L2 counterpart especially in image restoration problems [36, 37].
The basic reason is that Lp-norm (p ≤ 1) induces higher sparsity
than L2-norm such that the former is able to provide a better
statistical description of noise and artefacts in images. In Fig. 1, we
display the functions of Lp with p = 2, 1, 0.5, 0.1, respectively. It is
obvious that Lp with p = 1, 0.5, 0.1 have higher sparsity than L2. So
far as we know, the local information has not been considered in
the existing Lp-norm (p ≠ 2)-based fuzzy clustering algorithms.
These are the motivations of us to consider Lp-norm distance and
incorporate local information into the fuzzy clustering process. 

In this paper, we propose a fuzzy clustering algorithm based on
local spatial/colour information of an image and Lp-norm distance,
abbreviated as FLILp, to further enhance segmentation
performance and robustness. Based on some approximation of the
energy function, the corresponding numerical algorithm can be
derived in a similar way as FCM. Namely, subproblems involving
the membership functions and class centres have closed-form
solutions. Experiments on synthetic grey images and real colour
images demonstrate the effectiveness of the proposed algorithm.

This paper is organised as follows: In Section 2, we review the
FCM clustering algorithm and its variants with spatial constraint,
including FCM_S1, FCM_S2, EnFCM, FGFCM, FGFCM_S1,
FGFCM_S2 and FLICM. Then we propose the new algorithm
FLILp in Section 3. The numerical experiments are displayed in
Section 4. The conclusion is given at Section 5.

2 Related methods
2.1 FCM

The objective function in a standard FCM [10] for partitioning a
dataset {xi}i = 1

N  into c clusters is given by

Jm = ∑
k = 1

c

∑
i = 1

N
uki

m ∥ xi − vk ∥2 (1)

where ∥ ⋅ ∥ denotes the Euclidean distance, {vk}k = 1
c  is the centres

of the clusters and the array uki = U represents a partition matrix
(or membership functions), U ∈ 𝒰, that is

𝒰 = uki ∈ 0, 1 ∑
k = 1

c
uki = 1 ∀i and ∑

i = 1

N
uki > 0 ∀k . (2)

The parameter m is a weighting exponent on each membership
function which determines the fuzziness of the resulting
classification.

2.2 FCM_S, FCM_S1 and FCM_S2

FCM_S [18] is a modification of FCM by introducing a term that
allows the labelling of a pixel to be influenced by the labels in its
immediate neighbourhood. The neighbourhood effect acts as a
regularise which enforces the piecewise homogeneity of the
solution. Such regularisation is useful in segmenting scans
corrupted by noise. The modified objective function of FCM_S is
as follows:

Jm = ∑
k = 1

c

∑
i = 1

N
uki

m ∥ xi − vk ∥2 + α
NR

∑
k = 1

c

∑
i = 1

N
uki

m

∑
r ∈ 𝒩i

∥ xr − vk ∥2
(3)

where xi is the grey-level value of the ith pixel, N is the total
number of pixels, vk represents the prototype value of the kth
cluster, uki represents the fuzzy membership of the ith pixel with
respect to cluster k, xr represents the neighbour of xi, 𝒩i stands for
the set of neighbours that exists in a window around xi and NR is
the cardinality of 𝒩i. The effect of neighbours term is controlled
by the weighted parameter α.

FCM_S1 and FCM_S2 [21] are variants of FCM_S, where the
neighbourhood term is simplified. The objective function is given
by

Jm = ∑
k = 1

c

∑
i = 1

N
uki

m ∥ xi − vk ∥2 + α ∑
k = 1

c

∑
r ∈ 𝒩i

uki
m ∥ xr − vk ∥2 (4)

where xr is the average (FCM_S1) or median (FCM_S2) of
neighbouring pixels lying within a window around xr. xr can be
computed in advance as mean-filtered image and median-filtered
image, respectively. Therefore the whole computational time is
reduced compared with FCM_S.

2.3 EnFCM

EnFCM [30] is proposed to accelerate FCM_S. Firstly, a new
image ξ is calculated in advance

ξi = 1
1 + α xi + α

NR
∑

j ∈ 𝒩i

x j .

