
Inverse Problems and Imaging doi:10.3934/ipi.2017004

Volume 11, No. 1, 2017, 65–85

REDUCING SPATIALLY VARYING OUT-OF-FOCUS BLUR

FROM NATURAL IMAGE

Faming Fang

Shanghai Key Laboratory of Multidimensional Information Processing
Department of Computer Science, East China Normal University

Shanghai, China

Fang Li

Department of Mathematics, East China Normal University

Shanghai, China

Tieyong Zeng

Department of Mathematics, Hong Kong Baptist University
Kowloon Tong, Hong Kong, China

(Communicated by Gabriele Steidl)

Abstract. In this paper, we focus on the challenging problem of removing

the spatially varying out-of-focus blur from a single natural image. We first

propose an effective method to estimate the blur map by the total variation
refinement on Hölder coefficient, then discuss the properties of the correspond-

ing kernel matrix. A tight-frame based energy functional, whose minimizer

is related to the optimal defocus result, is thus built. For tackling functional
more efficiently, we describe the numerical procedure based on an accelerated

primal-dual scheme. To verify the effectiveness of our method, we compare it

with some state-of-the-art schemes using both synthesized and natural images.
Experimental results demonstrate that the proposed method performs better

than the compared methods.

1. Introduction. In the past decades, with the increasing availability of portable
digital imaging devices with high performance and low price, the digital images have
attracted more and more attention in our life. Generally, digital images can be di-
vided into many categories, such as natural images, remote sensing images, medical
images, microscopic images, etc. All these images may suffer from a common distor-
tion, which is blur. The factors that cause blur contain out-of-focus, shake, motion,
etc [12]. Among them, the out-of-focus blur is the most common one. It is caused
by the fact that there are some trade-offs between aperture-size, depth-of-field, and
exposure-time while collecting images. It becomes the main drawback when using
a large aperture to capture enough light and prevent the motion-blur [39]. How to
measure and remove this kind of blur is a challenging task in many image applica-
tions such as computer vision and image processing.

From the pixel-level perspective, the out-of-focus blur is caused by a pixel captur-
ing light from its surrounding points, and it is commonly characterized by a point
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Figure 1. The spatially-varying blurring images.

spread function (PSF), or “kernel”, i.e., the blurred image can be seen as a convo-
lution of the clear one. Based on this idea, many outstanding methods have been
developed for deblurring (or deconvolution) problems [8–10,16,22,30,33,36,44,48].
Most of these methods assume that the blur is uniform on the whole image. Unfor-
tunately, the blur typically varies over the image plane. Such spatially-varying blur
is much more difficult to detect and analyze than the spatially-invariant one. Con-
sequently, most methods need multiple images and fuse them to obtain a deblurred
result.

The removal of spatially-varying blur using single image has also presented in
recent years. The main challenges of this issue contain two aspects [15]: 1) It
is a blind deconvolution problem since both clear image and blur kernel are un-
known; 2) It is a very complex problem because the blur kernel differs form pixel
to pixel (which cannot be modeled as a circulant matrix). Due to its complexity,
many existing methods, such as [2, 15, 35, 41], first segmented the blurred image
into several regions where each region has a uniform blur kernel, then handled the
spatially-invariant deblurring in each region gradually to obtain a global deblurred
result [32]. We collectively call these methods as segmentation-based deblurring
methods. Segmentation-based deblurring methods are effective specific to the im-
ages whose blur kernel is regional different. However, since there are many natural
images which can’t be segmented reasonably (Figure 1 is a convincing example), the
segmentation-based deblurring methods is limited in some practical applications.

The kernel of out-of-focus blur is usually approximated by a Gaussian function
g(x,σ(x)) (or simply written as g(x)), where the standard deviation σ(x) measures
the blur level on the pixel x [52]. Therefore, intuitively, we can firstly estimate
σ(x) based on some certain properties, and use σ(x) to generate kernel g(x,σ(x))
for every pixels, then remove blur using g(x,σ(x)) directly. Here, σ, the same
as the original blurred image in size, is generally termed as blur map. Based on
the above ideas, in 2007, Bae and Durand extracted the blur scale of edges by
calculating the first and second derivatives of the input image, and obtained a blur
map by propagating the blur scale using interpolation method [1]. In 2009, Tai
and Brown first built a coarse blur map by using their local contrast (LC) prior,
and then refined it by the exploitation of Markov random field formulation [40].
In 2011, Zhuo and Sim re-blurred the input image using a Gaussian kernel, and
calculated the blur amount at edges from the ratio between the gradients of input
and re-blurred images. They then obtained the full blur map by propagating the
blur amount to the entire image [52]. In 2013, Zhu et al. presented a method for
coherent defocus blur estimating based on local probability estimation and coherent
map labeling [51]. Moreover, Shen et al. generated a blur map by combining Tai and
Zhuo’s methods. They then dealt with deblurring based on the L1-L2 optimization
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using different blur scales, and used the blur map to do scale selection to reconstruct
an all-in-focus image [39]. This method is rather effective.

In the paper, we propose a new method for blind spatially-varying out-of-focus
blur removal. Our contributions are as follows:

• Firstly, we analyze the property of the Hölder coefficient [20,29], and estimate
a blur map based on it, then refine the blur map using a total variation (TV)
based algorithm [38]. This can be regarded as an interesting complimentary
for the previous approaches to estimate the blur map.

