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A Universal Variational Framework for
Sparsity-Based Image Inpainting

Fang Li and Tieyong Zeng

Abstract—1In this paper, we extend an existing universal
variational framework for image inpainting with new numer-
ical algorithms. Given certain regularization operator ® and
denoting u the latent image, the basic model is to minimize the
Lp, (p = 0,1) norm of ®u preserving the pixel values outside
the inpainting region. Utilizing the operator splitting technique,
the original problem can be approximated by a new problem
with extra variable. With the alternating minimization method,
the new problem can be decomposed as two subproblems with
exact solutions. There are many choices for ® in our approach
such as gradient operator, wavelet transform, framelet transform,
or other tight frames. Moreover, with slight modification, we
can decouple our framework into two relatively independent
parts: 1) denoising and 2) linear combination. Therefore, we
can take any denoising method, including BM3D filter in the
denoising step. The numerical experiments on various image
inpainting tasks, such as scratch and text removal, randomly
missing pixel filling, and block completion, clearly demonstrate
the super performance of the proposed methods. Furthermore,
the theoretical convergence of the proposed algorithms is proved.

Index Terms—Image inpainting, diffusion, exemplar, sparsity,
frame, shrinkage.

I. INTRODUCTION

MAGE inpainting is an important topic in the field of

computer vision and image processing, which aims to
filling-in the missing pixels in an incomplete observed image.
Image inpainting has wide applications such as text and scratch
removal for ancient drawings or old pictures, recovering lost
blocks or pixels damaged during image coding and transmis-
sion, removal of objects in photography or films for special
effects. Ideally, the inpainted image should possess structures
and texture patterns consistent with the given data. Indeed, it
should be natural for human eyes.

Many useful techniques have been proposed in recent years
to address the task of image inpainting, which can be roughly
classified into two categories: pixel based method and exem-
plar based method. In pixel based method, the fundamental
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procedure is conducted on the level of pixel. In contrast,
exemplar based method considers an exemplar (or a patch)
as a fundamental processing element.

Pixel based method includes variational and partial differen-
tial equation (PDE) based method and sparsity based method.
In PDE method, the missing region is filled by diffusing the
image information from the known region into the missing
region. The pioneered work of Bertalmio et al. [1] filled in
the holes by propagating information from the outside of the
inpainting region along isophotes (i.e., level lines of equal
gray values). Ballester er al. [2] proposed to propagate both
image gray values and image gradient vector field into the
holes of missing data. Chan and Shen [3] developed a total
variation (TV) model for local non-texture inpainting, then
derived the diffusion equation as the negative gradient flow
of the Euler-Lagrange equation. Taking account of geometric
information of isophotes (i.e. curvature) in the total variation
diffusion equation, this method can connect some broken
edges. Masnou and Morel [4], and Shen et al. [5] studied
the variational inpainting models based on Euler elastica in
which curvature is also involved. Grossauer et al. [6] used the
complex Ginzburg-Landau equation for digital inpainting in
2D and 3D. Moreover, Bertozzi et al. [7], Burger et al. [8]
adopted the Cahn-Hilliard equation for inpainting binary
image and gray value image. In [9], Tai et al. proposed to first
propagate the isophote directions into the inpainting region
by TV-Stokes equation and then restore the image along the
constructed directions. Numerically, these PDE methods are
implemented with heat flow method which is relatively slow.
Recently, some fast numerical methods have been introduced
in image inpainting. Li et al. [10] addressed a fast numerical
algorithm to solving TV inpainting model. Tai et al. [11]
proposed an efficient algorithm for Euler elastica inpainting
model. Marz et al. [12], [13] proposed fast inpainting method
based on coherence transportation. Ng et al. [14] proposed
to use the augmented Lagrangian method to solve the coupled
problem of blurred image decomposition and inpainting. These
PDE based inpainting techniques achieve good results for
non-texture (cartoon) image with local thin missing region.
However, for larger missing region, the structures in the image
fail to propagate into the missing region and blur effect occurs.

Recently, the sparsity based method has been studied for
image inpainting. The basic idea here is to represent image
by sparse combination of a set of transforms (e.g., wavelet,
contourlet, DCT, tight frame, etc.), and then the missing pixels
can be filled by adaptively updating the sparse representation.
Cai et al. [15] used wavelet tight frame. Chan et al. [16]
applied the Harr-wavelet. Guleryuz et al. [17] proposed an
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image inpainting algorithm based on adaptive sparse recon-
struction and iterated denoising. Elad et al. [18] considered
an image inpainting method using morphological component
analysis (MCA), in which the observed image is decomposed
into texture and cartoon layers such that each layer can
be sparsely represented by a dictionary. This approach is
effective in filling-in regions with both structures and textures,
especially in missing block completion. For large missing
region, similar as the PDE based method, it brings blurring
effect. Fadili et al. [19] proposed an expectation-conditional
maximization (ECM) algorithm for image inpainting and
zooming based on sparse representation. Yu et al. [20] utilized
the structured sparsity based method for image zooming which
provides state of the art results. Ram er al. [21] developed an
image denoising and inpainting method using smooth ordering
of its patches (SOP).