Then the clustering is performed on the grey-level histogram of the
image ξ. The objective function of EnFCM is defined as

Jm = ∑
k = 1

c

∑
l = 1

M
γlukl

m(ξl − vk)
2

where M denotes the number of grey levels of image ξ, and γl is the
number of pixels having grey-level value equal to l. In other words,
EnFCM performs FCM in the 1D range of the image ξ. Since the
number of grey-levels M (M = 256 for 8 bit grey-level image) are
generally much smaller than the total number of pixels N, EnFCM
is computationally very efficient.

2.4 FGFCM, FGFCM_S1 and FGFCM_S2

FGFCM [20] is proposed to improve the clustering result and
facilitate the choice of parameter. A local similarity measure is
introduced in FGFCM as follows:

Fig. 1  Lp functions with p = 2, 1, 0.5, 0.1, respectively
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Si j =
0, i = j

exp −
max ( | pi − p j | , |qi − q j | )

λs
−

∥ xi − x j ∥2

λgσi
2 , i ≠ j

where pi, qi  is the coordinates of pixel i, λs and λg are two scale
factors playing a role similar to α in the aforementioned methods,
and σi is defined as

σi =
∑ j ∈ 𝒩i

∥ xi − x j ∥2

NR
.

Note that Si j measures the similarity between the ith pixel and the
jth pixel. Then a linearly weighted summed image is generated as

ξi =
∑ j ∈ 𝒩i

Si jx j

∑ j ∈ 𝒩i
Si j

.

In the final step of FGFCM, FCM is applied on the range of ξ.
FGFCM_S1 and FGFCM_S2 are variants of FGFCM which

incorporate modified similarity measures in their respective
objective functions. In other words, FGFCM_S1 and FGFCM_S2
regard mean-filtered image and median-filtered image as the new
image ξ, respectively.

2.5 FLICM

FLICM [24] is characterised by the use of a fuzzy local similarity
measure, which aims at guaranteeing noise insensitiveness and
image detail preservation. In particular, a novel fuzzy factor is
introduced into the objective function of FLICM to enhance the
clustering performance. This fuzzy factor is defined as

Gki = ∑
j ∈ 𝒩i, i ≠ j

1
di j + 1(1 − uk j)m ∥ x j − vk ∥2

where di j is the spatial Euclidean distance of the ith pixel and jth
pixel. The objective function of FLICM is given by

Jm = ∑
i = 1

c

∑
k = 1

N
uki

m ∥ xk − vi ∥2 + Gki .

FLICM performs quite well on images with low levels of noise.

3 Proposed FLILp method
In this section, we propose a novel fuzzy local information and Lp-
norm distance-based clustering method for image segmentation,
which is called FLILp.

3.1 FLILp objective function

To enhance the segmentation performance and robustness, we
propose a new algorithm which combines the advantages of
FLICM algorithm and the robustness of Lp-norm distance. More
specifically, in the objective function, we incorporate the local
information and use Lp-norm to measure the distance between
pixel values and class centres.

Firstly, we consider the case of grey-level images, i.e. xi ∈ ℝ.
Let p ∈ 0, 1 . We denote the local window centred at xi by 𝒩i. Let
uk j be the degree of membership of the jth pixel in the kth cluster
with centre vk. We also construct a symmetric matrix K whose i, j
th entry measures the spatial similarity of the ith pixel and the jth
pixel. The objective function of the proposed FLILp method is as
follows:

Jm = ∑
i = 1

N

∑
k = 1

c
uki

m ∥ xi − vk ∥p + αGki . (5)

where ∥ ⋅ ∥ denotes the Euclidean distance. Here Gki is the Lp-
norm-based local factor introduced to incorporate the local
information, which is defined as

Gki = ∑
j ∈ 𝒩i

Ki j(1 − uk j)m ∥ x j − vk ∥p . (6)

In (5), α > 0 is a weighting parameter to control the contribution of
the local factor. Note that α is fixed as 1 in FLICM. Here we
introduce this parameter since it contributes to noise robustness in
our method. As the noise-level increases, we choose large values
for α to achieve the best performance.