• Secondly, we discuss some properties and the bound of the corresponding
kernel matrix which are important for our spatially variant blur removal task.

• Finally, we build an energy functional for deblurring based on the framelet
system, and describe the numerical procedure for our energy based on an
accelerated primal-dual (APD) scheme. To the best of our knowledge, this is
the first study to introduce the APD algorithm into spatially-varying out-of-
focus blur removal realm.

The rest of the paper is organized as follows. In Section 2, we estimate the blur
map and discuss the properties of the kernel matrix. The proposed deblurring model
and numerical scheme with its convergence property are addressed in Section 3.
The various experiments on synthesized and real blurry images are then reported
in Section 4 to illustrate the superior performance of our approach. Finally, some
concluding remarks are given in Section 5.

2. Blur map estimation and kernel matrix construction. As aforementioned,
for spatially varying blur, let b : Ω → R be a blurred image of size M ×N , which
b can be seen as a convolution of its clear version f at each pixel x. Formally, we
have,

(1) b(x) = (g ~ f)(x) + n(x) =

∫
Ω

g(y)f(x− y)dy + n(x),

where ~ is the convolution operator, n is an additive noise. Since only b(x) is given,
we need to estimate g(x) and f(x). That is, (1) is an under-constrained problem.
So we should add some assumption to get reasonable result.

In what follows, we first estimate the blur map using the Hölder coefficient and
a TV based algorithm. Then we discuss some properties of the corresponding blur
kernel matrix.

2.1. Blur map estimation. Generally, the blurred image is smoother than its
clear version. That is, the more blurred the image, the smaller the value of the
overall difference. Thus, we can use a variable, which describes the overall difference
in ωx, to measure the degree of blurring of x, where ωx denotes a neighborhood of
x. Broadly speaking, the Hölder coefficient can roughly satisfy this requirement.

As a powerful regularity, the Hölder coefficient has been applied to many im-
age processing tasks, such as image interpolation and denoising [28, 31, 34, 42, 43].
Formally, the Hölder coefficient of the image b in ωx is defined as [20,29],

(2) [b]βωx
:= sup

y, z ∈ ωx
y 6= z

{
|b(y)− b(z)|
‖y − z‖β

}
,

where β ≥ 0 is an adjustable parameter. When β = 0, (2) is actually equivalent to

(3) [b]0ωx
= max
y∈ωx

{b(y)} − min
y∈ωx

{b(y)}.
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Figure 2. The distributions of the NHC for in-focus (red) and
blur images (blue).

Hence,
[b]βωx

[b]0ωx

can be regarded as the normalized Hölder coefficient (NHC) (remark

that we set |ωx| = 7 × 7 and β=2 for NHC hereinafter, where |ωx| is the area of
ωx).

Figure 2 presents two histograms of the NHC for 1000 natural randomly selected
in-focus images (red curve) and 1000 natural randomly selected blur images (blue
curve), respectively. The x-axis is NHC scores and y-axis is percentage of pixels. It
can be seen that, the in-focus images have larger NHC over the blur ones roughly,
and the distribution peak of the in-focus image is around 0.75, which is much greater
than that of the blur image (around 0.35).

On the other hand, numerous experiments we have done suggest that the NHC
varies inversely to the level of the blur roughly. That is, the NHC can indicate
the blur level, and the blur level is positively associated with the inverse NHC. For
simplicity, we assume this positive correlation is a linear correlation. Then, the blur
map σ(x) can be obtained by

(4) σ̃(x) =
C

[b]βωx

[b]0ωx

= C
[b]0ωx

[b]βωx

,

where σ̃ is a rough version of σ, and C is a predefined constant. In our following

experiments, we find that C =
√
|ωx|
2π is proper.

Figure 3(a) is the estimated blur map σ̃ from an blurry image (Figure 1(a)). As
we can see, it is reasonably good. However, the blur map σ̃ is relatively rough due
to the existence of noise and soft edges. So we should refine it. In practice, the blur
map is somewhat smooth and piecewise constant. Thus, here we adopt a TV based
algorithm to perform the blur map refining [38]. Formally, the blur map refining
problem can be formulated as minimizing the following energy,

(5) E(σ) = ν‖∇σ‖+
1

2
‖Π� (σ − σ̃)‖2,

where ν > 0 is a balanced parameter, ∇ is gradient operator, � is componentwise
multiplication, and Π is an edge indicator which is defined as,

Π(x) =

{
1, ‖∇b(x)‖ > ξ

0, otherwise

with positive parameter ξ.
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(a) (b)

Figure 3. The blur maps of Figure 1(a) (800 × 600 pixels): (a)
the rough blur map σ̃; (b) the refined blur map σ.

Indeed, (5) can be efficiently solved by iterating the following equations based
on Chambolle-Pock algorithm [13],

pn+ 1
2 = pn + τλ∇σn,

pn+1 = pn+1
2

max(1,|pn+1
2 |)
,

σn+1 = Π�σ̃+σn

ςΠ+1 .

where τ and ς are two positive parameters, p is an auxiliary variable which is
initialized to the identity matrix I.

