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Abstract In this paper, we propose two variational image denosing/deblurring models which
combine tight frame regularization with two types of existing local constraints. Additive
white Gaussian noise is assumed in the models. By Lagrangian multiplier method, the local
constraints correspond to the fidelity term with spatial adaptive parameters. As the fidelity
parameter is bigger in the image regions with textures than in the cartoon region, our models
can recover more texture while denoising/deblurring. Fast numerical schemes are designed
for the two models based on split Bregman (SB) technique and doubly augmented Lagrangian
(DAL) method with acceleration. In the experiments, we show that the proposed models have
better performance compared with the existing total variation based image restoration models
with global or local constraints and the frame based model with global constraint.

Keywords Image restoration · Tight frame · Local constraint · Split Bregman ·
Doubly augmented Lagrangian

1 Introduction

Images are often blurred and corrupted by Gaussian noise during image acquisition and
transmission process. In many image processing tasks such as edge detection, segmentation
and object recognition, image denoising and deblurring are important preprocessing steps. In
the following, we assume that f is a given grayscale image defined on Ω , a bounded, open
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rectangular subset of R
2, with Lipschitz boundary. Assume that u is the true image and f is

the observed image with blur and Gaussian white noise, that is

f = K u + n.

Here the blurring kernel K is a bounded linear operator from L2(Ω) to L2(Ω), which is
assumed to be known. The quantity n denotes white Gaussian noise with zero mean and
standard deviation σ . The basic variational model for restoration of image with blur and
Gaussian noise is proposed in the seminal work [27,28]. This approach is called ROF model
in the later and is described as follows:{

min
u

∫
Ω

|∇u|dx

s.t.,
∫
Ω
(K u − f )dx = 0,

∫
Ω
(K u − f )2dx = σ 2|Ω|. (1)

Here
∫
Ω

|∇u|dx is called total variation (TV) of u which is widely used as regularization
term in variational models since it can well preserve edges while smoothing out noise [3].
Through the theoretical analysis in [9], we know that the first mean constraint is automatically
satisfied and the second variance constraint is equivalent to:

1

|Ω|
∫
Ω

(K u − f )2dx ≤ σ 2. (2)

The usual way to solve the ROF model is via the following unconstrained problem:

min
u∈BV (Ω)

∫
Ω

|∇u|dx + λ

∫
Ω

(K u − f )2dx, (3)

where the second term is a fidelity term, the given parameter λ > 0 can be regarded as
Lagrange multiplier of the second constraint in ROF model. Evidently, λ plays a very impor-
tant role by controlling the trade-off of regularization and fidelity. If λ is set to be large, then
cartoon regions are well denoised while highly textured regions will loose a great part of its
information. On the contrary, if λ is set to be too small, texture will be kept but noise will
remain in the cartoon regions. Hence a global constraint and thus a global fidelity parameter
λ can not produce satisfactory results simultaneously in different image regions. Therefore
a variable fidelity parameter which is relatively small in cartoon regions and big in texture
regions is favored. Based on this idea, local constraints are proposed to incorporate total
variation regularization [2,4,13,17,20,22,27,31].

The use of local constraints on different regions of image was initially proposed in [27]
without details. In [4], the authors used a set of local constraints to adapt different regions of
the image. They firstly partitioned the image into r regions O1, . . . , Or by some segmentation
method and wrote the model as:{

min
u

∫
Ω

|∇u|dx

s.t., 1
|Oi |

∫
Oi
(K u − f )2dx ≤ σ 2.

(4)

The corresponding unconstrained formulation is then:

min
u

∫
Ω

|∇u|dx +
r∑

i=1

λi

2

1

|Oi |

⎛
⎜⎝∫

Oi

(K u − f )2dx − σ 2

⎞
⎟⎠ ,
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where {λi }r
i=1 is the Kuhn–Tucker vector (Lagrange multipliers) associated to the constraints

in (4) and can be solved with Uzawa’s method [15]. This idea is generalized in [2] by replacing
the family of constraints in (4) as local constraints of variance:

h ∗ (K u − f )2 (x)− σ 2 ≤ 0,∀x ∈ Ω, (5)

where h ≥ 0 is a convolution kernel. By proximal point algorithm [26], the problem is
transformed into:

min
u

max
λ≥0

∫
Ω

√
|∇u| + β2 + γ (u − un)2 + λ(x)