Similar to FLICM, one choice of Ki j is

Ki j =
0, i = j
1

di j + 1, i ≠ j (7)

where di j is the spatial Euclidean distance of the ith pixel and jth
pixel. Another choice is setting Kii = 1 in the above formula and
then normalising the kernel to satisfy the sum-to-one constraint.
Other choices of Ki j include Gaussian kernel and mean kernel.

Let us give an interpretation of local factor Gki. For each pixel i,
assume uki ≃ 1, that is, xi has a large probability of belonging to the
kth class. Assume pixel j has similar spatial location and grey value
as pixel i, namely j ∈ 𝒩i and xi ≃ x j. Thus
∥ x j − vk ∥p ≃∥ xi − vk ∥p. To minimise the energy function (5),
(1 − uk j)m is forced to approach zero, such that uk j ≃ 1. Hence, we
conclude that uki ≃ uk j if j ∈ 𝒩i and xi ≃ x j. That is, if two pixels
have similar grey-level values and similar spatial location, they
tend to be in the same cluster by minimising the objective function.
Moreover, by using the spatial kernel Ki j, the local factor Gki has
more flexibility to adjust the influence of neighbouring pixels. In
conclusion, the effect of the local factor Gki to allows the labelling
of a pixel to be influenced by its immediate neighbourhood both in
spatial domain and range.

3.2 FLILp algorithm

Similar to FCM, we apply the alternating minimisation method to
derive an efficient algorithm to solve the FLILp model (5).

3.2.1 Membership functions estimation: Let us simplify the
proposed objective function in (5) as

Jm = ∑
k = 1

c

∑
i = 1

N
uki

mDki (8)

where

Dki =∥ xi − vk ∥p + αGki .

Since uki ∈ 𝒰 satisfies the sum-to-one constraint and the non-
negativity constraint in (2), we introduce N Lagrange multipliers
λi, i = 1, . . . , N and then minimise

Fm = ∑
k = 1

c

∑
i = 1

N
uki

mDki + ∑
i = 1

N
λi 1 − ∑

k = 1

c
uki . (9)

By taking the derivative of Fm with respect to uki and setting the
result to zero, we have, for m > 1

∂Fm
∂uki

= muki
m − 1Dki − λi = 0. (10)

Then we have
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uki =
λi

mDki

1/(m − 1)

. (11)

Using the condition ∑k = 1
c uki = 1 ∀i, we get

λi = m
∑k = 1

c 1/Dki
1/(m − 1) m − 1 . (12)

Substituting (12) into (11), we get the updating formula of
membership functions as

uki = 1
∑ j = 1

c Dki/Dk j
1/(m − 1) . (13)

3.2.2 Cluster centres estimation: The second term of the
proposed objective function (5) can be reformulated as

∑
k = 1

c

∑
i = 1

N

∑
j ∈ Ni

uki
mKi j(1 − uk j)m ∥ x j − vk ∥p

= ∑
k = 1

c

∑
j = 1

N

∑
i ∈ Ni

uk j
mK ji(1 − uki)m ∥ xi − vk ∥p

= ∑
k = 1

c

∑
i = 1

N

∑
j ∈ Ni

uk j
mKi j (1 − uki)m ∥ xi − vk ∥p

= ∑
k = 1

c

∑
i = 1

N
K ∗ uki

m (1 − uki)m ∥ xi − vk ∥p

where ∗ represents the discrete convolution operator. Note that the
second equality is obtained by exchanging the indices i and j of the
first expression, and the last equality follows from the symmetry
property of the kernel K. Then we can rewrite the objective
function (5) as

Jm = ∑
k = 1

c

∑
i = 1

N
uki

m + α K ∗ uki
m)(1 − uki

m ∥ xk − vi ∥p . (14)

To solve vi, we treat the above Lp-norm as weighted L2-norm,
namely

Jm = ∑
k = 1

c

∑
i = 1

N
wki ∥ xk − vi ∥2 (15)

where the weight is defined as

wki =
uki

m + α K ∗ uki
m)(1 − uki

m

∥ xi − vk
e ∥2 − p , (16)

and vi
e denotes the estimated value of the centres of clusters. In this

paper, we set vk
e as the class centres in the last iteration. Then we

obtain the solution of vk as

vk =
∑i = 1

N wkixi

∑i = 1
N wki

. (17)

Thus, the proposed FLILp clustering algorithm can be summarised
in Algorithm 1.
 
