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Abstract In this paper, we propose a variational multiphase image segmentation model
based on fuzzy membership functions and L1-norm fidelity. Then we apply the alternating
direction method of multipliers to solve an equivalent problem. All the subproblems can
be solved efficiently. Specifically, we propose a fast method to calculate the fuzzy median.
Experimental results and comparisons show that the L1-norm based method is more robust
to outliers such as impulse noise and keeps better contrast than its L2-norm counterpart.
Theoretically, we prove the existence of the minimizer and analyze the convergence of the
algorithm.
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1 Introduction

As a fundamental step in image processing, image segmentation partitions an image into
several disjoint regions such that pixels in the same region share some uniform characteristics
such as intensity, color, and texture.During the last two decades, image segmentationmethods
using variational methods and partial differential equations are very popular due to their
flexibility in problem modeling and algorithm design. There are two key ingredients of
variational segmentation models. One is how to describe the regions or boundaries between
these regions, and the other is how tomodel the noise and describe the uniform characteristics
of each region.

TheMumford–Shah model [35], a well-known variational segmentation model, penalizes
the combination of the total length of the segmentation boundaries and the L2-norm error
of approximating the observed image with an unknown piecewise smooth approximation.
In other words, the Mumford–Shah model seeks an optimal piecewise smooth function with
smooth boundaries to approximate the observed image.

However, the Mumford–Shah model is hard to implement in practice because the dis-
cretization of the unknown set of boundaries is very complex. Therefore, a parametric/explicit
active contour method is used to represent the segmentation boundaries [49]. In addition, the
special Mumford–Shah model with a piecewise constant approximation is studied by Chan
and Vese [15], and the level set method [37] is applied to solve this problem. Using an
implicit representation of boundaries, the level set method has many advantages over meth-
ods using explicit representations of boundaries. For instance, the level set method handles
the topological change of zero level set automatically [2,8,22]. Both the parametric/explicit
active contour method and the level set method assume that each pixel belongs to a unique
region. An alternative way to represent various regions is to use fuzzy membership func-
tions [6,14,25,34], which describe the levels of possible membership. Fuzzy membership
functions assume that each pixel can be in several regions simultaneously with probability
in [0, 1]. These probabilities satisfy two constraints: (i) nonnegativity constraint, i.e., the
membership functions are nonnegative at all pixels; (ii) sum-to-one constraint, i.e., the sum
of all the membership functions at each pixel equals one. Then the length of boundaries
can be approximated by the Total Variation (TV) of fuzzy membership functions. The main
advantages of using fuzzy membership functions over other methods include: (i) the energy
functional is convex with respect to fuzzy membership functions, guaranteeing the conver-
gence and stability of many numerical optimization methods. (ii) fuzzy membership function
has a larger feasible set, and it is possible to find better segmentation results.

For two-phase segmentation, where there are only two regions, we only need one level set
function or one fuzzy membership function. Multiphase segmentation is more challenging
than two-phase segmentation sincemore variables and constraints are involved in representing
multiple regions and their boundaries effectively. The two-phase Chan–Vese model [15] has
been generalized tomultiphase segmentation by usingmultiple level set functions to represent
multiple regions [44]. Partitioning an image into N disjoint regions requires log2 N level
set functions. The advantage of using multiple level set functions is that it automatically
avoids the problems of vacuum and overlap of regions. However, the implementation is not
easy, and special numerical schemes are needed to ensure stability [27,32,33,42]. For fuzzy
membership functions, the sum-to-one constraint is not satisfied automatically in multiphase
segmentation. However, this constraint is easy to deal with in many cases, e.g., Fuzzy C-
Mean (FCM) and its variants have closed-form solutions for the membership functions and
are widely used in data mining and medical image segmentation [1,4,7,16,24,29–31,38].
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Variable splitting schemes are used in both [30,31] to get efficient numerical algorithms. The
Alternating Direction Method of Multipliers (ADMM) method is used in [24] to derive the
algorithm with two sets of extra variables. Primal-dual type algorithm is derived in [10] to
solve the TV regularized FCM segmentation model. Both [10,24] use projection to simple
to handle the constraints of membership functions. Other segmentation approaches include
a convex approach [9], two-stage methods [11,43], one single level set function approach
[18], et al.

Noise is unavoidable in images, and it is important to develop segmentation methods that
work on noisy images. Among many types of noise, the Gaussian white noise is frequently
assumed, and the L2-norm fidelity is adopted. However, when images are corrupted by
non-Gaussian noise, in order to obtain a faithful segmentation, one has to model the noise
according to its specific type [7,12,23,36,40,47,48]. Particularly, the L1-normfidelity is used
for both salt-and-pepper impulse noise and random-valued impulse noise in image processing
[12,23,36]. In addition, it is robust to outliers and able to preserve contrast because the
denoising process of L1-norm models is determined by the geometry such as area and length
rather than the contrast in the L2-norm case [13].

Inspired by the fact that L1-norm is more robust to impulse noise and outliers and can
better preserve contrast, in this paper,we propose a variationalmultiphase fuzzy segmentation
model based on L1-norm fidelity and fuzzy membership functions. This model can also deal
with missing data in images. When there are missing pixels in an image, we randomly
assign 0 or 255 at these pixels by considering these pixels as corrupted by salt-and-pepper
impulse noise. ADMM [19,20], which was rediscovered as split Bregman [21] and found to
be very useful for L1 and TV type optimization problems, is applied to solve this nonconvex
optimization problem. By introducing two sets of auxiliary variables, we derive an efficient
algorithmwith all the subproblems having closed-form solutions. In the theoretical aspect, we
prove the existence of the minimizer and analyze the convergence of the algorithm. We note
that the proposed method is closely related to the method in [24] since both methods use TV
regularization and ADMM algorithm. The difference is that L1-norm fidelity is considered
in the proposed method, while L2-norm fidelity is used in [24].

The outline of this paper is as follows. In Sect. 2, we review some closely related existing
works. In Sect. 3, the proposedmodel is described in detail, and the existence of theminimizer
to the model is proved. In Sect. 4, a numerical algorithm is derived, and its convergence
analysis is presented. In Sect. 5, experimental results and comparisons are presented to
illustrate the effectiveness of the proposed method. Finally, the paper is concluded in Sect. 6.

2 Related Works

Let Ω ⊂ R
2 be a bounded open subset with Lipschitz boundary, and let I : Ω → R

s be the
given clean or noisy image. Let s = 1 for grayscale images and s = 3 for color images. Our
goal is to find an N -phase “optimal” partition {Ωi }Ni=1 such that Ωi

⋂
Ω j = ∅ for all i �= j

and
⋃N

i=1 Ωi = Ω . Define the set of N -phase fuzzy membership functions as

Δ :=
{

(u1, . . . , uN )

∣
∣
∣ui ∈ BV (Ω), ui (x) ≥ 0,

N∑

i=1

ui (x) = 1, ∀x ∈ Ω

}

,

where BV (Ω) is the space of functions with bounded variation [2]. The closely related works
are listed in the following and will be compared with our proposed method in Sect. 5. For the
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sake of simplicity, we use the notations U = (u1, . . . , uN ) and C = (c1, . . . , cN ) ∈ R
sN ,

where ci ∈ R for grayscale images and ci ∈ R
3 for color images.