Figure 3(b) shows the refining result using Figure 3(a) as the data fidelity term.
We can see that the refined blur map σ contains less noise and is more reasonable.

2.2. Kernel matrix analysis. After calculating the blur map σ, we can obtain
the kernel g by the definition of Gaussian function, and then solve f through (1).
However, since σ is different in each pixel, we should solve (1) pixel by pixel.
Consequently, the time complexity is very high for obtaining the whole deblurred
image. Fortunately, (1) can be rewritten as,

(6) b = Af + n,

where b,f and n are the vectorized versions of b, f and n after column concatena-
tion, respectively. The kernel matrix A (size MN ×MN) is the matrix form of the
kernel g.

The constructing of the kernel matrix A is rather straightforward [25, 46]. One
can easily generate it following the step of the spatially-invariant kernel matrix
construction. The only difference is that, all rows of the kernel matrix of the
spatially-invariant kernel share the same variance, while the matrix A may possess
different variances row by row. Besides, we have the following two properties:

Proposition 2.1. Let λm be the largest eigenvalue of A, then the λm ≤ 1 holds.

Proof. See Appendix.

Proposition 2.2. Let x = (x1, x2), y = (y1, y2), and let diag(σ) be a diagonal
matrix expanded by σ, and Ai be the matrix form of 1-D Gaussian kernel gi toward
i-axis, where

gi(x)(yi) =
1√

2πσ(x)
exp (−|yi − xi|

2

2σ2(x)
), i = 1, 2.
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Then, we have

(7) A =
√

2πdiag(σ)A1A2.

Proof. See Appendix.

Given the induced norm of A defined as,

(8) ‖A‖ = max{‖Aϕ‖ : ‖ϕ‖ ≤ 1}.

The bound of ‖A‖ can be guaranteed by the following property:

Proposition 2.3. Let σm be the largest value in |σ|, the norm of kernel matrix A

is bounded by ‖A‖ ≤ L, where L :=
√

2π(π
2

2 − 2)σm.

Proof. See Appendix.

2.2.1. Sparse kernel matrix analysis. Theoretically, the g(x,σ(x)) will be non-zero
at every point of the image, meaning that the Nx should be the same size with the
entire image. In practice, when calculating g(x,σ(x)), pixels at a distance that
more than 3σ(x) are small enough to be considered effectively zero [24]. Thus the
contributions from pixels outside that range can be ignored. Therefore, we can set
the radius of Nx as rx = 3σ(x) in our convolution process.

In this setting, A is obviously a sparse matrix, and each row/column has at most
(2r + 1)2 non-zero elements, here r = max{rx}. Then the induced norm of this
sparse kernel has the following simple property,

Proposition 2.4. The norm of sparse kernel matrix A is bounded by ‖A‖ < (2r+
1)2.

Proof. See Appendix.

The time complexity of generating the sparse matrix A is O(r2MN). Since
r �MN , the generating of kernel matrix will be very fast. In practice, only about
0.75 seconds is needed in Matlab for an image sized 256× 256.

3. Deblurring formulation based on framelet system. In this section, before
presenting the deblurring formulation for spatially varying out-of-focus blur, we first
give a brief introduction to the framelet system. For simplicity, we only show the
framelets in the univariate setting, and the framelets in the bivariate setting can be
obtained by tensor product of the univariate one. Those who are interested in the
framelets can refer to [7, 8, 11,14,21] for more details.

3.1. Framelets and image representation. Firstly, we give the definition of the
tight frame. A countable function subset X ⊂ L2(R) is called a tight frame of
L2(R), if

(9) f =
∑
h∈X

〈f, h〉h,∀f ∈ L2(R),

or equivalently,

(10) ‖f‖2 =
∑
h∈X

|〈f, h〉|2,∀f ∈ L2(R),

where 〈·, ·〉 and ‖ · ‖ = 〈·, ·〉 12 are the inner product and the norm of L2(R), respec-
tively.
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An arbitrary orthogonal bases in L2(R) is a tight frame since it meets both the (9)
and (10). In other words, tight frames are the generalization of the orthogonal
basis, it relaxes the requirements of the orthogonality and linear independence to
bring in redundancy which has been verified useful in many applications such as
deblurring [8].

Given a finite set Φ := {φ1, .., φr} ⊂ L2(R), a wavelet system X(Φ) is defined as
the collection of dilations and shifts of Φ, i.e.,

X(Φ) := {2k/2φj(2kx− l) : 1 ≤ j ≤ r; k, l ∈ Z}.
When X(Φ) forms a tight frame, it is termed as a wavelet tight frame, and φj is
termed as a (tight) framelet.

To construct compactly supported wavelet tight frames X(Φ), one generally first
obtains a compactly supported refinable function ψ ∈ L2(R) with a refinement mask
(low-pass filter) g0 such that

ψ(x) =
∑
l

g0(l)ψ(2x− l).