(
h ∗ (K u − f )2 (x)− σ 2) dx,

where un is the value of u in the last iteration. The u subproblem is solved by Chambolle’s
projection method [8] and the iteration scheme of λ(x) follows Uzawa algorithm as:

λ(x) = max
{
λ(x)+ ρ

(
h ∗ (K u − f )2 (x)− σ 2) , 0

}
,

where ρ > 0 is the step size. We remark that in [17], to solve the local constraints model
for denoising, the authors proposed to use gradient descent method and derived an updating
formula of λ(x) from the Euler–Lagrange equation. This method is generalized to multi-
plicative noise case in [22]. In [20], the total variation model with expected value constraints
is studied. In Gaussian noise case, the constraints are:

S(u)(x) :=
∫
Ω

w(x, y)|K u − f |(y)dy ≤ σ,∀x ∈ Ω,

where w is the kernel of mean filter. By penalty method, they derived the updating formula
of Lagrange multipliers λ(x) as:

λ(x) =
∫
Ω

w(x, y) (λ(y)+ ρmax{S(u)(y)− σ, 0}) dy.

In a similar way, the spatially adapted total variation model with L2 local constraints was
studied in [13]. Primal-dual type method and semismooth Newton algorithm were used in
the numerical implementation in both [20] and [13], however, they solved not the original
problems but some regularized versions.

In the above methods, the local constraints are assumed in the space domain. Another
approach is considering the local constraints in the transform domain. In [25], the following
model was proposed: {

min
u

∫
Ω

|∇u|dx

s.t., ‖K u − f ‖D,∞ ≤ τ,
(6)

where D is a dictionary containing finite basis {Ψi }n
i=1, the parameter τ > 0 is depend on

the noise level and ‖u‖D,∞ = supΨi ∈D |〈u, Ψi 〉|. In [34], a theoretical result of this model
suggests that the dictionary must represent sparsely the curvatures of solution image in order
to obtain a better denoising performance. Moreover, the above model was transformed into
the following form in [23]:{

min
u

∫
Ω

√|∇u|2 + β2 + β〈u, 1〉dx

s.t.,±〈K u − f, Ψi 〉 − τ ≤ 0.
(7)
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Remark that the constraints in (6) and (7) are equal. Compared with (6), total variation term is
replaced by new terms in (7) in order to make the functional satisfy coercivity theoretically.
However, the Uzawa algorithm adopted there seems not stable. To tackle this problem, a
stable algorithm based on Chambolle-Pock’s primal-dual method [10] is proposed [24].

It is well known that one drawback of TV based method is the staircase effects which
seems unsatisfactory and brings false edges. The other drawback is the over smoothing of
textures. As we know, tight frame has been proved to be a better regularization technique
than TV in terms of texture preserving. To overcome the drawbacks of TV regularization
and further enhance image quality, in this paper, we propose two novel models combining
tight frame regularization with two types of existing local constraints. In one model, we
use local variance constraints as in (2). While in the other model, we use linear constraints
on the coefficients of dictionary decomposition as in (7). Then fast numerical schemes are
designed for both models by taking use of split Bregman (SB) technique [18] and the doubly
augmented Lagrangian algorithm (DAL) in [21]. The different formulation of the proposed
models and algorithms are based on large amounts of experiments which seem to be the
best among many schemes we tested. The difference between our methods with the previous
works [2,13,20,23,25] are clear. Firstly, the tight frame regularization is used in stead of
TV. Secondly, the numerical algorithms are new since SB and DAL have not been used in
the previous works. Thirdly, the numerical results show that the proposed algorithms have
higher performance than TV based methods.

The remaining part of this paper is organized as follows. In Sect. 2, we briefly introduce
the tight frame, the SB algorithm and the DAL algorithm. Then we propose our Model 1
and Model 2 in Sect. 3. In Sect. 4, we present numerical schemes for both models. Then
the numerical simulation examples are given in Sect. 5, which demonstrate that higher per-
formance can be achieved by tight frame regularization than total variation regularization.
Finally we conclude our paper in Sect. 6.