– FCM [4]—Fuzzy c-means clustering method that solves

min
(U,C)∈Δ×RsN

N∑

i=1

∫

Ω

|I (x) − ci |2 u p
i (x) dx

using the alternating minimization algorithm. Though p can be any number no smaller
than 1, it is commonly set to 2.

– FCM_S2 [16]—A variant of FCM that solves

min
(U,C)∈Δ×RsN

N∑

i=1

{∫

Ω

|I (x) − ci |2 u p
i (x) dx + α

∫

Ω

∣
∣ Ī (x) − ci

∣
∣2 u p

i (x) dx

}

,

where Ī is obtained by applying the median filter on I and α > 0 is a weight parameter.
It can also be solved by the alternating minimization algorithm, and it is more robust to
impulse noise than FCM.

– FLICM [29]—Fuzzy Local Information C-Means clustering method that solves

min
(U,C)∈Δ×RsN

N∑

i=1

{∫

Ω

|I (x) − ci |2 u p
i (x) dx

+α

∫

Ω

∫

y∈N (x)
(1 − ui (y))

p |I (y) − ci |2 u p
i (x)dydx

}

,

where N (x) is a neighborhood of x . FLICM is more robust to both Gaussian noise and
impulse noise than FCM.

– L2FS [24]—L2-norm fidelity based Fuzzy Segmentation method that solves

min
(U,C)∈Δ×RsN

N∑

i=1

{∫

Ω

‖∇ui (x)‖ dx + λ

∫

Ω

|I (x) − ci |2 ui (x) dx
}

, (1)

by ADMM. Here λ > 0 is a parameter and
∫
Ω

‖∇ui (x)‖ dx denotes the TV of ui with
‖∇ui (x)‖ := √(∇x1ui (x))

2 + (∇x2ui (x))
2 for x = (x1, x2). For fixed C, He et al. [24]

is related to the popular TV denoising method [39]. Note that the similar model is solved
by other fast numerical methods in [30].

– L1SS [26]—L1-norm fidelity based Soft Segmentation method, in which log2 N soft
functions are introduced to represent N phases. Since the model for multiphase seg-
mentation is complicated for more than four phases, we show the four-phase model as
follows:

min
u1,u2∈[0,1],C∈RsN

⎧
⎨

⎩

2∑

i=1

∫

Ω

‖∇ui (x)‖ dx + λ

4∑

j=1

∫

Ω

∣
∣I (x) − c j

∣
∣Mj (x)dx

⎫
⎬

⎭
,

where the membership functions Mj , j = 1, . . . , 4, are represented by soft functions
u1(x), u2(x) ∈ [0, 1] in the following way:

M1(x) = u1(x)u2(x), M2(x) = u1(x)(1 − u2(x)),

M3(x) = (1 − u1(x))u2(x), M4(x) = (1 − u1(x))(1 − u2(x)).
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– L2L0 [43]—L2-norm fidelity and L0-norm regularization based image partition model:

min
u

‖∇u‖0 + λ‖u − I‖22.
This model seeks a piecewise constant approximation of the original image I . Since this
model can not specify the number of classes, a second step is applied to combine some
classes if this model returns more classes than required. Here we apply FCM on the
piecewise constant approximation u to obtain the final segmentation result.

Remark There are two advantages of our proposed method over L1SS. Firstly, we use
fuzzy membership functions to represent regions, where N fuzzy membership functions
are required for an N -phase segmentation. Hence, the solution space is much larger than
L1SS, which ensures the higher possibility to obtain optimal segmentation. Secondly, the
proposed method can take use of other commonly used segmentation methods such as FCM
to gain good initialization of fuzzy membership functions. Multiphase segmentation is sensi-
tive to initialization, and a good initialization is very important for a successful segmentation.
However, it is hard to use the existing segmentation methods to get a good initialization for
soft membership functions in L1SS.

3 The Proposed Model

In this paper, we assume that the given image can be approximated by a piecewise constant
function, i.e.,

I (x) =
N∑

i=1

ciχΩi (x) + n(x).

Here χΩi denotes the indicator function of region Ωi , i.e.,

χΩi (x) =
{
1, if x ∈ Ωi ;
0, otherwise,

ci is a constant that represents the given data in region Ωi , and n can be outliers, impulse
noise or other mixture types rather than Gaussian noise.

Instead of using the L2-norm fidelity to measure the approximation error when the noise
is the Gaussian white noise, we use the L1-norm fidelity. Same as in the Mumford–Shah
model, we require the segmentation boundaries to be smooth. Then we have the following
model

min{Ωi },C

N∑

i=1

∫

Ω

‖∇χΩi (x)‖dx + λ

∫

Ω

∣
∣
∣
∣
∣
I (x) −

N∑

i=1

ciχΩi (x)

∣
∣
∣
∣
∣
dx, (2)

where λ > 0 is a tuning parameter. Note that the TV of χΩi in the first term is equal to the
length of boundary ∂Ωi . An equivalent form of model (2) is

min{Ωi },C

N∑

i=1

{∫

Ω

‖∇χΩi (x)‖dx + λ

∫

Ω

|I (x) − ci | χΩi (x)dx

}

. (3)

BecauseχΩi can take values 0 and 1 only and {χΩi } is a partition, (χΩ1 , . . . , χΩN ) belongs
to the set

Δ0 :=
{

(u1, . . . , uN )
∣
∣ui ∈ BV (Ω), ui (x) ∈ {0, 1},

N∑

i=1

ui (x) = 1,∀x ∈ Ω

}

.
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At any point x ∈ Ω , there is only one function having value 1, and all the other functions
have value 0. Thus set Δ0 is not continuous, which leads to difficulties and instabilities
in numerical implementations. However, we can relax binary indicator functions {χΩi } to
fuzzy membership functions {ui }, which satisfy the nonnegativity constraint and the sum-
to-one constraint, i.e., (u1, . . . , uN ) belongs to the set Δ defined in (2). It is obvious that
ui (x) ∈ [0, 1] andΔ is a simplex at any x ∈ Ω . So ui (x) can be understood as the probability
of pixel x to be in the i th class. Then we can rewrite our model (3) as

min
(U,C)∈Δ×RsN

E(U,C) =
N∑

i=1

{∫

Ω

‖∇ui (x)‖ dx + λ

∫

Ω

|I (x) − ci | ui (x) dx
}

. (4)

Note that model (4) is convex with respect to U and C separately but not jointly. The
difference between (4) and (1) is that the L2 fidelity term in (1) is replaced by the L1 fidelity
term. The existence of a minimizer for E(U,C) in (4) is stated in Theorem 1.