Then for given ψ, the construction of a wavelet tight frame is actually to find an
appropriate set of framelets Φ := {φ1, .., φr} ⊂ L2(R), which is defined as,

φj =
∑
l

gj(l)ψ(2x− l), j = 1, .., r,

where gj is a high-pass filter. The unitary extension principle (UEP) in [37] as-
serts that the system X(Φ) forms a tight frame in L2(R) provided that the filters
g0, g1, .., gr satisfy,

ζg0(ω)ζg0(ω + γπ) +

r∑
j=1

ζgj (ω)ζgj (ω + γπ) = δ(γ), γ = 0, 1,

for almost all ω ∈ R. Here ζg(ω) =
∑
l g(l)eilω and δ(γ) is a delta function. Thus,

the construction of framelets Φ essentially is to design the filters g1, .., gr for a given
g0 such that UEP holds.

As a simple application of the UEP, a piecewise linear B-splines can be used as
the refinable function ψ [4, 37]. The corresponding filters are

g0 = [
1

4
,

1

2
,

1

4
], g1 = [−1

4
,

1

2
,−1

4
], g2 = [

√
2

4
, 0,−

√
2

4
].

In the numerical scheme, the framelet transform can be represented by a matrix
W. The processes of generating such matrices have been detailed in [7, 11]. We
omit them here for readability.

With matrixW, the frame transformation (decomposition) process can be easily
described. Let f be a vector, the frame coefficient vector u is given by

u =Wf .
Besides, the frame reconstruction process can be expressed as,

f =WTu,

where WT is the inverse framelet transform. More importantly, the tight frame W
satisfies f = WTWf . That is, WTW = I. Generally, WWT 6= I, unless in the
orthogonal case.

Finally, it should be noted that we use the same decomposition and reconstruc-
tion algorithms as [8, 18] hereinafter. And we work in the bivariate case for our
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deblurring task. This corresponding transform matrix, still denote W, can be read-
ily obtained by using the Kronecker product of the matrix corresponding to the
univariate frame transform.

3.2. The proposed energy model. To restore the clear image f , one needs to
solve the following minimization problem,

min
f
R(f) + F (f),

where R(f) is a regularization term, and F (f) is a data fidelity term.
Generally, the regularization term is derived according to some prior assumptions

(or properties) of the underlying solutions. One of the popular assumptions is
the sparsity in some domain or some bases. Since the images usually have sparse
representations or approximations in the framelet domain, and this assumption has
proven to be efficient in many image deblurring works [8, 9], we use this prior and
take R(f) = ‖Wf‖1, where W is the framelet decomposition operator.

The fidelity term F (f) is determined by the type of noise distribution. For ex-
ample, the `1- and `2-norm functions are usually used for the impulse and Gaussian
noises, respectively. However, it is difficult to determine the type of noise in real
applications. What’s more, the noise in a real image seldom follows a single spe-
cific distribution. Thus, it is necessary to build a function that can remove the
unknown type as well as the mixture type of noises. For this propose, we will use
F (f) = ‖Af − b‖pp, p ∈ [1, 2]. Here, the `p-norm function has been proved effec-
tive for unknown and mixture type of noises, and been successfully used in image
processing realms [27].

Taking together, our total variational model is rather simple,

(11) min
f
µ‖Wf‖1 +

1

p
‖Af − b‖pp, p ∈ [1, 2]

where µ is a positive parameters to balance the regularization and the fidelity terms.
Since W is a linear operator, it is obviously that the above energy is strictly

convex. Therefore, the minimization of (11) admits a unique solution.

3.3. Numerical algorithm. In what follows, we will detail the numerical algo-
rithm of our blind out-of-focus deblurring energy (11). Clearly, (11) is a `1-norm-
based minimization problem. There are many efficient methods have been presented
to solve this issue, such as augmented Lagrangian method (ALM) [47], alternating
direction method of multipliers (ADMM) [5], and split Bregman iteration (SB) [23].
In this paper, we adopt a primal-dual algorithm for (11).

The saddle-point formulation of (11) can be derived as,

(12) min
f

max
d

µ〈Wf ,d〉+
1

p
‖Af − b‖pp − δD(d),

where d is the dual variable. The convex set D is given by D = {d : ‖d‖∞ ≤ 1},
and the function δD is the indicator function of the set D which is defined as

δD(d) =

{
0 d ∈ D
+∞ d /∈ D

Since W is a linear operator, the induced norm of W has the following property.

Proposition 3.1. The induced norm of W admits LW := ‖W‖ = 1.

Proof. Since WTW = I and ‖WT ‖ = ‖W‖ (see [8]), we can obtain ‖W‖ = 1
directly.
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Since both 1
p‖Af−b‖

p
p and δD(d) are proper, convex and lower semi-continuous,

(12) is exactly the same problem in [13]. Therefore, the primal-dual algorithm is
proper for solving our problem (11).

The regular primal-dual algorithm of (12) is as follows,
di+1 = arg max

d
µ〈W ¯f i+1,d〉 − δD(d)− 1

2τ i ‖d− d
i‖2,(13)

f i+1 = arg min
f
µ〈Wf ,di+1〉+ 1

p‖Af − b‖
p
p + 1

2ςi ‖f − f
i‖2,(14)

f i+1 = f i+1 + θi(f i+1 − f i),(15)

where τ i, ςj and θi are positive parameters.
From (13), the solution of d can be readily given by,

(16) di+1 =
µτ iWf̄ i + di

max(1, |µτ iWf̄ i + di|)
.

Due to the existence of the `p-norm, (14) is not easy to solve. In this case, we can
replace 1

p‖Af − b‖
p
p by its linear approximation using the first order Taylor series

expansion at f i,

1

p
‖Af i − b‖pp + 〈AT (Af i − b)p−1,f − f i〉.