2 Mathematical Preliminaries

2.1 Tight Frame and Framelet

In this subsection, we give a brief introduction of tight frame and framelet. The tight frame is
widely studied as a regularization method in image restoration problems [5–7]. More details
about tight frame can be found in the book [11] and the reference therein. A countable set
X ⊂ L2(R) is called a tight frame if:∑

h∈X

|〈v, h〉|2 = ‖v‖2
2, (8)

holds for all v ∈ L2(R), where 〈·, ·〉 is the inner product in L2(R). For given Ψ :=
{ψ1, . . . , ψr } ⊂ L2(R), define the affine system by dilations and shifts of Ψ as:

X (Ψ ) := {ψ�, j,k : 1 ≤ � ≤ r; j, k ∈ Z} with ψ�, j,k := 2 j/2ψl(2
j · −k).

When X (Ψ ) forms a tight frame of L2(R), each function ψ�, � = 1, . . . , r, is called a (tight)
framelet and the whole system X (Ψ ) is called tight wavelet frame.

To construct compactly supported framelet systems, one starts with a compactly supported
refinable function φ ∈ L2(R)with a refinement mask (low-pass filter) h0 such that φ satisfies
the refinement equation:
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φ̂(2·) = ĥ0φ̂.

Here φ̂ is the Fourier transform of φ and ĥ0 is the a trigonometric polynomial with ĥ0(0) = 1.
The construction of a tight framelet system is to find a finite set Ψ that satisfies:

ψ̂�(2·) = ĥ�φ̂,

in the fourier domain for some 2π -periodic ĥ�. According to the unitary extension principle
(UEP), X (Ψ ) forms a tight frame provided that the masks ĥ�, � = 0, . . . , r satisfy:

r∑
�=0

ĥ�(η)̂h�(η + pπ) = δp,0, p = 0, 1,

for almost all η ∈ R. Moreover, h�, � = 1, . . . , r corresponds to high pass filters.
In this paper, we adopt the piecewise linear B-spline frame which is widely and success-

fully used in tight frame based image restoration, image inpainting and image segmentation.
It is generated by one low pass filter h0 and two high pass filters h1, h2 which are:

h0 = 1

4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], h2 = 1

4
[−1, 2,−1].

After tensor product, we can get the 2D framelet system generated by one low pass filter
H0 = h0 ⊗h0 and eight high pass filters H1 = hT

0 ⊗h1, H2 = hT
0 ⊗h2, H3 = hT

1 ⊗h0, H4 =
hT

1 ⊗ h1, H5 = hT
1 ⊗ h2, H6 = hT

2 ⊗ h0, H7 = hT
2 ⊗ h1, H8 = hT

2 ⊗ h2. Assume H0

corresponds to the scaling function φ and H1, . . . , H8 corresponds to framelets ψ1, . . . , ψ8.
For a given function f ∈ L2(R2), the L level framelet decomposition of f is the set of
coefficients:{

〈 f, 2−L/2φ(2−L · − j)〉, 〈 f, 2−l/2ψi (2
−l · − j)〉, 1 ≤ i ≤ 8, 0 ≤ l ≤ L

}
.

In the continuous setting, we use W and W T to represent the framelet decomposition and
reconstruction operator. In the discrete setting, a 2D image of size m × n can be represented
as a vector in R

N with N = mn. We can represent the framelet decomposition and recon-
struction as matrix multiplications W u and W T v respectively. Let W0 be the submatrix of
W that corresponds to the decomposition with respect to the refinable function, and Wl,i the
submatrix of W that corresponds to the decomposition at the lth level with respect to the i-th
framelet. With this notation, the matrix W (8L+1)N×N can be written as:

W =
(

W0

(Wl,i )

)
=

⎛
⎜⎜⎜⎜⎜⎝

W0

W1,1

W1,2
...

WL ,8

⎞
⎟⎟⎟⎟⎟⎠ .

By unitary extension principle (UEP), W T W = I, i.e., u = W T W u,∀u ∈ R
N .