Theorem 1 (Existence of aminimizer)Given an image I ∈ L∞(Ω), there exists aminimizer
of E(U,C) in Δ × R

sN for any parameter λ > 0.

Proof Since E(U,C) is positive and proper, the infimum of E(U,C) must be finite. Let us
pick aminimizing sequence (Un,Cn) ∈ Δ×R

sN that satisfies E(Un,Cn) → infU,C E(U,C)

as n → ∞. Then there exists a constant M > 0 such that

E(Un,Cn) =
N∑

i=1

{∫

Ω

∥
∥∇uni (x)

∥
∥ dx + λ

∫

Ω

∣
∣I (x) − cni

∣
∣ uni (x) dx

}

≤ M.

Then each term in E(Un,Cn) is bounded, i.e., for each i = 1, . . . , N ,
∫

Ω

‖∇uni (x)‖dx ≤ M,

∫

Ω

|I (x) − ci |uni (x)dx ≤ M. (5)

Since uni (x) ∈ [0, 1], we have ∫
Ω
uni (x)dx ≤ |Ω|, where |Ω| is the area of Ω . Together with

the first equality in (5), we have that uni is uniformly bounded in BV (Ω) for all i = 1, . . . , N .
By the compactness property of BV (Ω) and the relative compactness of BV (Ω) in L1(Ω), up
to a subsequence also denoted by {ui }n after relabeling, there exists a function u∗

i ∈ BV (Ω)

such that

uni → u∗
i strongly in L1(Ω),

uni → u∗
i a.e. x ∈ Ω,

∇uni ⇀ ∇u∗
i in the sense of measure.

Then by the lower semicontinuity of the TV semi-norm,
∫

Ω

‖∇u∗
i (x)‖dx ≤ lim inf

n→∞

∫

Ω

‖∇uni (x)‖dx . (6)

Meanwhile since Un = (un1, . . . , u
n
N ) ∈ Δ, we have U∗ = (u∗

1, . . . , u
∗
N ) ∈ Δ.

It is easy to derive the first order optimality condition about cni , which is

0 ∈
∫

Ω

∂|I (x) − cni |uni (x)dx,

where ∂| · | is the subdifferential of | · |. Since uni (x) ≥ 0 and
∫
Ω
uni (x)dx > 0, the above

equation implies that the constant cni satisfies

|cni | ≤ ‖I‖∞.
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By the boundedness of sequence {cni }, we can extract a subsequence also denoted by {cni }
such that for some constant c∗

i

cni → c∗
i , as n → ∞.

Finally, since uni (x) → u∗
i (x), a.e. x ∈ Ω and cni → c∗

i as n → ∞, Fatou’s lemma yields
∫

Ω

|I (x) − c∗
i |u∗

i (x)dx ≤ lim inf
n→∞

∫

Ω

|I (x) − cni |uni (x)dx . (7)

Combining inequalities (6) and (7) for all i , on a suitable subsequence, we established

E(U∗,C∗) ≤ lim inf
n→∞ E(Un,Cn) = inf

U,C
E(U,C),

and hence (U∗,C∗) must be a minimizer of the energy E . This completes the proof. ��
The minimizer of E(U,C) is not unique due to the following hidden symmetry prop-

erty. Denote SN as the permutation group of {1, . . . , N }, i.e., each permutation σ ∈ SN is
defined as a one-to-one map σ : {1, . . . , N } → {1, . . . , N } such that {σ(1), . . . , σ (N )} is a
rearrangement of {1, . . . , N }. Denote Uσ = (uσ(1), . . . , uσ(N )), Cσ = (cσ(1), . . . , cσ(N )). It
is straightforward to show the following theorem.

Theorem 2 (Symmetry of minimizer) For any (U,C) ∈ Δ × R
N and any σ ∈ SN ,

E(Uσ ,Cσ ) = E(U,C).

In particular, suppose that (U∗,C∗) is a minimizer of E(U,C), i.e.,

(U∗,C∗) = argmin
(U,C)∈Δ×RN

E(U,C).

Then, for any σ ∈ SN , we have

(U∗
σ ,C∗

σ ) = argmin
(U,C)∈Δ×RN

E(U,C).

4 The Numerical Algorithm and Its Convergence Analysis

In this section, we provide an efficient algorithm based on ADMM and discuss its conver-
gence.

4.1 The Algorithm

ADMM is applied, in this subsection, to solve the proposed fuzzy segmentation model (4).
We introduce two sets of auxiliary variables D = (d1, . . . , dN ),W = (w1, . . . , wN ) such
that ∇ui = di , ui = wi . Then the model (4) is equivalent to the following minimization
problem with equality constraints:

min
D,W,C,U

N∑

i=1

{∫

Ω

‖di (x)‖dx + λ

∫

Ω

|I (x) − ci | wi (x) dx

}

+ δΔ(W),

subject to ∇ui = di , ui = wi , ∀i = 1, . . . , N ,

(8)

where δΔ is the indicator function of the set Δ, i.e.,

δΔ(W) =
{
0, if W ∈ Δ,

+∞, otherwise.
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The augmented Lagrangian function for problem (8) is:

L (D,W,C,U;�D,�W)

=
N∑

i=1

{∫

Ω

‖di (x)‖ dx + λ

∫

Ω

|I (x) − ci | wi (x) dx

}

+ δΔ(W)

+
N∑

i=1

{
〈
λdi ,∇ui − di

〉+ r

2

∫

Ω

‖∇ui (x) − di (x)‖2 dx
}

+
N∑

i=1

{
〈
λwi , ui − wi

〉+ r

2

∫

Ω

|ui (x) − wi (x)|2 dx
}

,

whereΛD = (λd1 , . . . , λdN ),ΛW = (λw1 , . . . , λwN ) are theLagrangianmultipliers and r is a
positive constant. Here 〈λdi ,∇ui−di 〉 = ∫

Ω
λT
di

(x)(∇ui (x)−di (x))dx , and 〈λwi , ui−wi 〉 =
∫
Ω

λwi (x)(ui (x) − wi (x))dx .
The ADMM solves the primal variables one by one in the Gauss–Seidel style and then

updates the dual variables (Lagrangian multipliers). It can be summarized as follows:

Dk+1 = argmin
D

L
(
D,Wk,Ck,Uk;Λk

D,Λk
W

)
,

Wk+1 = argmin
W

L
(
Dk+1,W,Ck,Uk;Λk

D,Λk
W

)
,

Ck+1 = argmin
C

L
(
Dk+1,Wk+1,C,Uk;Λk

D,Λk
W

)
,

Uk+1 = argmin
U

L
(
Dk+1,Wk+1,Ck+1,U;Λk

D,Λk
W

)
,

λk+1
di

= λkdi + r
(
∇uk+1

i − dk+1
i

)
,

λk+1
wi

= λkwi
+ r
(
uk+1
i − wk+1

i

)
.