Then (14) becomes

f i+1 = arg min
f
µ〈Wf ,di+1〉+ 〈AT (Af i − b)p−1,f〉+

1

2ςi
‖f − f i‖2.

Thus, f can be given by the following iterative algorithm,

(17) f i+1 = f i − ςi
(
µWTdi+1 + AT (Af i − b)p−1

)
.

Taking all above into account, the overall numerical procedure of the proposed
method can be summarized as

di+1 = µτ iWf̄ i+di
max(1,|µτ iWf̄ i+di|) ,

f i+1 = f i − ςi
(
µWTdi+1 + AT (Af i − b)p−1

)
,

f i+1 = f i+1 + θi(f i+1 − f i),
(18)

It is clear that (18) can be considered as a linearized version of primal-dual
algorithm. Here, we further use an accelerated primal-dual (APD) scheme to ac-
celerate (18). The detail APD is summarized in Algorithm 1. As discussed in [17],
the iteration cost for Algorithm 1 is about the same as that for the (18). However,
by specifying a different selection of βi, the convergence of Algorithm 1 can be
significantly improved.

For the convergence assessment, we propose to use the relative error as our
stopping criteria. Classically, the relative error for the proposed algorithm is defined
as,

(19) R(f i) :=
‖f i − f i−1‖
‖f i−1‖

.

Given a prescribed positive small parameter ρ, for instance 10−4, when the relative
error is less than ρ, our algorithm can be considered to reach a steady state.

The convergence of the Algorithm 1 can be guaranteed by the following Theorem:
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Algorithm 1: An accelerated primal-dual scheme of the proposed model (11).

• Initialize: f0 = b, f̄0 = f0
ag = f0,d0 = I,d0

ag = d0,

• Repeat until R(f i) < ρ:

f imd = (1− 1
βi

)f iag + 1
βi
f i,

di+1 = µτiWf̄i+di

max(1,|µτiWf̄i+di|)
,

f i+1 = f i − ςi
(
µWTdi+1 + AT (Af i − b)p−1

)
,

f i+1
ag = (1− 1

βi
)f iag + 1

βi
fi+1,

di+1
ag = (1− 1

βi
)diag + 1

βi
di+1,

f i+1 = f i+1 + θi(f i+1 − f i).

Theorem 3.1. Choose the parameters βi, τi, ςi and θi such that for all i ≥ 1,
β1 = 1, βi+1 = 1 + βiθi+1

0 ≤ θi ≤ min{ ςi−1

ςi
, τi−1

τi
}

1
ςi
− 1

βi
− L2

Wτi ≥ 0.
(20)

let (f i,di) be the sequence derived form Algorithm 1, then the following conclusion
hold:

(a) there exists a saddle-point (f?,d?) such that

f i → f? and di → d?.

(b) the limitation f? is exactly the solution of (11).

Proof. (a) can be immediately proved following the Theorem 2.1 in [17]. Moreover,
according to Proposition 3.1 in [19], (b) is equivalent to (a). Thus Theorem 3.1 is
proved.

4. Experimental results and analysis. In this section, in order to examine the
effectiveness of the proposed method, we present and analyze the experimental
results on some synthesized and real blurry images. Note that all the following
experiments are implemented in Matlab R2013a on an Intel(R) 3.33 GHz PC with
12 GB RAM. In what follows, we set the parameters of energy (5) and (11) as
ξ = 0.01, and ν = 8; set the stopping criteria of Algorithm 1 as ρ = 10−4; and set the
parameters of the APD algorithm according to (20), i.e., βi = i+1

2 , τi = 1, ςi = i
2+i

and θi = i−1
i .

4.1. Effect of blur map. In first part of the experiments, we will verify the effect
of our blur map generation algorithm using some synthesised blurry images. For
comparison, the results of two other outstanding blur map generation methods, i.e.,
Zhuo and Sim’s method (ZS) [52] and Shen et al.’s method (SHP) [39], will also
presented.

In Figure 4, we synthesise an image using four squares where each one processes
a constant intensity (see (a)), and then blur 191th-210th and 271th-330th columns
of the image by 1 and 4 blur levels respectively. The blurry image are shown in (b).
Obviously, there are three edges in (b): the left edge is sharp, the middle edge has
a little blur, while the right edge is much blurry.

The blur maps of Figure 4(b) generated by ZS [52], SHP [39] and proposed
methods are shown in (c)-(e), respectively. From these results, it can be seen that
the result of ZS is gradient-related (see Figure 4(c) and green line of (g)), which
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(a) (b) (c)

(d) (e) (f)
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(g)

Figure 4. (a) a sharp image (size:100× 400); (b) a blur version
of (a) (the blur levels are 1 and 4 for 171th-230th and 271th-330th
columns, respectively); (c)-(e) the blur maps genrated by ZS [52],
SHP [39] and proposed methods; (f) the ground truth of blur map;
(g) corresponding profiles of 1-st line for (c)-(f).

Table 1. The MAE value of each blur map generated by ZS [52],
SHP [39] and Proposed methods.