In the exemplar based inpainting method, the image infor-
mation in the known region propagates into the missing region
patch by patch. The texture synthesis method such as [22] is
good at pure texture pattern inpaining. As mentioned above,
PDE based method is good at structure inpainting. However,
natural image usually contains both structure and texture, sub-
stantial works are then needed. Bertalmio et al. [23] proposed
to decompose the observed image into structure component
and texture component, and then inpaint the two components
with PDE method and texture synthesis method separately.
This overcomes the smooth effect of PDE method and can
inpaint relatively larger areas. Criminisi et al. [24] designed an
examplar-based inpainting algorithm by copying the optimal
patch and pasting into the missing region one by one. The
inpainting order (patch priority) and the choice of optimal
patch are thus crucial in this method. Based on non-local mean
filter, Wong [25] proposed to chose optimal patch as weighted
average of its non-local neighborhood. Xu and Sun [26]
considered new patch priority using structure sparsity and
chose optimal patch as a sparse combination of the similar
patches. A geometrically guided exemplar based inpainting
was given in [27] by Cao et al.. Arias et al. [28] proposed
variational framework for exemplar based image inpainting
which combines the local and non-local methods. Compared
with pixel based method, the exemplar based method is
efficient in large missing region inpainting and object removal.
However, exemplar based method is sensitive to patch size and
for small missing region, the result is not so good.

In this paper, we extend an existing universal variational
framework for image inpainting and propose new numerical
algorithms. By utilizing operator splitting method, we get a
relaxed minimization problem with two variables. The two
variables can be easily solved by alternating minimization
method. Then we get a universal framework called iterative
coupled inpainting algorithm. For some special transform @,
to increase the stability of the algorithm, we make some mod-
ification and get the iterative decoupled inpainting algorithm.
In the decoupled algorithm, the iteration scheme is decoupled
into two steps which come from minimizing different energies.
One step is denoising, the other is linear combination of the
denoised image with the observed image. In such a framework,
denoising step becomes crucial. Since image denoising is far
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more widely studied than image inpainting, we can take use
of any denoising method in the first step. For example, the
over complete dictionary learning based denoising method
and BM3D denoising method, which are the two state-of-
the-art denoising methods. By applying the best denoising
method in the first step, we can get state-of-the-art inpainting
results. We remark that the idea of decoupling is inspired
from [43], in which image deblurring problem is decoupled
into denoising and deblurring steps and state-of-the-art result
is achieved.

The paper is organized as follows. In Section II, we propose
the universal model and algorithms for image inpainting.
Some mathematical results are proved in Section III. The
experiments and comparisons with the previous algorithms are
performed in Section IV. Finally, we conclude this work in
Section V.

II. PROPOSED METHOD

In this section, we propose the algorithms for a universal
image inpainting model. Theoretically we prove the conver-
gence of the proposed algorithm.

A. Inpainting Model

Let us denote images as vectors in R" by concatenating
their columns. Assume that Q = {1,2,..., N} is the image
domain, the nonempty set A & Q is the known region, and
Q/A is the inpainting region where the information is missing.
Let f be the given observed image defined on A, and u be
the latent image defined on Q. We first extend f on domain
by cubic interpolation.

Assume that ® € RM*N is a given transform matrix
corresponding to some operator, Py € RV*V is the diagonal
matrix with diagonal entries 1 for the indices in A and 0
otherwise. To fill-in the missing region, we study the following
classical model

. A
min || @ul, + ZIPAG = I3, (1

where 1 is a positive parameter, p > 0. The transformed
coefficients ®u € RM is a column vector, such that its £ p norm
is well defined.

Let us give some interpretation of the model. The first term
can be seen as regularization term which requires that the
coefficient |®u| has small £, norm. When p = 0, ||Du]lo is
defined as the number of nonzero elements in ®u. Smaller £g
norm means that the representation of ®u is more sparse.
When p > 0, ||®ul|, denotes £, norm, which can be seen
as a relaxation of £y norm and is widely studied in the
literature. So the first term can be interpreted as requiring
sparse representation of u by ®. If A = Q, model (1)
becomes denoising model for Gaussian noise. For example,
if ® = V, model (1) is the Rudin-Osher-Fatemi (ROF) denois-
ing model [29]. The corresponding fast numerical algorithms
are widely studied [30], [31]. If @ is wavelet transform,
model (1) is the wavelet shrinkage denoising method [32].
We can set @ as other tight frame transforms such as
DCT [33], curvelet [34], contourlet [35], framelet [36],
in which denoising can also be done by shrinkage.



4244

Actually, there is a wide range of choices for the regularization
operator ¢ in the existing literature.

The second term in model (1) is a data fitting term, which
requires that # should be close to f in the known region A,

u(x) = f(x), Vx €A,
or equivalently,
Pau = Ppf. 2)

This is called hard constraint. Actually, the fidelity term in
model (1) is a relaxation of the hard constraint. Similar fidelity
terms have been used in [3], [7], and [8].

Remark that the hard constraint can also be used in our
framework. However, the relaxed version makes the model
more flexible. For example, it can handle image denoising
and deblurring simultaneously. Moreover, it can be easily
generalized to other problem such as deblurring and inpainting,

, 7
min | ull, + ZIPa(Au = f)ll3 3)

where A is a known blur operator.

B. Algorithm ICI

In the numerical aspect, we use some operator splitting
technique [37] to solve model (1). Firstly, we add a new
variable w to substitute the transformed coefficients ®u, and
rewrite the model as

. A
min [[w|l, + = [Pa(u — f)||%, s.t. ®Pu=w. 4)
u,w 2

Then we get rid of the constraint by quadratic penalty method
and get the approximated model

. u A
min £(w, u) =l|wllp+ 1®u—wll3 + ZIPa@ = ))I5 )

where u is the positive penalizing factor. The approximated
model is then solved by alternating minimization method as
follows.