In the following, we show how to solve each subproblem and then give the algorithm.

D-Subproblem

The subproblem for D is equivalent to

Dk+1 = argmin
D

N∑

i=1

⎧
⎨

⎩

∫

Ω

‖di (x)‖dx + r

2

∫

Ω

∥
∥
∥
∥
∥
di (x) − ∇uki (x) − λkdi

(x)

r

∥
∥
∥
∥
∥

2

dx

⎫
⎬

⎭
.

This is separable and the optimal solution of dk+1
i can be explicitly expressed using shrinkage

operators. We simply compute

dk+1
i (x) = S

(

∇uki (x) + λkdi
(x)

r
,
1

r

)

,

where S is the shrinkage operator defined as

S(v, τ ) := v

‖v‖ ∗ max (‖v‖ − τ, 0) .
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For the sake of simplicity, we denote this step as

Dk+1 = S
(

∇Uk + Λk
D

r
,
1

r

)

.

W-Subproblem

The subproblem forW is equivalent to

min
W

N∑

i=1

⎧
⎨

⎩

r

2

∫

Ω

∣
∣
∣
∣
∣
wi (x) − uki (x) − λkwi

(x)

r
+ λ
∣
∣I (x) − cki

∣
∣

r

∣
∣
∣
∣
∣

2

dx

⎫
⎬

⎭
+ δΔ(W).

Since Δ is a convex simplex at any x ∈ Ω , the solution is given by

Wk+1 = ΠΔ

⎛

⎝

[

uki + λkwi

r
− λ
∣
∣I − cki

∣
∣

r

]N

i=1

⎞

⎠ ,

where ΠΔ is the projection onto the simplex Δ, for which more details can be found in [17].
We denote the step as

Wk+1 = ΠΔ

(

Uk + Λk
W

r
− λ

∣
∣I − Ck

∣
∣

r

)

.

C-Subproblem

The subproblem for C is

Ck+1 = argmin
C

N∑

i=1

∫

Ω

|I (x) − ci | wk+1
i (x) dx .

It is separable, and ck+1
i can be solved independently. The optimality condition for each ck+1

i
is

0 ∈ −
∫

Ω

∂

∣
∣
∣I (x) − ck+1

i

∣
∣
∣wk+1

i (x)dx . (9)

Because the right-hand side of (9) is maximal monotone [3], the bisection method and
ADMMare applied to solve it [26,28]. The next lemma provides a newway to find an optimal
solution for discrete cases.

Lemma 1 Given a finite non-decreasing sequence {I[ j]}nj=1, i.e.,

I[1] ≤ I[2] ≤ · · · ≤ I[n],

and a non-negative sequence {w[ j]}nj=1 with A = ∑n
j=1 w[ j] > 0, the optimal solution set

for

min
c

n∑

j=1

∣
∣I[ j] − c

∣
∣w[ j], (10)
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is
[
I[ j∗], I[ j∗+1]]

]
, where j∗ and j∗ satisfy

A − 2
j∗∑

j=1

w[ j] ≤ 0 < A − 2
j∗−1∑

j=1

w[ j],

A − 2
j∗+1∑

j=1

w[ j] < 0 ≤ A − 2
j∗∑

j=1

w[ j].

The fuzzy median of {I j }nj=1 with respect to the weight {w[ j]}nj=1 [28], which is defined as
(I[ j∗] + I[ j∗+1]])/2, is an optimal solution. If, in addition, there exists j∗ such that

A − 2
j∗∑

j=1

w[ j] < 0 < A − 2
j∗−1∑

j=1

w[ j],

then j∗ = j∗ − 1, and the optimal solution is unique.

Proof The optimality condition of (10) is

0 ∈ h(c) :=
n∑

j=1

∂|I[ j] − c|w[ j].

We can see that h(c) is non-increasing and it can be expressed as

h(c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A, c < I[1],[
A − 2w[1], A

]
, c = I[1],

A − 2w[1], c ∈ (I[1], I[2]),
· · ·[
A − 2

s∑

j=1
w[ j], A − 2

s−1∑

j=1
w[ j]

]

, c = I[s],

A − 2
s∑

j=1
w[ j], ci ∈ (I[s], I[s+1]

)
,

· · ·
−A, c > I[n].

The range of h is [−A, A], and h(c) can take multiple values when c = I[ j] for any j
with w[ j] �= 0. Therefore, we can always find j∗ such that

A − 2
j∗∑

j=1

w[ j] ≤ 0 < A − 2
j∗−1∑

j=1

w[ j].

Thus 0 ∈ h(I[ j∗]) =
[
A − 2

∑ j∗
j=1 w[ j], A − 2

∑ j∗−1
j=1 w[ j]

]
, and I[ j∗] is an optimal

solution. In addition, we have that h(c) > 0 when c < I[ j∗]. Similarly, we can find j∗ such
that

A − 2
j∗+1∑

j=1

w[ j] < 0 ≤ A − 2
j∗∑

j=1

w[ j],

and I[ j∗+1] is an optimal solution. In addition, we have that h(c) < 0 when c > I[ j∗+1]. Then
h(c) being non-increasing gives us that the set of optimal solutions for (10) is

[
I[ j∗], I[ j∗+1]

]
.

When j∗ = j∗ + 1, the optimal solution is unique. ��
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Remark When there are missing pixels in images, we can put a mask on the data fidelity
term as in image inpainting problems [41] or assign a value to each missing pixel. In [24],
the missing pixels are assigned with zero, and C changes based on the percentage of missing
pixels. While, this lemma tells us that assigning 0 or 255 (for grayscale images) randomly
to these missing pixels will not change the value of c with a high probability because ci
is a weighted median. Also, by assigning 0 or 255 randomly, this algorithm is able to deal
with cases where more than half of the pixels are missing. See the numerical experiments in
Sect. 5.

Assume that I and wk+1
i are vectors in R

n , where n is the total number of pixels. We
can reorder the components of I and wk+1

i such that the monotonicity of I in Lemma 1 is
satisfied. If there are multiple optimal solutions for ci , we choose the smallest one.We denote
this step as

Ck+1 = ψ
(
Wk+1

)
.

U-Subproblem

The subproblem for U is equivalent to

Uk+1 = argmin
U

N∑

i=1

∫

Ω

∥
∥
∥
∥
∥
∇ui (x) − dk+1

i (x) + λkdi
(x)

r

∥
∥
∥
∥
∥

2

dx

+
∫

Ω

∣
∣
∣
∣
∣
ui (x) − wk+1

i (x) + λkwi
(x)

r

∣
∣
∣
∣
∣

2

dx .