ZS [52] SHP [39] Proposed

Figure 4(b) 1.3799 0.6495 0.5308
Figure 5(e) 0.4043 0.3753 0.3751
Figure 5(f) 0.3959 0.3950 0.3684
Figure 5(g) 0.4811 0.4455 0.3064
Figure 5(h) 0.4823 0.4756 0.3418

means that it will change according to the varying of image structures, rather than
the real blur. SHP’s result seems acceptable (see Figure 4(d) and blur line of (g)).
However, it has a jump around the 100-th column, where actually has no blur. On
the contrary, the proposed result is more approximate to the ground truth visually
(see Figure 4(e) and red line of (g)).

To validate those observations, a well-known quantitative metric, termed mean
absolute error (MAE), is adopted to evaluate the blur maps. Note that for better
illustration, we also measure the estimated blur maps generated from other four
synthesized blurry images. The blurry images are shown in Figure 5(e)-(h), where
the first/last two images are the blurred versions of the original natural image
(a)/(b) using (c) and (d) as blur maps, respectively. The quantitative results are
given in Table 1. It can be observed from this table that the proposed method has
the best MAE values. Therefore, our blur map generation method is acceptable.
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Figure 5. (a) and (b) are original images; (c) and (d) are two
blur maps (range: 1-5); (e): the blurred version of (a) using (c) as
blur map; (f): the blurred version of (a) using (d) as blur map; (g):
the blurred version of (b) using (c) as blur map; (h): the blurred
version of (b) using (d) as blur map.

A

B

(A1) Matlab

(B1) Matlab

(A2) XJ [49]

(B2) XJ [49]

(A3) CJLS [8]

(B3) CJLS [8]

(A4) SHP [39]

(B4) SHP [39]

(A5) Proposed

(B5) Proposed

Figure 6. Synthesised experiments: (A1-A5)/(B1-B5) are the de-
blurred results (with zoomed regions) of Figure 5(e)/(f) by Matlab,
XJ [49], CJLS [8], SHP [39], and proposed methods, respectively.

4.2. Simulated images. In second part of the experiments, we use the aforemen-
tioned four synthesized images (Figure 5(e)-(h)) to test the behavior of our method,
and adopt peak signal to noise ratio (PSNR), structural similarity (SSIM) index [45],
and sharpness index (SI) [3] to measure the quality of deblurred images. Notice that
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A

B

(A1) Matlab

(B1) Matlab

(A2) XJ [49]

(B2) XJ [49]

(A3) CJLS [8]

(B3) CJLS [8]

(A4) SHP [39]

(B4) SHP [39]

(A5) Proposed

(B5) Proposed

Figure 7. Synthesised experiments: (A1-A5)/(B1-B5) are the
deblurred results (with zoomed regions) of Figure 5(g)/(h) by Mat-
lab, XJ [49], CJLS [8], SHP [39], and proposed methods, respec-
tively.
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(b) SSIM
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(c) SI

Figure 8. PSNR, SSIM, and SI values corresponding to each figure.

to calculate PSNR and SSIM, both the deblur result and original reference image
should be given, while SI can be computed with only the single deblur image. For
each metric, higher value represents a better deblurring performance.

Besides, we compare our method against the other four state-of-the-art methods,
i.e., the ‘deconvblind’ function in Matlab (hereinafter referred to as “Matlab”), Xu
and Jia’s method (XJ) [49], Cai et al.’s method (CJLS) [8] and SHP method [39], in
which the first three methods are the spatially invariant blind deblurring methods,
while the last one is the spatially variant blind deblurring method. We note that all
parameters of the above algorithms are set according to the authors’ recommenda-
tions, and we set the initial PSF of the ‘deconvblind’ as gaussian distribution with
size of 4× 4.

The corresponding deblurred results are shown in Figures 6 and 7, in which
the first-fifth columns are respectively the results of Matlab, XJ, CJLS, SHP and
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(a) Input (b) Matlab (c) XJ [49]

(d) CJLS [8] (e) SHP [39] (f) Proposed

Figure 9. Original image and its deblurred results with zoomed
regions. (a) The original image (RGB,296×877 pixels); (b)-(f) the
results of Matlab, XJ [49], CJLS [8], SHP [39], and the proposed
methods.

the proposed methods. From these figures, it is clear that the proposed method is
empirically approaches the ground truth of the original images. On the contrast, the
results of Matlab, XJ and CJLS are either over-deblurred on the regions with little
blur, or under-deblurred in the high blurry regions. Such results are not surprising
as the spatially invariant methods just assume an invariant kernel overall the image.
As an spatially variant method, SHP first dealt with spatially invariant non-blind
deblurring based on the L1-L2 optimization using different blur scale, then used the
blur map to do scale selection to reconstruct the deblurred images. These results
(i.e., Figures 6(A4) and (B4), Figures 7(A4) and (B4)) are thus better than the the
spatially invariant methods. However, since this method is not precisely spatially
variant, it is reasonably worse than our proposed method.

As an example, we can see that Figures 6(A1)-(A2) are over-deblurred on the
left-side, and are blurry on the right-side. Figure 6(A3) is over-deblurred overall
the image, Figure 6(A4) is clearer than (A1)-(A3), while there are some artifacts
on the right buttons. Figure 6(A5) is the best one among (A1)-(A5) since it has
fewer artifacts and clearer than (A1)-(A4). For instance, as shown in the zooming
area, the numbers ‘7’, ‘8’ and ‘9’ in Figure 6(A5) are clear, while are ambiguous in
(A1)-(A4).