Algorithm 1: FLILp

1) Set the number of clusters c, fuzziness parameter m and the
tolerance ϵ.

2) Initialise cluster centres {vk}k = 1
c  and fuzzy membership

functions uki ∈ 𝒰.
3) Update the membership functions using (13).
4) Update the centres of clusters using (17).

Repeat steps 3 and 4 until the stopping criterion is satisfied.
The stopping criterion is set as

∥ Vnew − Vold ∥≤ ϵ

where V = v1, v2, …, vc  is the vector of cluster centres.
The final crisp segmentation result is obtained by the maximum

membership procedure. This procedure assigns the pixel i to the
class C with the maximum membership

Ci = arg
k

{ max {uki}}, k = 1, 2, …, c .

3.3 Generalisation to vector-valued image

The proposed algorithm can be easily generalised to vector-valued
images. Assume x j = x j1, …, x jd ∈ ℝd and
vk = vk1, …, vkd ∈ ℝd. Then we define the Lp-norm distance term
for vector-valued data in the objective function (5) as

∥ x j − vk ∥p = ∑
d = 1

s
|x jd − vkd|2

p

. (18)

Similar to the grey-level image case, we can derive the updating
formulas for membership functions and centres. We omitted the
details for simplicity.

It is worth noting that the Lp-norm distance term defined in (18)
is essentially a joint L2 − Lp norm, which considers the relation of
different channels of the image. The special case of (18) when
p = 1 is also different from the existing L1-norm distance [32]

∥ x j − vk ∥1
1 = ∑

d = 1

s
| x jd − vkd|1 (19)

where the channels are separated.

4 Experimental results
In this section, we show the performance of the proposed method
FLILp by presenting experimental results on various synthetic and
real images, with different levels of Gaussian noise (GN) and salt
and pepper noise (SPN). Moreover, we compare the proposed
algorithm with eight closely related fuzzy clustering algorithms,
including FCM, FCM_S1, FCM_S2, EnFCM, FGFCM,
FGFCM_S1, FGFCM_S2 and FLICM. For quantitative analysis of
segmentation results, we use SA as performance measure which is
defined as [18]

SA = #correctly classified pixels
#all pixels .

The number of correctly classified pixels is calculated as follows.
Constructing two index images correspond to the crisp
segmentation result (denoted as I1) and the ground truth
segmentation (denoted as I2) by integers 1, 2, . . . , c according to
the ascending order of pixel's mean value of each class. Then the
number of correctly classified pixels is obtained by counting the
number of pixels x which satisfy I1 x = I2 x .

In our experiments, for all the methods, we set m = 2, ϵ = 1e−5

and maximum iteration number as 500. The window size is set as
3 × 3 or 5 × 5, the weighting parameter α is set as an integer
varying from 1 to 20 for all methods involving this parameter.
Then we choose the result of each method with best performance.
The kernel (7) is used in both FLICM and the proposed FLILp
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algorithms. In FGFCM, we set λs = λg = 3. For two-phase
segmentation, the membership functions are set as u1i = x~i where x~i
is the normalised image into [0, 1] and u2i = 1 − u1i . For
multiphase segmentation, random initialisation is used. We tune the
parameter p which varies from 0 to 1 in FLILp to get the optimal
result. In the following, we will show that the optimal p-value
depends on the noise and the image. Generally, p = 1 is good for
GN corrupted image, and smaller p is good for SPN corrupted
image.

To display the segmentation result, we assign the grey level or
colour value of the centre to each class. Note that for the visual
comparison of methods on the synthetic images, we only display
the results obtained by six methods including FCM, EnFCM,
FLICM, FLILp, the better one between FCM_S1 and FCM_S2,
and the best one among FGFCM, FGFCM_S1 and FGFCM_S2.

For fair comparison, all the experiments are performed under
Windows 8 and MATLAB R2012a with Intel Core i7-4500
CPU@1.80 GHz and 8GB memory.