It is separable for uk+1
i , and, from the following first order optimality condition for each

uk+1
i :

∇T

(

∇uk+1
i (x) − dk+1

i (x) + λkdi
(x)

r

)

+
(

uk+1
i (x) − wk+1

i (x) + λkwi
(x)

r

)

= 0,

we can derive the closed-form solution of uk+1
i from the equation:

(
∇T∇ + I

)
uk+1
i (x) = ∇T dk+1

i (x) + wk+1
i (x) − ∇T λkdi

(x)

r
− λkwi

(x)

r
.

A diagonalization trick can be applied to find uk+1
i efficiently [45]. We denote this step as

Uk+1 =
(
∇T∇ + I

)−1
(

∇TDk+1 + Wk+1 − ∇TΛk
D

r
− Λk

W

r

)

.

Updating dual variablesWe denote the steps as

Λk+1
D =Λk

D + r
(
∇Uk+1 − Dk+1

)
,

Λk+1
W =Λk

W + r
(
Uk+1 − Wk+1

)
.

Combining all these steps together, we obtain the proposed L1 Fuzzy Segmentation algo-
rithm (L1FS) in Algorithm 1 for solving (4).
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Algorithm 1 The proposed L1FS algorithm

– Initialization: U0 and C0 are specified, Λ0
D = 0, Λ0

W = 0.
– For k = 0, 1, 2, . . ., repeat until the stopping criterion is reached.

Dk+1 = S
(

∇Uk + Λk
D
r

,
1

r

)

,

Wk+1 = ΠΔ

(

Uk + Λk
W
r

− λ|I − Ck |
r

)

,

Ck+1 = ψ(Wk+1),

Uk+1 =
(
∇T ∇ + I

)−1
(

∇TDk+1 + Wk+1 − ∇T Λk
D

r
− Λk

W
r

)

,

Λk+1
D = Λk

D + r
(
∇Uk+1 − Dk+1

)
,

Λk+1
W = Λk

W + r
(
Uk+1 − Wk+1

)
.

– Output: Ck+1,Uk+1.

Remark Though there are four variables D, W, C and U, they can be grouped into two
variables (D,W) and (C,U) and the subproblems for these two variables can be decoupled
into the four subproblems. So it is essentially a two block ADMM applied on a nonconvex
optimization problem.

Because problem (4) is nonconvex, a good initial guess of U0 and C0, which can be
obtained from other methods using fuzzy membership functions, is helpful for the stability
of L1FS. Thus we update D1 and W1 first because both of them can use the initial guess of
U0.

4.2 Convergence Analysis

IfC is given, problem (4) is convex. Then, the algorithm is a standard ADMMby considering
(D,W) together, and its convergence is guaranteed [5]. In this section, we give a convergence
result of Algorithm 1 for unknown C. To simplify notations, let us define the sextuples:

Z := (D,W,C,U,ΛD,ΛW).

A point Z is a KKT point of (8) if it satisfies the following KKT conditions:

∂‖d∗
i (x)‖ − λ∗

di (x) � 0, (11a)

λ|I − C| − ΛW + ∂δΔ(W) � 0, (11b)
∫

Ω

∂|I (x) − c∗
i |w∗

i (x)dx � 0, (11c)

∇T λdi (x) + λwi (x) = 0, (11d)

∇ui (x) − di (x) = 0, (11e)

ui (x) − wi (x) = 0. (11f)

where ∂‖ · ‖ and ∂δΔ(·) are subdifferentials of ‖ · ‖ and δΔ(·), respectively.
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Theorem 3 (Convergence to stationary points of L1FS) Let
{
Zk
}∞
k=1 be a sequence gener-

ated by Algorithm 1 that satisfies the condition

lim
k→∞

(
Zk+1 − Zk

)
= 0.

Then any accumulation point of
{
Zk
}∞
k=1 is a KKT point of problem (8). Consequently, any

accumulation point of
(
Ck,Uk

)
is a stationary point of problem (4).

Proof From the updating formulas in Algorithm 1, we obtain the following inequalities
related to the subsequent iteration:

Dk+1 − Dk = S
(

∇Uk + Λk
D

r
,
1

r

)

− Dk, (12a)

Wk+1 − Wk = ΠΔ

(

Uk + Λk
W

r
− λ|I − Ck |

r

)

− Wk, (12b)

Ck+1 − Ck = ψ
(
Wk+1

)
− Ck, (12c)

(
∇T∇ + I

) (
Uk+1 − Uk

)
= ∇T

(
Dk+1 − ∇Uk

)
+
(
Wk+1 − Uk

)
(12d)

− ∇TΛk
D

r
− Λk

W

r
, (12e)

Λk+1
D − Λk

D = r
(
∇Uk+1 − Dk+1

)
, (12f)

Λk+1
W − Λk

W = r
(
Uk+1 − Wk+1

)
. (12g)

By the assumption lim
k→∞

(
Zk+1 − Zk

) = 0, the left-hand side and right-hand side of each

equality in (12) go to zero as k → ∞. Then we have

S
(

∇Uk + Λk
D

r
,
1

r

)

− Dk → 0, (13a)

ΠΔ

(

Uk + Λk
W

r
− λ|I − Ck |

r

)

− Wk → 0, (13b)

ψ
(
Wk+1

)
− Ck → 0, (13c)

∇T
(
Dk+1 − ∇Uk

)
+
(
Wk+1 − Uk

)
− ∇TΛk

D

r
− Λk

W

r
→ 0, (13d)

∇Uk+1 − Dk+1 → 0, (13e)

Uk+1 − Wk+1 → 0. (13f)

Assume Z∗ = (D∗,W∗,C∗,U∗,Λ∗
D,Λ∗

W) is an accumulation point of Zk . Equation (13)
gives us

S
(

∇U∗ + Λ∗
D

r
,
1

r

)

− D∗ = 0, (14a)
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ΠΔ

(

U∗ + Λ∗
W

r
− λ|I − C∗|

r

)

− W∗ = 0, (14b)

ψ
(
W∗)− C∗ = 0, (14c)

∇TΛ∗
D + Λ∗

W = 0, (14d)

∇U∗ − D∗ = 0, (14e)

U∗ − W∗ = 0. (14f)

By (14a), it follows that D∗ is a solution of the minimization problem

min
D

N∑

i=1

⎧
⎨

⎩

∫

Ω

‖di (x)‖dx + r

2

∫

Ω

∥
∥
∥
∥
∥
di (x) − ∇u∗

i (x) − λ∗
di

(x)

r

∥
∥
∥
∥
∥

2

dx

⎫
⎬

⎭
.

Thus D∗ satisfies the first order optimality condition

0 ∈ ∂‖d∗
i (x)‖ + r

(

d∗
i (x) − ∇u∗

i (x) − λ∗
di

(x)

r

)

.