1) Solving w: Fixing u, the subproblem for w is

. H 2
min [wll, + 5 llo — Qul). ©)

As is well known [38], in the case of p = 0, the subprob-
lem (6) is solved by hard shrinkage, i.e.,

w = max{|Pul, 1/u)sign(®u), @)
where sign function is defined as
1, if x > 0,
sign(x) =10, ifx=0,
-1, ifx <O.
In the case of p =1 [31], problem (6) can be solved by soft
shrinkage formula
w = max{|®u| — 1/u, 0}sign(du). (8)

When 0 < p < 1, there is no closed-form solution and we
will not consider in this paper. In a whole, we use a uniform
notation as

w = shrink, (®u, ),

where v = 1/u, p = 0 denotes hard shrinkage defined in (7)
and p = 1 denotes soft shrinkage defined in (8).
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Algorithm 1 ICI-®

o Initialization: w® = ®(f),u’ = f.
e For k=0,1,2,..., repeat until maximum iteration
is reached

w1 = shrink, (du”, 7),
uk:+1 — (‘I)T(I) + ’YPA>_1 ((I)ka:+1 + ’Y,PAf)

o Output: u**1,

2) Solving u: Fixing w, the subproblem for u is
min [ Pu — w]® + 7 | PaG — f)]3 ©)

where y = 1/u. Assume that ®7 is the conjugate operator
of ®. Then the Euler-Lagrange equation is

T (Du — w) + yPalu— f) =0, (10)

where we have used the simple fact that 77/2\ = Pa. Moreover,
the close form solution for 9 is then given by

u=(®T0+yPr) " (@ w+7yPaf) (11)

Finally, the algorithm is summarized in Algorithm 1 and is
called iterative coupled inpainting (ICI).

Remark that when ® = V, p = 1, model (1) is considered
in [3], where gradient flow method is used in the numerical
implementation. It is obvious that our numerical scheme is
quite different. When @ is tight frame, i.e., ®7® = I, the
iteration of u**! can be simplified as

Furthermore, if the hard constraint (2) is considered, the
iteration formula of u becomes

W =Puf+ (I = POTw . (12)

Plugging w**! into algorithm ICI-® in (12), we obtain the
simplified iteration formula

WU =Py f 4 (I — P)DOT (shrinkp(cbuk, r)) . (13)

Note that this formulation is the same as the iteration
scheme considered in [15], which is derived by other method.
The convergence of iteration scheme (13) is also proved
in [15].

C. Algorithm IDI

We remark that when © is gradient operator, wavelet or tight
frame, it can be formulated as a fixed matrix. In particular,
for wavelet and tight frame, the analysis matrix ® and the
synthesis matrix ®7 satisfies

oo =1

However, for the image adaptive denoising method such as
dictionary learning [39]-[41] and BM3D filter [42], the analy-
sis operator @ is image adaptive, and ®7 is not equal to the
synthesis operator. In the following, we consider BM3D filter
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Algorithm 2 IDI-BM3D

o Initialization: w® = ®(f),u’ = f.
e For k=0,1,2,..., repeat until maximum iteration
is reached

u}k-i,-l — Shrinkp(q)’ll/k7 T)7
W = (T +9Pa) T (B 4 4Pa f).

o Output: u**1,

as an example. Note that similar analysis holds for dictionary
learning.

Assume that the analysis and synthesis operators of
BM3D filter are ® and W respectively. The functions of
® and ¥ are addressed as follows: When applying ® on a
2D image x, we firstly collect similar image blocks in groups,
then stack together the blocks in each group to form 3D data
arrays, finally apply an invertible 3D transform 7 on each
3D data array and get the 3D spectral data arrays w(= ®x).
Furthermore, when applying ¥ on a 3D spectral data arrays w,
we firstly invert each array of by inverse 3D transform 7 !,
then return the blocks of 7~ !(w) to their original positions,
finally the image is reconstructed as a weighted average of all
blocks. In fact, Danielyan et al. [43] have derived the explicit
formulation of ®, ¥. We will not recall the formulation in
this paper in order to save pages since the formulation is long
to write down. It is proved in [43] that ® and ¥ have the
following relationships

oTo=wW>0,¥=w"'o", vyo=1. (14)

The entries of W are defined by the data grouping and
counting the number of times each pixel appears in different
groups, such that the range can be very large. Then the
matrix ®7 ® 4 y Py is ill conditioned and degrades the image
restoration quality. To solve this problem, we replace ®7 by
Y in Algorithm 1 and get a new algorithm, which is called
iterative decoupled inpainting BM3D (IDI-BM3D), see Algo-
rithm 2. We remark that ® and ¥ are image adaptive. Indeed,
we denote ® = ®(uX) and ¥ = ¥ (u*) in Algorithm 2.

Let us give some interpretation of the main iteration steps in
IDI-BM3D. When ¥ = ®7, ICI is equivalent to IDI. However,
it is not true when ¥ # ®7. Different from the original
iteration steps in Algorithm 1 which come from alternately
minimizing the same functional E (w, u), in IDI, w and u are
minimizers of the following optimization with two decoupled
functionals

- 2
Hw:argmlnw lwllp, + 5w — dull3, (15)

u = argmin, lu — Ywll3 + y [Palu — )3

Here the w-problem is for denoising and the u-problem is for
linear combination and projection.