2.2 Split Bregman and Augmented Lagrangian Methods

For the general minimization problem:

min
u

‖Φ(u)‖1 + H(u),
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where H(u) is convex, we first transform it into a constrained form:

min
u,d

‖d‖1 + H(u) s.t., Φ(u) = d. (9)

Then the SB algorithm [18] to solve this problem is given by the following iteration scheme:{
(uk+1, dk+1) = arg min

u,d
‖d‖1 + H(u)+ γ

2 ‖Φ(u)− d + bk‖2
2,

bk+1 = bk +Φ(uk+1)− dk+1.
(10)

When using augmented Lagrangian (AL) method to solve problem (9), we first rewrite it as
saddle-point problem:

min
u,d

max
v

‖d‖1 + H(u)+ 〈v,Φ(u)− d〉 + γ

2
‖Φ(u)− d‖2

2, (11)

where v is the Lagrangian multipliers, γ > 0 is a parameter. The iteration scheme is:{
(uk+1, dk+1) = arg min

u,d
‖d‖1 + H(u)+ 〈vk, Φ(u)− d〉 + γ

2 ‖Φ(u)− d‖2
2,

vk+1 = vk + δ
(
Φ(uk+1)− dk+1

)
,

(12)

where δ > 0 is a step size. The first subproblem can be also rewritten as:

(uk+1, dk+1) = arg min
u,d

‖d‖1 + H(u)+ γ

2
‖Φ(u)− d − vk

γ
‖2

2.

Let δ = γ and bk = vk

γ
, we obtain the equivalence of SB algorithm in (10) and AL algorithm

in (12). SB and AL methods have been widely used in solving image processing problems
[1,19,30,32,33].

Furthermore, the first subproblem in (9) can be solved by alternating minimization scheme
with one iteration which gives the alternating split Bregman (ASB) algorithm:⎧⎪⎨

⎪⎩
uk+1 = arg min

u
‖dk‖1 + H(u)+ γ

2 ‖dk −Φ(u)− bk‖2
2,

dk+1 = arg min
d

‖d‖1 + H(uk+1)+ γ
2 ‖d −Φ(uk+1)− bk‖2

2,

bk+1 = bk +Φ(uk+1)− dk+1.

Similarly, the ASB algorithm is equivalent to the alternating direction method of multipliers
(ADMM) algorithm [16], see [14,29] for details.

2.3 Doubly Augmented Lagrangian Method

Although the convergence of ASB as well as the ADMM method has been extensively studied
for convex problems, we can only guarantee the convergence of the dual variable (bk) but
not the primal variables (uk, dk). This is one of the motivations of the introduction of the
DAL method [21] which has a comprehensive convergence analysis. In the DAL method, the
problem (9) is transformed into a saddle-point problem:

min
u,d

max
v

{
‖d‖1+H(u)+〈v,Φ(u)−d〉+ γ

2
‖d−Φ(u)‖2

2+ η1

2
‖u − ū‖2

2+ η2

2
‖d − d̄‖2

2

}
,

with parameters γ, η1, η2 > 0. The iteration scheme is given by:{
(uk+1, dk+1)=arg min

u,d
‖d‖1+H(u)+ γ

2 ‖d−Φ(u)−bk‖2
2+ η1

2 ‖u−ū‖2
2+ η2

2 ‖d−d̄‖2
2,

bk+1 = bk + (Φ(uk+1)− dk+1
)
,
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where ū and d̄ can be taken as uk and dk or other forms. The relation of b and v are as in
Sect. 2.2. We remark that the DAL method is used to solve image restoration model effectively
with l0 norm regularization in [12].

3 The Proposed Models

In this paper, we focus on texture image restoration. Based on the literatures [5–7,11] and the
experiments therein, we know that frame based regularization techniques is very efficient in
image processing problems such as image denoising, image debluring and image inpainting
et al. Meanwhile, as is studied in Sect. 1, model with local constraints seems better than
global constraint in preserving textures while smoothing. Hence, in order to better recovering
textures, we propose two models based on tight frame regularization and two types of existing
local constraints for image restoration. In the following, we assume K is the blur operator
for image deblurring problem and K = I for image denoising problems such that we can
unify the formulas.