Using (14e), we simplify the above condition as

0 ∈ ∂‖d∗
i (x)‖ − λ∗

di (x). (15)

By (14b), W∗ is a solution of the following minimization problem:

min
W

N∑

i=1

⎧
⎨

⎩

r

2

∫

Ω

∣
∣
∣
∣
∣
wi (x) − u∗

i (x) − λ∗
wi

(x)

r
+ λ
∣
∣I (x) − c∗

i

∣
∣

r

∣
∣
∣
∣
∣

2

dx

⎫
⎬

⎭
+ δΔ(W).

Hence W∗ satisfies the optimality condition

0 ∈ ∂δΔ(W∗) + r(W∗ − U∗) − Λ∗
W + λ|I − C∗|.

Together with the equality in (14f), the above equation can be simplified as

0 ∈ ∂δΔ(W∗) − Λ∗
W + λ|I − C∗|. (16)

The Eq. (14c) implies that C∗ is a solution of the minimization problem

min
C

N∑

i=1

∫

Ω

|I (x) − ci | w∗
i (x) dx,

and the optimal condition is

0 ∈
∫

Ω

∂
∣
∣I (x) − c∗

i

∣
∣w∗

i (x)dx . (17)

The equivalence of equations (14a)–(14c) with (15)–(17), together with equations (14d)–
(14f) shows that the accumulation point Z∗ satisfies the KKT condition in equations (11a)–
(11f), thus Z∗ is a KKT point of problem (8).

Since problem (8) and problem (4) are equivalent, the convergence of
(
Ck,Uk

)
in the

statement follows directly. ��
The convergence analysis is motivated by Yangyang et al. [46]. This theorem implies that

whenever
{
Zk
}∞
k=1 converges, it converges to a KKT point of problem (8). However, since

the minimization problem (8) is nonconvex, the KKT point is not necessary to be an optimal
solution.
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5 Experimental Results

In order to demonstrate the effectiveness of the proposed method, we compare our method
with some existing methods on both synthetic and real images. These methods (FCM,
FCM_S2, FLICM, L2FS, L2L0, and L1SS) are discussed in Sect. 2. Since the segmen-
tation models in these methods are not jointly convex, and they are easy to get stuck in local
minima, “good” initialization is crucial for all algorithms, especially when the given image
is noisy. For FCM, FCM_S2, and FLICM, the initial U is uniformly distributed in [0, 1]
and normalized to satisfy the sum-to-one constraint. While for TV based methods L2FS
and L1FS, one can also use the results of FCM and FCM_S2 as the initial U and C. Here
we consider three ways for choosing the initial U and C: the result of FCM, the result of
FCM_S2, and U as functions uniformly distributed in [0, 1] and C as the result of FCM. In
all the experiments, we choose the one with the highest performance among all the three
initializations. For L1SS, we use the initialization method as described in the original paper.
The stopping criterion, which is the same for all the methods except L1SS, is defined as

∥
∥Uk+1 − Uk

∥
∥
2∥

∥Uk
∥
∥
2

< ε

where ε is a very small number. For L1SS, this stopping criterion does not work since
L1SS leads to contrast loss due to the error in calculating class centers {ci }Ni=1 at early itera-
tions. However, the contrast of L1SS will be enhanced gradually if the number of iterations
increases. To gain satisfactory results, we choose to stop L1SS by setting the maximum
number of iterations to be 1000.

The parameters of the methods being compared are set as follows. In FCM, we set p = 2.
In FCM_S2, we set p = 2, α = 5, and the window size for the median filter as 5 × 5. In
FLICM, we set p = 2 and the window size of the neighborhoods as 3 × 3 or 5 × 5, which
depends on the noise level. However, the weight parameter λ for L2FS, L1SS, and L1FS
are tuned for each experiment to achieve optimal results. In all experiments, the range of
λ for L2FS is [0.00005, 0.0005], for L1SS is [0.03, 1], and for L1FS is [0.001, 0.05]. For
all methods, ε = 10−6 for the two-phase segmentation and ε = 10−4 for the multiphase
segmentation. We use the default parameters in L2L0 except that we set λ = 10.

The clustering results of all methods are obtained by checking the maximum value of
their membership functions. Then we display the recovered piecewise constant image as the
final result. To compare segmentation results quantitatively, we consider the Segmentation
Accuracy (SA) defined by

SA = #correctly classified pixels

#all pixels
.

The synthetic piecewise constant test images are displayed in Fig. 1. The noisy images
are contaminated by three types of noise: Gaussian Noise (GN) with zero mean and stan-
dard deviation varying from 10 to 80, Salt-and-Pepper Impulse Noise (SPIN) with 10–60%
pixels contaminated, and Random-Valued Impulse Noise (RVIN) with 10 and 60% pixels
contaminated.

5.1 Test on Fig. 1a

Table 1 provides the SA comparison of these six algorithms, and Figs. 2, 3 and 4 show some
of the corresponding results.
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Fig. 1 Synthetic piecewise constant test images. a A two-phase grayscale image with intensities 20 and 128,
size 128 × 128; b a five-phase grayscale image with intensities 0, 63, 127, 192, and 255, size 235 × 237; c a
six-phase color image with color vectors (12 11 242), (242 12 11), (242 241 242), (243 241 12), (12 12 12),
and (12 242 12), size 100 × 100 (Color figure online)

Table 1 SA performance of different methods applied on Fig. 1a contaminated by different levels of GN,
SPIN, and RVIN

GN (σ ) 10 20 30 40 50 60 70 80

FCM 1 0.9970 0.9642 0.9146 0.8627 0.8162 0.7811 0.7524

FLICM 1 0.9999 0.9996 0.9990 0.9975 0.9968 0.9960 0.9954

L2FS 1 1 1 1 1 1 0.9999 0.9998

L1SS 1 1 1 0.9998 0.9996 0.9984 0.9975 0.9965

L1FS 1 1 1 1 1 1 1 0.9998

SPIN (%) 10 20 30 40 50 60

FCM 0.9480 0.8983 0.8478 0.7979 0.7486 0.6980

FLICM 0.9984 0.9921 0.9738 0.8002 0.7313 0.6554

L2FS 0.9999 0.9998 0.9982 0.9983 – –

L1SS 0.9998 0.9990 0.9977 0.9967 0.9956 0.9953

L1FS 1 1 1 1 1 0.9995

RVIN (%) 10 20 30 40 50 60

FCM_S2 0.9985 0.9972 0.9945 0.9862 0.9630 0.9042

FLICM 0.9987 0.9985 0.9970 0.9958 0.9948 0.9919

L2FS 1 1 1 0.9998 0.9995 0.9974

L1SS 1 0.9995 0.9985 0.9979 0.9966 0.9891

L1FS 1 1 1 1 1 0.9976

Best value is highlighted in bold face

For GN, all methods being tested give correct segmentation results for small standard
deviations (e.g., σ = 10). As the standard deviation increases, the SA value of FCM decays
very fast. All the other algorithms have very large SA values evenwhen the standard deviation
is 80. L1FS has the best performance for all cases, and it is able to give correct segmentation
results even when σ ≤ 70. L2FS is the second best algorithm, and it is able to give correct
segmentation results when σ ≤ 60.