The decoupling process has the advantage that various
denoising methods can be applied in the first step and other
projection methods can be used in the second step separately.
In the denoising step, we can choose the over complete dictio-
nary learning based denoising method and BM3D denoising
method, which are the two state-of-the-art denoising methods.
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In the second step, we can also consider the hard constraint (2)
where the updating formula of u**! changes accordingly,

Ut = PAf 4+ (I — PP L (16)

We remark that the advantage of decoupling has also been
shown in image deblurring and denoising methods [43], [44].
For example, the decoupled method IDD-BM3D [43] is cur-
rently the state-of-the-art deblurring method. In IDD-BM3D,
the two iteration steps are decoupled as denoising and
deblurring. BM3D filter is used in the denoising step.

III. CONVERGENCE ANALYSIS

We restrict p = 1 in this section. We mainly prove the con-
vergence of ICI. Similar arguments hold for the convergence
of IDI algorithm. When the penalty parameter u — 400,
according to the convergence of the quadratic penalty method
[45, Th. 17.1], the solution of (5) converges to (1). But theoret-
ically, it is hard to determine the best value of x. In numerical
application, we choose u by tuning this parameter to achieve
optimal result. In this section, we prove that the sequence
{(wk, u*)} generated by Algorithm 1 converges to a solution
of problem (5).

Let us introduce some notations. Remark that the soft
shrinkage defined in (8) is pointwise. Let us address it more
clearly. For scalar a € R, the 1D soft shrinkage operator

s : R — R is defined as
s(a) := max{|a| — 7, O}sign(a). 17)

For vector a € R”", the soft shrinkage operator is then
defined as

S(a) := (s(ay); - -

We also define a symmetric matrix

i s(an)).

M :=0Td 4 yPy.

With the notations, the iterations in Algorithm 1 can be
rewritten as

wk+1 — S((Duk), (18)
uk+1 — M—l(q)ka+1 + yPAf)
Furthermore, by introducing a linear operator
h(w) == OM 1 (@Tw + y Pp f),
we can rewrite (18) in the following form
Wt = § o h(w"), (19)
I/tk+1 — Mfl ((Dka+l + yPAf)

Firstly we prove that problem (5) has at least one solution.
It is easy to show that the null space of Py is

N(Pr) ={g € RV|g(x) =0, ¥x € A}.
Assume that the following condition holds
N(@) NN (Py) = {0} (20)

Remark that this condition holds for many popular transform
in image processing. For example, when ® = V or ® = W
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(wavelet transform, curvelet transform or other tight frame
transform), we have

N (V) = {cl1} and N(W) = {0}

where ¢ is an arbitrarily constant, such that condition (20)
holds. Under condition (20), we can deduce that the func-
tional E(w,u) in (5) is coercive, i.e., E(w,u) goes to
infinity as ||(w,u)| — oo. Moreover, E(w,u) is convex
and bounded from below. Therefore, by standard argument
in [46], we conclude that E(w, u) has at least one minimizer
pair (w*, u*) which satisfies the Euler-Lagrange equations, or
equivalently

[ w* = §oh(w*), @

u* = MU DTw* +yPaf).

The first equation of (21) means that w* is a fixed point of
S oh. Then the convergence analysis can be established based
on the properties of non-expansive operators S and #.

Remark that the non-expansiveness of 2D soft shrinkage
operator is proved in [47, Proposition 3.1]. The proof of
1D case is not addressed in the literature to the best of our
knowledge, so we give a direct proof.

Proposition 1: For any a, b € R, we have

Is(a) —s)| < |a — b|

and the equality holds if and only if s(a) — s(b) = a — b.

See appendix A for the proof of Proposition 1.

It follows directly from Proposition 1 that S is a
non-expansive operator. We can also prove the non-
expansiveness of operator 4.

Proposition 2: For any w, @ in the range of @, we have

17 (w) —h(@)| < [lw — o (22)

and the equality holds if and only if h(w) — h(®) = w — ©.

See appendix B for the proof of Proposition 2.

Based on Proposition 1 and Proposition 2, we are ready to
prove the convergence of ICI in the following theorem.

Theorem 1: Assume that condition (20) holds. Then for any
fixed z > 0,y > 0, the sequence {(wX,u¥)} generated by
ICI-® converges to a solution (w*, u*) of problem (5).

See appendix C for the proof of Theorem 1.

With similar arguments as in the proof of ICI, we can prove
the following convergence result for IDI when @ is chosen as
BM3D frame.

Theorem 2: Assume that the fix point set of problem (15)
is nonempty. Then for any fixed ¢ > 0,y > 0, the sequence
{(w*, u*)} generated by IDI-BM3D converges to a fixed point
(w*, u™) of problem (15).

See appendix D for the proof of Theorem 2.

IV. EXPERIMENTS AND COMPARISONS

In this section, we apply the proposed algorithm on a
variety of natural images. The application includes the fol-
lowing image inpainting problems: text and scratch removal,
randomly missing pixels filling, and small size missing block
completion. In these examples, we compare the effects of
different regularization operator @ in our framework and we
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also compare our method with some of the existing pixel-
based and patch-based inpainting methods. These methods
include cubic interpolation based on Delaunay triangulation
(implemented by MATLAB routine “griddata”), sparsity based
methods ECM [19] and MCA [18] (the source codes MCAlab
can be downloaded from web page'), exemplar based method
(EBM for short) in [24], coherence transport method [13]
(CTM for short, see the source codes on webpage®) and
smooth ordering patches based method SOP [21]. All the key
parameters are tuned carefully in each method and the optimal
result is chosen to compare.