Assume W is decomposition operator of tight frame as in Sect. 2.1. Our first Model 1 is
minimizing the L1 norm of frame coefficients with local variance constraints:

Model 1:

{
min

u
‖W u‖1

s.t., h ∗ (K u − f )2(x)− σ̄ 2 ≤ 0.
(13)

Here the parameter σ̄ > 0 is depend on the noise level and h is a nonnegative normalized
convolution kernel such as Gaussian filter or mean filter. When h is mean filter, the constraint
just requires that the local variance of noise n = f − K u at a window centered at x should
be less than σ̄ 2. We remark that local variance is a descriptor of texture. The local variance
is bigger in the texture region than in the cartoon region.

Assume that D is the decomposition operator corresponding to some dictionary D with
finite basis {Ψi }n

i=1 ∈ L2(Ω). That means, for a function g, D(g) = {〈g, Ψi 〉}n
i=1 denotes all

the representation coefficients of g using the basis in D. With operator D, we can rewrite the
constraints in (7) as

±D(K u − f )(ω)− τ ≤ 0,

whereω is the coordinate in the transform domain of operator D. Then we propose the second
model as:

Model 2:

{
min

u
‖W u‖1 + μ

2 ‖K u − f ‖2
2

s.t.,±D(K u − f )(ω)− τ ≤ 0,
(14)

where the parameter τ > 0 is dependent on the noise level. Comparing with model (6), we
use tight frame regularization to replace the total variation regularization. Moreover, we use
an additional term μ

2 ‖K u − f ‖2
2 since it has contribution on numerical stability as suggested

in [24].

4 Numerical Algorithms

In this section, we derive effective algorithms for the proposed models. Generally speaking,
if the algorithm for deblurring problem is established, one can get the algorithm for image
denoising by setting K = I directly. It is the case for Model 2. However, for Model 1, we have
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more effective algorithm for image denoising than getting by this way. So we will address
the algorithms of Model 1 for image denosing and deblurring problems respectively.

4.1 Algorithm of Model 1: Denoising Case

Following the framework of SB method reviewed in Sect. 2, we first rewrite Model 1 (K = I )
as: {

min
u

‖d‖1

s.t.,W u = d, h ∗ (u − f )2 − σ̄ 2 ≤ 0.
(15)

Using AL method to handle the first equality constraints and the general Lagrangian method
to handle the inequality constraints, we get the corresponding saddle-point problem of (15):

min
u,d

max
λ≥0,v

{
‖d‖1 + 〈v,W u − d〉 + γ

2
‖W u − d‖2

2 + 〈λ, h ∗ (u − f )2 − σ̄ 2〉
}
. (16)

By the equivalence of SB and AL described at Sect. 2.2, we get the following iteration scheme
to solve the above saddle-point problem (16):{
(uk+1, dk+1, λk+1) = arg min

u,d
max
λ≥0

‖d‖1 + γ
2 ‖W u − d + bk‖2

2 + 〈λ, h ∗ (u − f )2 − σ̄ 2〉,
bk+1 = bk + W uk+1 − dk+1.

In the first subproblem, by a standard calculation, we get that the closed-form solution of
dk+1 is given by soft shrinkage:

dk+1 = shrink

(
W uk + bk,

1

γ

)
,

where

shrink(x, c) = sign(c) · max{|x | − c, 0}.
Meanwhile, the first order optimal condition of u is:

γW T (W u − dk + bk)+ λ̄(u − f ) = 0,

where λ̄ = h ∗ λ. Hence the closed form solution of u is:

uk+1 = (γ + λ̄
)−1

(
W T (dk − bk)+ λ̄ f

)
.

To solve Lagrangian multipliers λ, we use the following iteration scheme:

λk+1 = λk + ρmax{h ∗ (uk+1 − f )2 − σ̄ 2, 0}.
Remark that this updating scheme of λ is via gradient ascend method. It is similar to the
updating formula in [13] which can be derived by penalty method. Denote the noise residue
n = uk+1 − f . Then h ∗ (n2) is the local variance of noise. If this variance is smaller than the
pre-estimated noise level σ̄ which indicates cartoon regions, λ remains unchanged. And if
the variance is bigger than σ̄ which indicates some textures in that region, λ becomes larger,
more fidelity and less smoothness is favored, thus the textures can be better preserved.