The above analyses and observations are also confirmed by the image quality
indicators PSNR, SSIM, and SI. As shown in Figure 8, our results outperform the
others with respect to all metrics. E.g. the PSNR of our result (A5) is at least
5 larger than that of the other methods. As other three kind of results are also
present the similar results. Those show that our method performed well over these
images, and the results are of good quality with few artifacts.

4.3. Real images. In the third part, we will present the comparison studies on
some real blurred images. Since the reference image is not available, here we only
use the aforementioned SI as the quality metric. We also compare our method
with aforementioned four methods, i.e., the ‘deconvblind’ function in Matlab, XJ
method [49], CJLS method [8], and SHP method [39]. The comparison results are
shown in Figures 9-11, and the corresponding quality results are given in Figure 8(c).
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(a) Input (b) Matlab (c) XJ [49] (d) CJLS [8] (e) SHP [39] (f) Proposed

Figure 10. Original image and its deblurred results with zoomed
regions. (a) The original image (RGB,800×600 pixels); (b)-(f) the
results of Matlab, XJ [49], CJLS [8], SHP [39], and the proposed
methods.

(a) Input (b) Matlab (c) XJ [49]

(d) CJLS [8] (e) SHP [39] (f) Proposed

Figure 11. Original image and its deblurred results with zoomed
regions. (a) The original image (RGB,550×760 pixels); (b)-(f) the
results of Matlab, XJ [49], CJLS [8], SHP [39], and the proposed
methods.
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Table 2. Time comparison with other methods (second).

Figure 5(e) Figure 5(f) Figure 5(g) Figure 5(h) Figure 9(a) Figure 10(a) Figure 11(a)

image size 300× 286 300×286 265×300 265×300 200×300 800×600 534×800
Matlab 1.18 1.22 1.00 1.17 2.03 6.70 6.00
XJ [49](C) 6.45 6.55 6.36 6.35 11.43 18.01 16.95
CJLS [8] 86.59 83.74 88.27 89.84 194.95 780.30 693.77
SHP [39] 70.21 69.40 72.26 71.55 126.37 187.01 168.68
Proposed 38.33 37.60 34.98 36.46 93.45 137.93 141.32

In these three figures, (a) shows the original input image, (b)-(f) illustrate the
results generated by the Matlab, XJ, CJLS, SHP and proposed methods, respec-
tively. The deblurred results of these methods may differ from each other with
different type of image content and the blurring degree. However, from an overall
perspective, the proposed method consistently works well, and can recover details
with effective quality and few artifacts, while the results of other four compared
methods seem inferior than the proposed outcomes.

In detail, the Matlab, XJ and CJLS methods perform not very well in all the
figures. For example, as seen in Figure 9, compared with original image (a), (b)
and (c) are somewhat clear on the close-shot while blurring on the long-shot. (d) is
relatively clearer than (b) and (c) yet it contains much artifacts. The performance
of the SHP method relies on how well the separability of blur map, it has blurry
results in (e). Compared with (a)-(e), the content in (f) are more pleasing. As
shown in the zooming of (f), the word ‘Rafael’ is much more clear and contains
fewer artifacts.

Therefore, the results of the proposed method, which is efficient and visually
pleasant with few noticeable artifacts, are consistent on these images and, in general,
outperforms that of some other methods.

4.4. Efficiency analysis. In the last part, to overall evaluate the computational
efficiency, we test all the compared methods and the proposed method on the afore-
mentioned eight blurred images, i.e., Figure 5(e)-(h), Figures 9-11(a). Please note
that XJ method is implemented by C program [50], while others is implemented by
Matlab. The CPU time requirements are presented in Table 2.

According to Table 2, The Matlab and XJ methods are the fastest among the
five compared methods. However, as shown in above two parts, the results of these
two methods are not satisfactory in both performance and visual quality. By taking
the Figure 6 as an example, we can see that the PSNRs of our method is nearly 7
lager than that of Matlab, and 5 larger than that of XJ method. As for other three
methods, our method is the best one.

Moreover, the CPU time of the proposed method can still be reduced at least
via two possibilities: (1): a computer with better configuration since ours is not
good enough; (2): employing the parallel computing techniques since some time-
consuming procedures, such as the calculating of NHC (see (4)), can be computed
in paralleling way.

5. Conclusions. We have introduced a tight-frame based method for spatially-
varying out-of-focus blur removal. The proposed method first generated the blur
map using normalized Hölder coefficient and a TV based refining algorithm, then
discussed the properties of corresponding kernel matrix. A tight-frame based en-
ergy functional was thus built. For tackling functional more efficiently, we used an
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APD algorithm to obtain the minimizing solution. The performance of the pro-
posed method has been compared with some state of the art algorithms for both
synthesized and real images. The quantitative and qualitative results on test images
demonstrated that our method can generate reasonable blur maps and can remove
the blur efficiently with few artifacts.