The default parameters of the proposed methods are
y = 1000, 7 = o is the estimation of noise standard device,
patch size of IDI-BM3D is 8, 16 or 32. We choose the patch
size which is most close to the width of inpainting mask. The
stopping criterion of the proposed algorithms is that the user
defined maximum iteration is attained. The maximum iteration
is set by trail and error. Remark that to speed up the algorithm,
firstly, we choose the cubic interpolation result as initialization
of IDI-BM3D. Secondly, since larger ¢ corresponds to faster
diffusion speed and smaller ¢ corresponds to higher inpainting
quality (which will be addressed in section IV.D), we choose
to decrease the noise estimate o from 15, 10, 5 to 2 during
iteration and for each ¢ we perform the same number of
iterations.

All the experiments are performed under Windows 7
and MATLAB R2012a with Intel Core i7-3840QM
CPU@2.80GHz and 8GB memory. The programming
language is mixed MATLAB and C.

A. Text and Scratch Removal

In Figs. 1-3, we apply the proposed algorithm with different
regularization operator @ on text and scratch removal of a
gray scale image. Typically, we choose @ as gradient operator,
wavelet transform, framelet transform and BM3D transform.
When ® =V, A = VIV 4 y P, is a large sparse matrix and
backslash operator in MATLAB is used to solve u. For BM3D
transform, we use decoupled algorithm IDI-BM3D.

In Fig. 1, the test image Fig. 1(a) is a piecewise smooth
image with simple geometric structures. The white texts in
Fig. 1(b) denote the missing region. Fig. 1(c)-(f) are the
inpainting results of TV, wavelet, framelet and BM3D reg-
ularization respectively. Visually, the result of ICI-wavelet
(Fig. 1(d)) has some artifacts and has the lowest PSNR.
The result of ICI-TV is slightly better than ICI-wavelet.
ICI-framelet gains better visual quality and higher PSNR value
than ICI-TV and ICI-wavelet. The result of IDI-BM3D is
the best which gains PSNR about 9dB higher than others.
It is obvious that TV, wavelet and framelet all fail to recover
the horizontal line in the bottom part since it is broken in
Fig 1(c)-(e). In contrast, IDI-BM3D can recover this line
perfectly in Fig. 1(f).

In Fig. 2, we test the Barbara image with many textures.
Fig. 2(a) is the original Barbara image. The white scratches in
Fig. 2(b) denote the information missing region. Comparing

1 https://fadili.users.greyc.fr/demos/WaveRestore/downloads/mcalab/Home.html
2https://github.com/maerztomlinpajntBCT
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scales Shalj

(a) Slope (b) Mask (c) PSNR=31.84dB

50

(d) PSNR=30.06dB (e) PSNR=33.30dB (f) PSNR=42.46dB

Fig. 1. Text removal by the proposed method with different regularization operator ®. (a) The original image; (b) image with white words as inpainting
mask; (c) result of ICI-TV, iteration = 1000, time = 129s; (d) result of ICI-Wavelet, iteration = 600, time = 17s; (e) result of ICI-Framelet, iteration = 600,
time = 19s; (f) result of IDI-BM3D, patch size = 8, iteration = 200, time = 133s.

(d) PSNR=31.61dB (e) PSNR=33.09dB (f) PSNR=38.21dB

Fig. 2. Scratch removal by the proposed method with different regularization operator ®@. (a) The original image; (b) image with white scratches as inpainting
mask; (c) result of ICI-TV, iteration = 1000, time = 134s; (d) result of ICI-Wavelet, iteration = 600, time = 20s; (e) result of ICI-Framelet, iteration = 600,
time = 48s; (f) result of IDI-BM3D, patch size = 8, iteration = 200, time = 127s.

Fig. 2(c)-(f), we find that our method IDI-BM3D can recover textures can not propagate into the missing region by these
most of the textures and has much higher PSNR than the methods.

others (more than 5dB). However, in Fig. 2(c)-(e) the missing In Fig. 3, IDI-BM3D method achieves higher PSNR
region is filled by smooth information which implies that the values than other three methods about at least one dB.
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(d) PSNR=31.17dB (e) PSNR=34.54dB (f) PSNR=35.58dB

Fig. 3. Scratch and text removal by the proposed method with different regularization operator ®. (a) The original image; (b) image with white words
and scratches as inpainting mask; (c) result of ICI-TV, iteration = 1000, time = 140s; (d) result of ICI-Wavelet, iteration = 600, time = 16s; (e) result of
ICI-Framelet, iteration = 600, time = 53s; (f) result of IDI-BM3D, patch size = 8, iteration = 200, time = 118s.

(c) PSNR=31.39dB (d) PSNR=29.82dB

(e) PSNR=32.03dB (f) PSNR=27.08dB (g) PSNR=31.98dB (h) PSNR=33.85dB

Fig. 4. Text removal by different inpainting methods. (a) The original image; (b) image with inpainting mask marked by white words; (c) result of cubic
interpolation, time = 1.3s; (d) result of ECM [19], time = 157s; (e) result of MCA [18], time = 554s; (f) result of EBM [24], time = 164s; (g) result of
CTM [13], time = 0.1s; (h) result of our method IDI-BM3D, patch size = 8, iteration = 200, time = 217s.