As a summary, we give the algorithm details of Model 1 in Algorithm 1′. Here and in the
later we denote c as a constant matrix whose element is c everywhere and the size is the same
as the size of f .
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Algorithm 1′ Algorithm of Model 1: Denoising Case

– Initialization: u0 = f, b0 = W 0, d0 = W f, λ0 = 0.
– For k = 0, 1, 2, . . ., repeat until a stopping criterion is reached

uk+1 = (
γ + λ̄

)−1
(
γW T (dk − bk )+ λ̄ f

)
,

dk+1 = shrink
(

W uk + bk , γ−1
)
,

bk+1 = bk + W uk+1 − dk+1,

λk+1 = λk + ρmax{h ∗ (uk+1 − f )2 − σ̄ 2, 0}.
– Output: uk+1.

4.2 Algorithm of Model 1: Deblurring Case

Following the framework of SB method, we first rewrite Model 1 as:{
min

u
‖d‖1

s.t.,W u = d, K u = s, h ∗ (s − f )2 − σ̄ 2 ≤ 0.
(17)

Using AL method to handle the first two equality constraints and the general Lagrangian
method to handle the inequality constraints, we get the saddle-point problem of (17) as:

min
u,d,s

max
λ≥0,v,w

{ ‖d‖1 + 〈v,W u − d〉 + γ1
2 ‖W u − d‖2

2 + 〈w, K u − s〉
+ γ2

2 ‖K u − s‖2
2 + 〈λ, h ∗ (s − f )2 − σ̄ 2〉.

}
(18)

where v,w are the Lagrangian multipliers, γ1, γ2 > 0 are a parameters. By the equivalence
of SB and AL, we get the following iteration scheme to solve the saddle-point problem (18):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(uk+1, dk+1, sk+1) = arg min

u,d,s
E(u, d, s, bk

1, bk
2),

bk+1
1 = bk

1 + W uk+1 − dk+1,

bk+1
2 = bk

2 + K uk+1 − sk+1,

λk+1 = λk + ρmax{h ∗ (sk+1 − f )2 − σ̄ 2, 0},
where

E(u, d, s, bk
1, bk

2) =
{ ‖d‖1 + γ1

2 ‖W u − d + bk
1‖2

2 + γ2
2 ‖K u − s + bk

2‖2
2+〈λ, h ∗ (s − f )2 − σ̄ 2〉.
}

We will solve the first subproblem in the above saddle-point problem by alternating mini-
mization method. The first order optimal condition of u and s are given by:

γ1W T (W u − d + bk
1)+ γ2 K T (K u − s + bk

2) = 0,

γ2(s − K u − bk
2)+ λ̄(s − f ) = 0,

where λ̄ = h ∗ λ and K T denotes the conjugate operator of K . Hence we can get the closed
form solutions of u and s:

u =
(

1 + K T K
)−1 (

W T (d − bk
1)+ K T (s − bk

2)
)
,

s = γ2(K u + bk
2)+ λ̄ f

γ2 + λ̄
,
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where I denotes the identity matrix. Meanwhile the closed-form solution of d is soft shrinkage
as in denoising case:

d = shrink

(
W u + bk

1,
1

γ1

)
.

As a summary, we give the algorithm details of Model 1 for image deblurring in Algorithm
1′′.

Algorithm 1′′ Algorithm of Model 1: Deblurring Case

– Initialization: u0 = f, b0
1 = W 0, d0

1 = W f, b0
2 = 0, d0

2 = K f, λ0 = c.
– For k = 0, 1, 2, . . ., repeat until a stopping criterion is reached

uk+1 =
(
γ1 I + γ2 K T K

)−1 (
γ1W T (dk − bk

1)+ γ2 K T (sk − bk
2)
)

dk+1 = shrink
(

W uk + bk
1, γ

−1
1

)
,

sk+1 = γ2(K uk+1 + bk
2)+ λ̄k f

γ2 + λ̄k

bk+1
1 = bk

1 + W uk+1 − dk+1,

bk+1
2 = bk

2 + K uk+1 − sk+1,

λk+1 = λk + ρmax
{

h ∗ (sk+1 − f )2 − σ̄ 2, 0
}
.