4.1 Test on two-phase synthetic image

In the first test, we perform the nine algorithms on a two-phase
synthetic image which is contaminated by different levels of GN
and SPN. The mean of GN is zero and the standard deviation varies
from 10 to 60. The levels of SPN vary from 10 to 60%. The
comparison of SA of different methods is reported in Table 1. The
test images and experimental results are partially displayed in
Figs. 2–4. The best SA values are marked in bold. We provide a

detailed analysis of Table 1, Figs. 3 and 4 in the following sections. 

From Table 1, for GN, we observe that as the noise-level
increases, the SA value of FCM decreases much faster than others.
It shows that FCM is very sensitive to higher-level GN. By
incorporating some smoothing terms, the other methods are much
more robust to noise than FCM. The median filter-based variants
FCM_S2 and FGFCM_S2 have slightly lower SA values than other
variants of FCM. Among all, the proposed FLILp algorithm gets
the highest SA values. FLICM is the second best, which achieves
the same performance as FLILp when σ ≤ 40. For SPN, the SA
values of FCM are quite low compared with others, which shows
that FCM is very sensitive to this kind of noise. Since the mean
filter is not good for SPN, S1-type methods works not so good as
other variants of FCM. S2-type variants FCM_S2 and FGFCM_S2
work well in this test and have similar performance. Among all, the
proposed FLILp method gives the most accurate segmentation and
achieves the highest SA values 1 for all the six noise levels. Note
that we set p = 1 for GN and p = 0.01 for SPN to get the optimal
results.

In Fig. 2, we show the clean synthetic image and its noisy
versions. In Fig. 3, we display the results of the six methods
applied to the Gaussian noisy image with standard deviation 60 in
Fig. 2b. It is obvious that the FCM result in Fig. 3a is very noisy
since a large amount of pixels are misclassified. Although better
than the result of FCM, there are still many spots in the results of
FCM_S1, EnFCM, FGFCM_S1 as displayed in Figs. 3b–d. The
result of FLICM in Fig. 3e and the result of FLILp in Fig. 2f are
much cleaner than others where the errors only occur on the middle

Fig. 2  Two-phase synthetic image and noisy images
(a) Original: The clean synthetic image with grey-level values 20 and 128, (b) Noisy: The noisy image corrupted by GN with mean zero and standard deviation σ = 60, (c) Noisy:
The noisy image corrupted by 30% SPN

 

Fig. 3  Two-phase segmentation of a synthetic image corrupted by GN
(a) FCM result, 0.8161; (b) FCM_S1 result, 0.9919; (c) EnFCM result, 0.9915; (d) FGFCM_S1 result, 0.9927; (e) FLICM result, 0.9974; (f) FLILp result, 0.9979. The SA values are
reported below each segmentation result
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edge. Moreover, the edge is better preserved by FLICM and FLILp
than others. In Fig. 4, we display the results of the six methods
applied to the image with 30% SPN. The result of FCM in Fig. 4a
is quite noisy since a large amount of pixels are misclassified.
There are many spots in the results of EnFCM in Fig. 4c. The
results of FCM_S2, FGFCM_S2 and FLICM are cleaner than FCM
and EnFCM. Among these three methods, the result of FLICM
seems better than the other two. Among all, the proposed FLILp
gives the most accurate and satisfactory results. Moreover, the
middle edge is accurately preserved by FLILp. In terms of SA,
FLILp achieves the best performance.

4.2 Test on four-phase synthetic image

In this test, we apply the nine methods to a four-phase synthetic
image which is also contaminated by GN with mean zero and
standard deviation ranging from 10 to 60, and SPN ranging from
10 to 60%, respectively. The SA of different methods is reported in

Table 2. The test images and experimental results are partially
displayed in Figs. 5–7. Note that we set p = 0.3 for SPN with noise
level not >30 and p = 1 for the others. 

From Table 2, we find that the SA values of FCM decrease
rapidly as the noise-level increase. All the variants of FCM
perform better than FCM when σ ≥ 20. For GN with σ ≥ 30, both
FLICM and FLILp achieve much higher SA value than others.
Meanwhile, FLILp achieves the best performance among all.