Some difference of the inpainting results can be seen by For instance, the patterns are quite similar along the hor-
zooming in. However, visually the improvement is not very izontal line in Fig. 1(a) and that on Barbara’s scarf in
prominent. Fig. 2(a). While in the Crowd image in Fig. 3(a), there

We remark that in the test images of Figs. 1-2, there are fewer similar structures. From the results in Fig. 1-3,
are many similar structures existing in the same image. we can conclude that IDI-BM3D works much better than
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L4 /. 7
(e) PSNR=27.92dB (f) PSNR=24.73dB (g) PSNR=27.48dB (h) PSNR=29.96dB

Fig. 5. Scratch removal by different inpainting methods. (a) The original image; (b) image with white scratches as inpainting mask; (c) result of cubic
interpolation, time = 1.3s; (d) result of ECM [19], time = 206s; (e) result of MCA [18], time = 539s; (f) result of EBM [24], time = 119s; (g) result of
CTM [13], time = 0.1s; (h) result of our method IDI-BM3D, patch size = 8, iteration = 200, time = 183s.

43

(b) (c) PSNR=28.63dB  (d) PSNR=29.58dB  (e) PSNR=32.71dB () PSNR=33.65dB

(2) (h) (i) PSNR=22.90dB (j) PSNR=26.30dB (k) PSNR=29.71dB (1) PSNR=30.05dB

(n) (o) PSNR=30.13dB  (p) PSNR=28.53dB  (q) PSNR=31.96dB (r) PSNR=32.22dB

Fig. 6. Inpainting results of corrupted versions of images House, Barbara, and Lena with randomly 80% of their pixels missing, obtained with different
reconstruction methods: First column - original image, Second column - corrupted images, Third column - Cubic interpolation, Fourth column - MCA [18],
Fifth column - SOP [21], Sixth column - Ours.

other methods when the image contains many similar patches, If the missing patches exist outside the inpainting region,
while for image with fewer similar patches, the advantage of they can mostly be recovered by IDI-BM3D. However, if no
IDI-BM3D will not be so prominent. The underline reason is  similar patch is available, it is hard to recover the missing
that IDI-BM3D method is based on patch similarity as BM3D. region.
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The experiments in Figs. 1-3 show that IDI-BM3D method
achieves the best result in the four types of transform opera-
tor @. So in the following experiments, we choose IDI-BM3D
as our representative method and compare it with other
methods.

In Fig. 4 and Fig. 5, we test text and scratch removal of
color images, and compare our method with some pixel based
methods and exemplar based method which include cubic
interpolation, ECM, MCA, EBM and CTM. Fig. 4(a) and
Fig. 5(a) show the original Parrot and Butterfly images. The
white text and scratches in Fig. 4(b) and Fig. 5(b) denote the
missing regions. Cubic interpolation gives good results which
have higher PSNR values than ECM and EBM. However,
in the results of cubic interpolation, there are many artifacts
along edges, for example, along the edges of the parrot’s beck
and the black line patterns of the butterfly. We note that EBM
works well for large size object removal. But for small size
inpainting region, the results in Fig. 4(f) and Fig. 5(f) seem
not good which have the lowest PSNR among all. The results
of MCA also have some color artifacts which is very obvious
in Fig. 5(e). The results of CTM in Fig. 4(g) and Fig. 5(g)
seem plausible. However, by careful observation, we can see
some unsatisfactory artifacts. Among all, our method gives the
best results both in visual aspect and in terms of PSNR.

B. Randomly Missing Pixels Filling

In this test, we demonstrate the performance of our proposed
method on randomly missing pixels filling. We compare our
results with cubic interpolation, MCA and SOP. The original
images include House, Barbara and Lena as displayed in the
first column of Fig. 6. The second column of Fig. 6 show
the corrupted images obtained by randomly choosing 80% of
their pixels missing. The missing pixels are displayed in white
color. The third column show the results of cubic interpolation.
There are many artifacts along the edges of the house and
on the texture part of Barbara. MCA blurs the images while
inpainting, see the fourth column. The results of SOP and our
method have the best visual quality. In terms of PSNR, our
method is about 0.5dB (in average) higher than SOP.

C. Missing Block Completion

In this test, we consider relative larger size region inpaint-
ing. We extract a subregion from Barbara and House as
original images, see Fig. 7(a) and Fig. 8(a). The inpainting
mask is a white block with size 32 x 32 as shown in Fig. 7(b)
and Fig. 8(b). The results of cubic interpolation in Fig. 7(c)
and Fig. 8(c) seem not good for this large inpainting region.
ECM oversmoothes the textures on Barbara in Fig. 7(d) and
can not recover the eave in Fig. 8(d). CTM gives somewhat
strange results in Fig. 7(g) and Fig. 8(g). MCA, EBM and
our method provide better results than the others. Among all,
our method has best visual quality and PSNR values. Let us
compare these three methods in Fig. 7. MCA can not recover
most of the textures on Barbara and brings some artifacts
in Fig. 7(e). EBM can recover the textures but bring also
artifacts. Our method can recover most of the textures with
some oversmoothness along edge. In a whole, our method has
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(c) PSNR=25.05dB

é

(f) PSNR=27.93dB

[+
EALN

5@3" ”

(g) PSNR=25.31dB (h) PSNR=30.90dB

Fig. 7. Block completion. (a) The original image; (b) image with white block
mask, size 32 x 32; (c) result of cubic interpolation; (d) result of ECM [19];
(e) result of MCA [18]; (f) result of EBM [24]; (g) result of CTM [13];
(h) result of our method IDI-BM3D.