– Output: uk+1.

4.3 Algorithm of Model 2

For Model 2, we use DAL method to derive the numerical algorithm. Using DAL on problem
(14), we get the following equivalent saddle-point problem:

min
u,d

max
λ±≥0,v

⎧⎨
⎩

‖d‖1 + μ
2 ‖K u − f ‖2

2 + 〈v,W u − d〉 + γ
2 ‖W u − d‖2

2+〈λ+, D(K u − f )− τ 〉 + 〈λ−,−D(K u − f )− τ 〉
+ 1

2tu
‖u − ū‖2

2 + 1
2td

‖d − d̄‖2
2 − 1

2tλ
‖λ+ − λ̄+‖2

2 − 1
2tλ

‖λ− − λ̄−‖2
2.

⎫⎬
⎭ (19)

where γ, tu, td , tλ are positive parameters. Remark that the proximal terms (the last line of
(19)) on primal variables (u, d) are positive which corresponding to minimization prob-
lems. On the other hand the proximal term on dual variables (λ+, λ−) are negative which
corresponding to maximization problems.

Similar as the derivation of SB and AL, we get the following iteration scheme to solve
the saddle-point problem (19):{

(uk+1, dk+1, λk+1+ , λk+1− ) = arg min
u,d

max
λ±≥0

L(u, d, λ+, λ−, uk, dk, λk+, λk−),

bk+1 = bk + W uk+1 − dk+1,
(20)

where

L(u, d, λ+, λ−, uk, dk, λk+, λk−)

= ‖d‖1 + μ

2
‖K u − f ‖2

2 + γ

2
‖W u − d + bk‖2

2
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+〈λ+, D(K u − f )− τ 〉 + 〈λ−,−D(K u − f )− τ 〉
+ 1

2tu
‖u − uk‖2

2 + 1

2td
‖d − dk‖2

2 − 1

2tλ
‖λ+ − λk+‖2

2 − 1

2tλ
‖λ− − λk−‖2

2.

Then we use alternating minimization method to solve the saddle-point problem in (20). To
solve d , we first write the subproblem of d as:

min
d

‖d‖1 + γ

2

∥∥∥W u − d + bk
∥∥∥2

2
+ 1

2td

∥∥∥d − dk
∥∥∥2

2
. (21)

It is equivalent to:

min
d

‖d‖1 + γ + t−1
d

2

∥∥∥∥∥∥d −
(
γ (W u + bk)+ t−1

d dk
)

γ + t−1
d

∥∥∥∥∥∥
2

2

. (22)

Following a standard derivation, we get that d has closed-form solution given by shrinkage
operator:

d = shrink

⎛
⎝
(
γ (W u + bk)+ t−1

d dk
)

γ + t−1
d

,
1

γ + t−1
d

⎞
⎠ .

Meanwhile, the first order optimal conditions of u, λ+, λ− are:

∂L
∂u

= μK T (K u − f )+ γW T (W u − d + bk)+ K T DT (λ+ − λ−)+ 1

tu
(u − uk) = 0,

∂L
∂λ+

= D(K u − f )− τ − 1

tλ
(λ+ − λk+) = 0,

∂L
∂λ+

= −D(K u − f )− τ − 1

tλ
(λ− − λk−) = 0.

Since the nonnegative constraints on λ± is convex, we can derive that the closed-form solu-
tions of u, λ+, λ− are:

u =
(
μtu K T K + (1 + γ tu)I

)−1
(

uk + μtu K T f + γ tu W T (d − bk)

−tu K T DT (λ+ − λ−)

)
,

λ+ = max{λk+ + tλ(D(K u − f )− τ), 0},
λ− = max{λk− + tλ(−D(K u − f )− τ), 0}.

Let

G = uk + μtu K T f + γ tu W T (dk+1 − bk)− tu K T DT (λk+1+ − λk+1− ).

Then we can summarize algorithm details of Model 2 in Algorithm 2.
We remark that to accelerate the algorithm, we follow the idea of primal-dual method in

[10] and [24] by adding the last updating formula of ū in the last line of Algorithm 2. At the
same time in the iteration formula of dk+1, bk+1, λk+1+ , λk+1− , ūk is used instead of uk .