In Fig. 5, we display the clean four-phase synthetic test image
and its noisy version. Fig. 6 shows that for GN with σ = 60, the
segmentation results of FLICM and FLILp are much cleaner than
others. For SPN, S2-type methods perform much better than S1-
type methods. We also find that FL1CM performs poorly for noise-
level >30%. Among all, the proposed FLILp algorithm achieves
the best SA value. Fig. 7 shows that for 30% SPN, the results of
FCM_S2, FGFCM_S2, FLICM and FLILp are much cleaner than
others. It is obvious that FLILp gives the best segmentation result

Fig. 4  Four-phase segmentation of a synthetic image corrupted by SPNv
(a) FCM result, 0.8478; (b) FCM_S2 result, 0.9895; (c) EnFCM result, 0.9670; (d) FGFCM_S2 result, 0.9895; (e) FLICM result, 0.9968; (f) FLILp result, 1. The SA values are
reported below each segmentation result

 
Table 1 SA of different methods for the synthetic image polluted by GN and SPN with different level in Fig. 1a

10 20 30 40 50 60
GN (σ)
 FCM 1 0.9970 0.9642 0.9146 0.8627 0.8161
 FCM_S1 1 1 0.9998 0.9988 0.9978 0.9919
 FCM_S2 0.9998 0.9993 0.9991 0.9978 0.9939 0.9794
 EnFCM 1 1 0.9997 0.9988 0.9978 0.9915
 FGFCM 1 1 0.9998 0.9994 0.9984 0.9899
 FGFCM_S1 1 0.9998 0.9988 0.9977 0.9967 0.9927
 FGFCM_S2 0.9998 0.9993 0.9988 0.9969 0.9921 0.9776
 FLICM 1 1 1 0.9996 0.9988 0.9974
 FLILp (p = 1) 1 1 1 0.9996 0.9990 0.9979
SPN (%)
 FCM 0.9480 0.8983 0.8478 0.7979 0.7486 0.6980
 FCM_S1 0.9980 0.9868 0.9684 0.9252 0.8797 0.8094
 FCM_S2 0.9983 0.9949 0.9895 0.9850 0.9742 0.9561
 EnFCM 0.9977 0.9882 0.9670 0.9268 0.8790 0.8135
 FGFCM 0.9987 0.9898 0.9740 0.9316 0.8846 0.8120
 FGFCM_S1 0.9978 0.9913 0.9781 0.9503 0.8920 0.8309
 FGFCM_S2 0.9983 0.9949 0.9895 0.9850 0.9742 0.9561
 FLICM 0.9995 0.9987 0.9968 0.9954 0.9922 0.9857
 FLILp (p = 0.01) 1 1 1 1 1 1
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among all. Furthermore, it is obvious that the edges are better
preserved by FLILp than others in the segmentation results. 

4.3 Test on real colour images

Finally, we test the proposed algorithm FLILp on real colour
images in Figs. 8 and 9 for two-phase and multiphase (c > 2)
segmentation, respectively. Since there is no ground truth of
segmentation, we can only compare the results visually. In Figs. 8
and 9, the left column shows the real images, the second column
shows the results of FCM algorithm and the right column displays
the image segmentation results of the proposed FLILp algorithm.
The results of our method are more satisfactory than FCM. The
results of FCM contain many tiny components which belong to
incorrect clusters. While in the results of our FLILp, the tiny
components are successfully smoothed out by incorporating local
information and using Lp norm distance. Moreover, the sharp edges
between different clusters in the images are preserved well by
FLILp. 

4.4 Computational complexity and time

As discussed in [24], the computational complexity of FCM is
O nc  where n is the length of the histogram and c is the number of
classes. Hence, the FCM variations including EnFCM, FGFCM,
FGFCM_S1 and FGFCM_S2 have the same complexity with some
variation depending on the preprocessing steps in each algorithm.
The computational complexity of FCM_S1, FCM_S2, FLICM and
the proposed FLILp is O Nc  where N is the total number of pixels.

In terms of computational time, the proposed FLILp method is
more time-consuming than others. For example, for the first test
image with size 128 × 128, the average computational time
corresponding to Table 1 is about 0.0430 s for FCM, 0.0364 s for
FCM_S1, 0.0339 s for FCM_S2, 0.0208 s for EnFCM, 0.1628 s for
FGFCM, 0.0208 s for FGFCM_S1, 0.0247 s for FGFCM_S2,
0.1823 s for FLICM, and 0.6289 s for FLILp, where ‘s’ denotes
seconds. However, this disadvantage of the proposed FLILp
method is compensated for its outstanding performance as shown
above. Moreover, the proposed algorithm can be speeded up by
including parallel computing techniques which is our future work.