PSNR of roughly 3dB higher than the second best. For House
image, MCA, EBM and our method can recover the eave.
But some of the lightness are lost in Fig. 8(e). EBM and our
method provide visually perfect results. In terms of PSNR, our
method is about 1dB higher than EBM.

D. Computational Time and Effect of Parameters

To display the computational efficiency of the proposed
algorithm, we report the computational time of each method
in Figs. 1-5. For 256 x 256 gray image and color image,
IDI-BM3D takes about 0.6 and 1 second to perform one
iteration. As a whole, IDI-BM3D achieves the best results at
about 200 iterations in Fig. 1-5 among all compared methods.
From Figs. 1-3, we find that ICI-wavelet and ICI-framelet are
much faster than ICI-TV and IDI-BM3D. The total computa-
tional time of ICI-TV and IDI-BM3D are similar. Fig. 4 and
Fig. 5 tell us that CTM is the fastest one among all which
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(a) House (b) Mask

(c) PSNR=21.53dB (d) PSNR=26.12dB

(g) PSNR=22.76dB (h) PSNR=41.60dB

Fig. 8. Block completion. (a) The original image; (b) image with white block
mask, size 32 x 32; (c) result of cubic interpolation; (d) result of ECM [19];
(e) result of MCA [18]; (f) result of EBM [24]; (g) result of CTM [13];
(h) result of our method IDI-BM3D.

takes only 0.1 second. Cubic interpolation is the second fast
which takes 1.3 seconds. The other methods include ECM,
MCA EBM and our IDI-BM3D consume several hundreds
of seconds. Among all, MCA is the most computational
expensive. Remark that we use the default stopping criterion
of ECM and MCA in the original codes.

There are mainly two parameters in our model, namely,
y and 7. Remark that the parameter 7 is set as the noise
standard deviation estimation ¢ in the denoising step. When
IDI-BM3D is used, there is another important parameter, patch
size. Based on the experiments, we find that our method
is not sensitive to y if it is large enough. The reason is
when y = L s sufficiently large, the projection term will be
dominating in the u subproblem in (5). Therefore, # almost
equals f outside the inpainting region. Inside the inpainting
region, y = 0, so the projection term has no effect. In all
the experiments, y is set to be 1000. Remark that the range
of image is [0,255]. Patch size and 7 are very important
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T

(c) PSNR=41.27dB (d) PSNR=38.87dB

(f) PSNR=28.22dB

(g) PSNR=53.70dB (h) PSNR=50.00dB

Fig. 9. Block completion with different patch size in our method IDI-BM3D.
First column - image with mask, block size 16 x 16; Second column to
Fourth column - our results with patch size = 8, 16 and 32 respectively.

parameters which affect both the computational time and the
image quality.

To illustrate the influence of patch size, in Fig. 9, we test
16 x 16 size block completion with different patch size in
IDI-BM3D. The results show that when the patch size is close
to the missing block, the results gain best visual quality and
PSNR. When the patch size is smaller than the block size, the
eave can not be connected in the House image.

The influence of parameter 7 = o on the proposed
method IDI-BM3D is demonstrated in Fig. 10. We set ¢ =
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50] and apply our method on
Fig. 9(e). The PSNR and computation time as functions
of o are displayed in Fig. 10(a)-(b). We can see that PSNR
is decreasing with o, however, the computational time is
increasing with ¢. That means, high quality image needs more
computational time. We should note that in our experiments
we do the iterations on the whole image, narrow band method
may be used to largely alleviate the computation burden.
When narrow band method is used, we can calculate only
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PSNR (dB) vs. &

20 30 40

()

Computational Time (seconds) vs.c

30 40

20

50
(e}
(b)
Fig. 10. The effect of parameters in our method IDI-BM3D. (a) PSNR vs. 7;
(b) Computational time vs. o.

on narrow band around the inpainting mask and inside the
inpainting region. This will be our future work.

V. CONCLUSION

This paper proposed a universal variational framework
for image inpainting. The major novelty of this paper is
the construction of the universal algorithm framework ICI,
IDI and the convergence analysis. In the ICI framework,
many existing regularization operator can be used. For patch
based regularization operator such as BM3D transform and
dictionary learning, IDI is more suitable than ICI. Experiments
and comparisons showed that the proposed IDI-BM3D can
produce state of the art results in inpainting problems include
text and scratch removal, randomly missing pixels filling and
block completion.

In the future work, firstly, since for images with fewer
similar structures, the advantage of IDI-BM3D is not so
prominent, we will do our effort to enhance the inpainting
quality of this kind of images. One possible way is learning
some patches from other images with the desired structures.
Secondly, we will generalize our framework to other image
processing problems such as image deblurring and image seg-
mentation. With the idea of decoupling, we can utilize the most
efficient regularization schemes such that it is very possible
to enhance the recovered image quality and segmentation
accuracy.
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APPENDIX A
PROOF OF PROPOSITION 1

Let us separate R into three disjoint subsets FEj
(o0, —1),Ey = [—1,7], E3 = (t,4+00) where 7 > 0.
Without loss of generality, we assume a > b. Then there are
the following six cases:

i) a,be Ey,sa)—s)=(a+7)—(b+1)=a—b;

(i) a € E2,b e Ey, |s(a)—s(b)|=10—(b+7)|=—-b—1 <
a—b=|a—->b|

(iii) a € E3,b € Ey, |s(a) —sB)|=la—1)— b+ 1) =
a—b—2t <|a—D>b|

(iv) a € E2,b € E, s(a) —s(b)=0—-0=0;

V) a€ E3,be Ey, |s(a)—s(b)|=la—7t—0|=a—1 <
a—b=|a->b|

(vi) a,be E3,s(a)—s(b)y=(a—1t)—(b—1)=0a—>.