Till now, the spatially-varying deblurring is still a high challenging task, and
there are many open questions that should be investigated. Our method is effective,
but it also can be improved. For example, in blur map estimation step, we cannot
distinguish whether a blur texture is caused by defocus or blur texture. Further
research will be tried to develop some more precise blur map estimation methods.
Besides, the existing spatially-varying deblurring methods mainly estimate the blur
kernel and deblurred image independently. We will extend our work to obtain them
simultaneously for more excellent deblurring results in future.
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Appendix.

Proof of property 2.1.

Proof. Let

Rj(A) =

MN∑
k=1,k 6=j

|Ajk|, 1 ≤ j ≤MN,

where Ajk is the element of A at pixel (j, k). By Gershgorin circle theorem [26],
all the eigenvalues of A are located in the union of MN discs:

MN⋃
j=1

{|Z −Ajj | ≤ Rj(A)} ≡ G(A).

We know that

Rj(A) ≤ Rj(A) + Ajj =

MN∑
k=1

|Ajk| = 1,

which implies that G(A) ⊂ U, where U is the unit disc centered at origin. Thus,
all the eigenvalues of A are smaller than the radius of U, i.e., λm < 1.

Proof of property 2.2.

Proof. Recall that g(x,σ(x)) is a Gaussian function, i.e.,

(21) g(x,σ(x))(y) =
1√

2πσ(x)
exp (−‖y − x‖

2

2σ2(x)
), for y ∈ Nx,

where Nx denotes a neighborhood of x.
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Because of the separability of Gaussian function, (21) can be rewritten as:

(22)
g(x,σ(x))(y) = 1√

2πσ(x)
exp (− |y1−x1|2

2σ2(x) ) exp (− |y2−x2|2
2σ2(x) )

:=
√

2πσ(x)g1(x)(y1)g2(x)(y1).

Then (g ~ f)(x) in (1) equals to:

(g ~ f)(x) =
√

2πσ(x)g1(x) ~ g2(x) ~ f(x).

The matrix form of the above formula for whole image is exactly
√

2πdiag(σ)A1A2.
Thus Property 2.2 is proved.

Proof of property 2.3.

Proof. Using Property 2.2, we can readily obtain the following inequality according
to the compatibility of matrix norm:

‖A‖ ≤
√

2π‖diag(σ)‖‖A1‖‖A2‖.
For any matrix, the induced norm is essentially the largest singular value. Thus,
the induced norm of the diagonal matrix diag(σ) can be readily given as,

‖diag(σ)‖ = σm.

To obtain the bound of ‖A1‖, we can first look for the bound of ‖A1ϕ‖2:
(23)

‖A1ϕ‖2 =

MN∑
j=1

(
MN∑
k=1

A1
jkϕk

)2

≤ 2

MN∑
j=1

MN∑
k=1

(A1
jk)2ϕ2

k = 2

MN∑
k=1

MN∑
j=1

(A1
jk)2

ϕ2
k,

where A1
jk and ϕk are the elements of A1 and ϕ at pixels (j, k) and k, respectively.

We know that A1 is the matrix form of the g1, and g1(x) is a 1-D Gaussian
function. Let j = (x2 − 1)M + x1, the j-th row of A1 is exactly constructed
from the discrete version of g1(x). Besides, given g1(x) with an arbitrary variance,
when |y1−x1| = 0, g1(x)(y1) < 1 always holds. Furthermore, due to the symmetry
property of Gaussian function, when |y1−x1| = 1, there are three values that greater
than or equal to g1(x)(y1). That is, g1(x)(y1) < 1

3 . Analogously, g1(x)(y1) < 1
2k+1

holds when |y1 − x1| = k.
Thus, under the symmetric boundary conditions, the upper bound of A1

ij is given
by,

(24) A1
jk <

1

2|j − k|+ 1
, where j, k ∈ [1,MN ].

Accordingly, (23) can be further rewritten as:

(25)

‖A1ϕ‖2 < 2
MN∑
k=1

ϕ2
k

MN∑
j=1

( 1
2|j−k|+1 )2

≤ 2
MN∑
k=1

ϕ2
k

(
2
∑
j=0

1
(2j+1)2 − 1

)

≤ 2

(
2
∑
j=0

1
(2j+1)2 − 1

)
= 2

(
3
2

∑
j=1

1
j2 − 1

)
= π2

2 − 2.

Thus, we have ‖A1‖ <
√

π2

2 − 2.

Since the 1-D Gaussian function g2(x) is the same as g1(x) except the direction
of convolution, the bound of ‖A2‖ is the same as ‖A1‖.
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Therefore, taking all above into account, we have

‖A‖ ≤
√

2π‖diag(σ)‖‖A1‖‖A2‖ ≤
√

2π(
π2

2
− 2)σm = L.

Proof of property 2.4.

Proof. As shown in Theorem 2.1 of [6], for any α in the interval [0, 2], no singular

value of A exceeds max
k

{
MN∑
j=1

|Ajk|α
}
· max

j

{
MN∑
k=1

|Ajk|2−α
}

. Let α = 1, since

MN∑
k=1

|Ajk| = 1, and each column has at most (2r + 1)2 non-zero elements, we have,

‖A‖ ≤ max
k


MN∑
j=1

|Ajk|

 ·max
j

{
MN∑
k=1

|Ajk|

}
≤ max

k


MN∑
j=1

|Ajk|

 ≤ (2r + 1)2.
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