5 Conclusion
In this paper, a novel fuzzy local information and Lp-norm distance
(FLILp)-based clustering method was proposed for image
segmentation. Both of the local spatial information and colour
information are incorporated into the objective function by a novel
fuzzy factor. In both the global and local penalty terms, Lp-norm is
used to measure the distance of image data to its cluster centres,
which is different from all the existing variants of FCM. The
numerical difficulty caused by Lp-norm is overcome by regarding
it as weighted L2-norm. Benefited from both the local factor and
the Lp-norm distance, the proposed FLILp outperforms the existing
variants of FCM in terms of noise immunity and SA.

Table 2 SA of different methods for the synthetic image polluted by GN and SPN with different level in Fig. 4a
10 20 30 40 50 60

GN (σ)
 FCM 0.9997 0.9415 0.8186 0.7130 0.6316 0.5701
 FCM_S1 0.9569 0.9561 0.9536 0.9449 0.9220 0.8894
 FCM_S2 0.9981 0.9954 0.9818 0.9521 0.9080 0.8575
 EnFCM 0.9569 0.9560 0.9536 0.9433 0.9162 0.8749
 FGFCM 0.9704 0.9702 0.9661 0.9501 0.9167 0.8688
 FGFCM_S1 0.9549 0.9523 0.9499 0.9406 0.9162 0.8794
 FGFCM_S2 0.9980 0.9945 0.9799 0.9427 0.8911 0.8214
 FLICM 0.9954 0.9906 0.9824 0.9741 0.9662 0.9531
 FLILp (p = 1) 0.9999 0.9953 0.9875 0.9782 0.9707 0.9587
SPN (%)
 FCM 0.9236 0.8480 0.7717 0.6971 0.6244 0.5487
 FCM_S1 0.8867 0.8052 0.7604 0.7428 0.6484 0.5684
 FCM_S2 0.9931 0.9855 0.9724 0.9639 0.9508 0.9224
 EnFCM 0.9102 0.8030 0.6953 0.7465 0.6407 0.5583
 FGFCM 0.9528 0.9061 0.8342 0.8157 0.7248 0.6152
 FGFCM_S1 0.8996 0.7890 0.7084 0.7586 0.6700 0.5670
 FGFCM_S2 0.9907 0.9873 0.9755 0.9748 0.9649 0.9389
 FLICM 0.9936 0.9857 0.9649 0.7333 0.4834 0.4794
 FLILp (p = 0.3, 1) 0.9979 0.9953 0.9914 0.9763 0.9718 0.9607
 

Fig. 5  Four-phase synthetic image and noisy images
(a) The clean synthetic image with grey-level values 43, 112, 185 and 255, (b) The noisy image corrupted by GN with mean zero and standard deviation σ = 60, (c) The noisy image
corrupted by 30% SPN

 

IET Image Process., 2017, Vol. 11 Iss. 4, pp. 217-226
© The Institution of Engineering and Technology 2017

223



6 Acknowledgments
The research of F. Li is supported by the National Science
Foundation of China (No. 11671002) and the Science and
Technology Commission of Shanghai Municipality (STCSM) (No.
13dz2260400). The research of Jing Qin is supported by the faculty
start-up fund of Montana State University.

Fig. 6  Four-phase segmentation of a synthetic image corrupted by GN
(a) FCM result, 0.5701; (b) FCM_S1 result, 0.8894; (c) EnFCM result, 0.8749; (d) FGFCM_S1 result, 0.8794; (e) FLICM result, 0.9531 (f) FLILp result, 0.9587. The SA values are
reported below each segmentation result

 

Fig. 7  Two-phase segmentation of a synthetic image corrupted by SPN
(a) FCM result, 0.7717; (b) FCM_S2 result, 0.9724; (c) EnFCM result, 0.6953; (d) FGFCM_S2 result, 0.9755; (e) FLICM result, 0.9649; (f) FLILp result, 0.9914. The SA values are
reported below each segmentation result
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