In all the cases, we have |s(a) — s(b)| < |a — b|. The equality
can be hold in case (i)(iv)(vi), in which it obviously holds that
s(a) —s(b) =a —b.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Denote the symmetric matrix 7 = O®M '®T.
We first claim that the eigenvalues of 7', denote as p(T),
satisfy 0 < p(T) < 1. As N(®) N N(Pp) = {0} in
assumption (20), M is positive definite and then M~! is also
positive definite. Hence T is obviously semi-positive definite
with p(T) > 0 since

T=oM M 20T = BTB,

where B = M~>®7. Meanwhile, by [48, Th. 1.3.20],
T = ®M~'®7T have the same eigenvalues as

M'OTd =M M —yPr)=1—yM Py,

As M~ P, and M’%PAM% are congruent matrices,
theirl eigen\l/alues have the same symbols. Moreover, since
M™2PpAM?2 is similar to Pp, they have the same eigenval-
ues. Using the fact that 1(PA) > 0, we can conclude that
A(M~'Pp) = 0 and thus p(T) < 1.

By the definition of %, we have

Ih(w) — k()|
= [oM " (@Tw +yPaf) — oM (DT D+ y Paf)l

= IT(w — )|l <max |p(D)lllw — | < [lw—w].

Let T = UT AU be the eigen-decomposition of T, where U is
an orthogonal matrix and A is a diagonal matrix with elements
in [0,1]. If the equality holds, we have |[UT AU (w — ©)| =
lw — ]|, and then ||AU (w — w)|| = ||U(w — w)]||. Since A is
diagonal with nonnegative elements in [0,1], we deduce that
AU(w — ®) = U(w — ®). Multiplying both sides by U7,
we get h(w) — h(w) = w — w.

APPENDIX C
PROOF OF THEOREM 1

Proof: The non-expansiveness of operators S and & implies

that {w¥} is bounded sequence, and hence there exists a subse-

quence w*i and a limit point w*, such that w* = lim o0 wki |
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Let @ be any fixed point of Sok, namely, 0 = Soh(w). Using
the non-expansiveness of S and &, we get

lwk — Bl = IS o h(w*™") — S o h(D)|| < "' — b

Hence ||w* — @] is monotonically decreasing, and the limit
exists

lim |w* — &) = lim 0% — &) = |w* - D). (23)
k— 00 j—o00

This means that all the limit points of {w*} have equal distance

to . By continuity of S o &, we get
lim whit!,
j—o00

Soh(w*) = lim §oh(wk) =
j—o0
So S o h(w*) is also a limit point of the sequence {w*}, and
then
[w* =l = ||S o h(w*) — d|l = IS 0 h(w*) — S o h(D)]|.

From Proposition 1 and Proposition 2, we know that the above
equality holds if and only if

w* — =hw*) —h@) =8 oh(w") — S oh(®)

Therefore, we get w* = S o h(w*), which means w* is also
a fixed point of S o h. Then we can replace w in (24) by w*,
and get

lim |w*—w*|| = lim |0 —w*|| = |v*—w*| = 0. (24)
k—o00 Jj—o00
It implies the convergence of sequence w*, i.e.,
lim w* = w*.
k— 00

From the second iteration formula in (19), the convergence of
uk follows immediately, i.e.,
lim «* = lim M~ (@7 w* + y Pa f)
k— 00 k—o00
= M7 @ W +yPaS)

=u*.

Therefore, (u*, w*) satisfies (21), which means that it is a
minimizer pair of (5).

APPENDIX D
PROOF OF THEOREM 2
Proof: Replacing ®7 by BM3D synthesis operator ¥ (1)
in all the arguments in the proof of Proposition 2 and
Theorem 1, we find that the key point we need to prove is the
non-expansiveness of operator & defined as

h(w) = WM™ (P @) + y Paf), (25)

where M = I + yPp, YW = Wu*)®T w*). Note
that W(u*) is a diagonal matrix with positive diagonal ele-
ments [43] w; > 0. Let T = ®M~'¥, we claim that the
spectral radius of T satisfies p(T) < 1. To prove this claim, we
assume the singular value decomposition of ® is ® = UZ VT
that U and V are orthogonal matrices, X is diagonal matrix
with nonnegative elements ¢; > 0. Then oTo=vrTzvT,
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By (14), ®T® = W > 0. We deduce that 67 = w; > 0. It is
easy to derive that

T=UIVI(I+yPy)~'WlveTy?
=UzET(+yPr)~' W UT.

Then the ith eigenvalue of 7 is equal to 1 or
that is, p(T) < 1.

Therefore, the proof of Proposition 2 holds when ®, ®7 are
replaced by ®(u¥) and ¥ (u*), and such that Proposition 2
holds for operator i defined in (25). Following a similar
deduction as in the proof of Theorem 1, we can prove
Theorem 2 which is omitted.

Wi <
(I+y)w; — 1,
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