The results of all methods when σ = 30 and 60 are displayed in Fig. 2. The results of
FCM are relatively “noisy” (the second column). For FLICM (the third column) and L1SS
(the fifth column), the segmentation error occurs on the middle edge.
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Fig. 2 Two-phase segmentation on the synthetic image Fig. 1a with Gaussian noise. First column images
contaminated by Gaussian noise with standard deviations 30 and 60, respectively; Second column to last
column results of FCM, FLICM, L2FS, L1SS, and L1FS, respectively. The SA values are reported below each
segmentation result. a GN σ = 30. b 0.9642. c 0.9996. d 1. e 1. f 1. g GN σ = 60. h 0.8162. i 0.9968. j 1. k
0.9984. l 1

Fig. 3 Two-phase segmentation on the synthetic image Fig. 1a with SPIN. First column images contaminated
by 20 and 40% SPIN, respectively; Second column to last column results of FCM, FLICM, L2FS, L1SS, and
L1FS, respectively. The SA values are reported below each segmentation result. a SPIN 20%. b 0.8983. c
0.9921. d 0.9998. e 0.9990. f 1. g SPIN 40%. h 0.7979. i 0.8002. j 0.9983. k 0.9967. l 1

For SPIN, Table 1 shows that FLICM performsmuch better than FCM for noise levels 10–
30%. However, if the noise level is higher than 30%, both FCM and FLICM have very poor
performance. L1SS achieves much better performance than FLICM, even when the noise
level is higher than 30%. L2FS is slightly better than L1SS. Meanwhile, if the noise level is
higher than 50%, L1SS fails to give a satisfactory result. L1FS has the highest SA among all
methods. It gives completely correct segmentation results for noise levels 10–50%. Figure 3
shows the results of all methods for noise levels 20 and 40%, respectively. For L2FS and
L1SS, the segmentation errors occur along the middle edge. We also observe that for high
noise levels such as 40%, both L2FS and L1SS suffer from slight contrast loss, e.g., Fig. 3j,
k. However, L1FS is still able to preserve contrast, e.g., Fig. 3f, l.

For RVIN, FCM_S2 is used to initialize U and C for TV based methods L2FS and L1FS.
Table 1 shows that FCM_S2 has the worst performance among all. L1SS is much better than
FCM_S2 especially for high noise levels. FLICM performs slightly better than FCM_S2.
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Fig. 4 Two-phase segmentation on the synthetic image Fig. 1a with RVIN. First column images contaminated
by 20 and 40% RVIN, respectively; Second column to last column results of FCM_S2, FLICM, L2FS, L1SS,
and L1FS, respectively. The SA values are reported below each segmentation result. a RVIN 20%. b 0.9972.
c 0.9985. d 1. e 0.9995. f 1. g RVIN 40%. h 0.9862. i 0.9958. j 0.9998. k 0.9979. l 1

Table 2 SA comparison of different methods applied on Fig. 1b with different levels of GN, SPIN, and RVIN

GN (σ ) 10 20 30 40 50 60 70 80

FCM 0.9987 0.8191 0.6634 0.5849 0.5233 0.4718 0.4319 0.4017

L2FS 1 0.9999 0.9994 0.9978 0.9959 0.9950 0.9931 0.9918

L1FS 1 0.9999 0.9993 0.9980 0.9964 0.9950 0.9931 0.9905

SPIN (%) 10 20 30 40 50 60 – –

FCM 0.9202 0.8431 0.7638 0.6847 0.6096 0.5296 – –

L2FS 0.9926 0.9877 0.9713 0.9673 – – – –

L1FS 0.9977 0.9948 0.9923 0.9894 0.9848 0.9782 – –

RVIN (%) 10 20 30 40 – – – –

FCM 0.9922 0.9809 0.96672 0.9248 – – – –

L2FS 0.9949 0.9923 0.9880 0.9731 – – – –

L1FS 0.9976 0.9957 0.9922 0.9868 – – – –

Best value is highlighted in bold face

L1FS achieves the best performance which is slightly better than L2FS. L2FS gives correct
segmentation results at noise levels 10–30%, while our method L1FS can give the correct
segmentation results at noise levels 10–50%. Figure 4 shows the results for noise levels 20
and 40%. Again, we find that most of the errors occur along the middle edge for FLICM and
L1SS. Moreover, the results of L2FS in Fig. 4j, L1SS in Fig. 4e, k lose some contrast.

Next we analyze the contrast problem for TV based methods. For L2FS, the estimated
intensity ci in each segmented region roughly equals the mean value of the intensities in
that region. In the Gaussian noise case, the noise has zero mean and therefore it has almost
no impact on the estimation of ci . However, for both impulse noise cases, the noise has a
significant influence on the estimation of ci by taking the average.More specifically, assuming
that the impulse noise follows the uniform distribution, its impact on the estimation of ci is
like this. Given an image with intensity range [0, 255], for the region Ωi with true intensity
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Fig. 5 Multiphase segmentation on the synthetic image Fig. 1b with different levels of GN, SPIN, and RVIN.
First row images contaminated different types of noise with different levels. Second row to last row results
of FCM, L2FS and L1FS, respectively. The SA values are reported below each segmentation result. a GN
σ = 30, b GN σ = 60, c SPIN 20%, d SPIN 40%, e RVIN 20%, f RVIN 40%, g 0.6634, h 0.4718, i 0.8431,
j 0.6847, k 0.9809, l 0.9248,m 0.9994, n 0.9950, o 0.9877, p 0.9673, q 0.9923, r 0.9731, s 0.9993, t 0.9950,
u 0.9948, v 0.9894, w 0.9957, x 0.9868

β ≤ 128, if there are more noisy pixels with intensity greater than β than those with intensity
less than β, then ci ≥ β after taking the average and vice versa. Hence, the range of the
image will be shrunk by applying L2FS even when the segmentation is correct, and thereby
the recovered image will suffer from contrast loss. Note that the contrast loss problem has
also been reported for the TVL2 restoration model in impulse noise removal [12]. For L1SS
algorithm, one step of ADMM is used to solve the C-subproblem approximately. Thus ci
is not accurate for the first few iterations. However, since L1SS uses the L1-norm fidelity,
the loss of contrast becomes more and more subtle as the number of iterations increases.
In L1FS, we solve the C-subproblem exactly. Thus, L1FS can preserve contrast well in the
segmentation process.

5.2 Test on Fig. 1b

The performance comparison for the multiphase synthetic piecewise constant gray image
Fig. 1b is shown in Table 2 and Fig. 5.

As shown in Table 2, FCM performs poorly for GN, while L2FS and L1FS perform
relatively well with similar SA. For the noise level σ = 10, both L2FS and L1FS give a

123



J Sci Comput (2016) 69:82–106 101

correct segmentation result. For SPIN, FCM also gives the worst performance in terms of
SA, while L1FS achieves the best performance. L2FS fails to yield a correct segmentation
result when noise levels σ ≥ 50. For RVIN, FCM_S2 achieves high SA values since it
can smooth out some noise in the segmentation process. L2FS performs much better than
FCM_S2, and L1FS performs the best among all methods.

Figure 5 shows some results corresponding to Table 2. The first row is the noisy images
being tested. The second row shows the results of FCM (Fig. 5g–j) and FCM_S2 (Fig. 5k, l).
Most of them looks very “noisy” except Fig. 5k. L2FS and L1FS give very clean results in the
third row and last row, respectively. Comparing the results by L2FS and L1FS for Gaussian
noise, both of them have high visual qualities. However, for SPIN and RVIN, it is obvious
that L1FS preserves the contrast much better than L2FS and has better segmentation results.

5.3 Test on Fig. 1c

In Table 3 and Fig. 6, we test the multiphase synthetic piecewise constant color image Fig. 1c
with various levels of GN, SPIN, and RVIN.

From Table 3, in the GN case, when the standard deviation of noise σ ≤ 20, all the
four methods, including FCM, L2FS, L2L0 and L1FS, give correct segmentation results.
Moreover, both L2FS and L1FS yield correct segmentation results when σ ≤ 40. When
σ ≥ 50, the performance of FCM decreases rapidly, while L2FS, L2L0, and L1FS still
achieve very large SA values. Note that we initialize U randomly for GN in this test. For
SPIN and RVIN, FCM has the worst performance which is far lower than that of the other
three methods. It is also obvious that L1FS outperforms L2L0 and L2FS.

Figure 6 shows some results corresponding to Table 3. The first row shows the tested
noisy images. The results of FCM in the second row seems to be “noisy” in most cases. The

Table 3 SA comparison of different methods applied on Fig. 1c with different levels of GN, SPIN, and RVIN

GN (σ ) 10 20 30 40 50 60 70 80

FCM 1 1 0.9998 0.9958 0.7927 0.7772 0.7488 0.7205

L2FS 1 1 1 1 0.9996 0.9992 0.9989 0.9978

L2L0 1 1 1 0.9999 0.9996 0.9991 0.9983 0.9967

L1FS 1 1 1 1 0.9998 0.9994 0.9985 0.9973

SPIN (%) 10 20 30 40 50 60 – –

FCM 0.8498 0.7294 0.6128 0.5092 0.4248 0.3501 – –

L2FS 0.9960 0.9925 0.9883 0.9822 0.9772 – – –

L2L0 0.9951 0.9880 0.9819 0.9740 0.9401 0.8752 – –

L1FS 0.9973 0.9937 0.9897 0.9854 0.9810 0.9732 – –

RVIN (%) 10 20 30 40 50 60 – –

FCM 0.8971 0.7992 0.6967 0.6085 0.5196 0.4294 – –

L2FS 0.9974 0.9957 0.9899 0.9853 0.9841 0.8988 – –

L2L0 0.9971 0.9955 0.9906 0.9856 0.9727 0.9488 – –

L1FS 0.9988 0.9963 0.9939 0.9906 0.9881 0.9777 – –

Best value is highlighted in bold face
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Fig. 6 Multiphase segmentation on the synthetic color image Fig. 1c with different levels of GN, SPIN, and
RVIN. First row images contaminated different types of noise with different levels. Second row to last row
results of FCM, L2FS, L2L0, and L1FS, respectively. The SA values are reported below each segmentation
result

results of L2FS (the third row), L2L0 (the fourth row), and L1FS (the last row) are very
clean. However, in terms of contrast, it is obvious that L1FS outperforms L2L0 and L2FS
particularly for SPIN and RVIN.

5.4 Test on Real Images

We test some real images including two medical images and six natural images in Fig. 7
without artificial noise. However, the images can be regarded as containing some types of
noise due to the acquisition and transmission processes.

The results of FCM and L1FS are displayed for comparison. One can see that FCM tends
to produce some tiny components and irregular segmentation boundaries. By contrast, L1FS
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Fig. 7 Segmentation on real images. First column and fourth column real color images; Second column and
fifth column results of FCM; Third column and last column results of L1FS (Color figure online)

Fig. 8 Detailed comparison of FCM and L1FS on the woman image. First row six segmented regions of
FCM. Second row six segmented regions of L1FS

tends to smooth out tiny components to generate large ones and smooth boundaries between
regions, which is more natural for human vision system and good for postprocessing. This
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smoothing effect is mainly achieved by total variation regularization in the L1FS model.
Moreover, L1FS preserves slightly better contrast in the piecewise constant approximation
than FCM, which is mainly achieved by the use of the L1-norm fidelity.

In Fig. 7d, f, FCM and L1FS give quite different segmentation results. Obviously, FCM
fails to segment the blue color part of the clothes in the original image, while the proposed
L1FS works well. To illustrate the difference of these two methods, we display, in Fig. 8,
the corresponding six segmented regions of FCM and L1FS for the women image Fig. 7d,
respectively.Wefind that the segmented regions of FCM in Fig. 8a–e are somehow “noisy”. In
particular, the background lattice pattern is partitioned into five regions as shown in Fig. 8a–e.
Compared with FCM, the proposed L1FS gives quite clean segmented regions in the second
row in Fig. 8. Especially, the background lattice pattern are classified into only two classes as
shown in Fig. 8g, h.We further compare the blue parts of the clothes corresponding to Fig. 8c,
i. In Fig. 8c, some background pattern heavily affects the estimation of C, and therefore the
color is not blue any more. However, in Fig. 8i, since the background is clean, the correct
color can be obtained. To sum up, Fig. 8 demonstrates that the proposed L1FS gives smoother
segmentations than FCM.

6 Conclusion

This paper presents a novel piecewise constant image segmentation model based on fuzzy
membership functions and L1-norm fidelity. ADMM is applied to derive an efficient numeri-
cal algorithm, in which each subproblem has a closed-form solution. In particular, an efficient
algorithm is proposed to find the fuzzy median. The numerical results on both synthetic and
real piecewise constant images demonstrate that the proposed method is superior to some
existing state-of-the-art methods since it is more robust to impulse noise and can preserve
better contrast. Even in the case of Gaussian noise, the proposed method can achieve similar
results as its L2-fidelity counterpart. In this work, we assume that the image to be dealt with
is piecewise constant, which works well on images with homogeneous image features. The
future work is to extend this framework to piecewise smooth image segmentation.
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