By setting K = I , we get an effective algorithm of Model 2 for image denoising directly.
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Algorithm 2 Algorithm of Model 2

– Initialization: Set d0 = W f, b0 = W 0, λ0+ = 0, λ0− = 0, u0 = f, ū0 = f .
– Iteration: For k = 0, 1, 2, . . ., repeat until a stopping criterion is reached

dk+1 = shrink

⎛
⎝
(
γ (W ūk + bk )+ t−1

d dk
)

γ + t−1
d

,
1

γ + t−1
d

⎞
⎠ ,

bk+1 = bk + W ūk − dk+1,

λk+1+ = max{λk+ + tλ(D(K ūk − f )− τ), 0},
λk+1− = max{λk− + tλ(−D(K ūk − f )− τ), 0},
uk+1 =

(
μtu K T K + (1 + γ tu)I

)−1
G

ūk+1 = uk + θ(uk+1 − uk ).

– Output: uk+1.

5 Experiments and Comparison

In this section we present the experimental results of the proposed Algorithm 1′, Algorithm
1′′ and Algorithm 2 with respect to Model 1 and Model 2 on image denoising and image
deblurring problems respectively. The proposed methods are compared with some state-
of-the-art methods with TV regularization or frame regularization in the follows.

ROF: TV regularization with global constraint as in (3). We use the primal-dual algorithm
proposed in [10] to solve it. See [10] for the algorithm details. The fidelity parameter is
choosing as λ = 0.03 for denoising, λ = 10 for motion deblurring and λ = 0.5 for Gaussian
deblurring in this paper.

TV+Local1: TV regularization with local variance constraint as in Model 1. Remark that
this model has been considered in [2], see Sect. 1. We will not follow the algorithm of [2].
That is because the algorithms of TV+Local1 model can be obtained similar as the derivation
of Algorithm 1′′ by changing frame analysis operator W as gradient operator ∇, and the
frame synthesis W T as the negative divergence operator ∇T . However, for image denoising,
the algorithm get by this way converges slowly, so we use another more effective algorithm.
In this algorithm, we update λ(x) and u in two steps. The updating formula of λ(x) is chosen
to be the same as Algorithm 1′. When λ(x) is fixed, we need to solve the ROF model with
variable fidelity parameter λ(x):

min
u

∫
Ω

|∇u|dx + λ(x)

2
‖K u − f ‖2

2. (23)

The derivation of primal-dual algorithm for this problem is the same as the case of ROF model
by changing the constant fidelity parameter as variable fidelity parameters. Remark that the
initial value of λ(x) should not be zero anywhere since λ(x) will be the denominator in one
of the updating formula. We set the initial λ(x) to be a positive constant in our experiments.

TV+Local2: Model in [24] with TV regularization and linear constraint on dictionary
decomposition coefficients as in Model 2. The algorithms and parameters setting follow [24]
except that in the deblurring case we set λ0 = 10 in order to get a smoother image for
comparison.
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Fig. 1 The true test images with plenty of cartoon regions and texture regions

SA-TV in [13]: The multi-scale method with TV regularization and local constraints as in
Model 1. We use the MATLAB source code provided by the authors which can be downloaded
from:

http://www.helmholtz-muenchen.de/en/ibb/homepage/yiqiu.dong/Links.html.
It includes the code for image denoising and deblurring with Gaussian kernel and both

will be compared with our algorithms. Note that when λ(x) is fixed, they use semismooth
Newton algorithm to solve a revised version of (23). So in their algorithm, the inner iteration
is for this subproblem.

FrameSB in [6]: The image restoration method with frame regularization and global
fidelity:

min
u

‖W u‖1 + λ

2

∫
Ω

(K u − f )2dx .

It is implemented by split Bregman technique. There involves two parameters, one is fidelity
coefficient λ, the other is the parameter for the additional term when using split Bregman
technique called μ. We choose the parameters by trail and error. The fidelity parameter is
choosing as λ = 0.03 for denoising, λ = 10 for motion deblurring and λ = 0.5 for Gaussian
deblurring. Wet set μ = 0.1 and frame level=2 in this method.

The first set of test images are two parts of Barbara image with size 256 × 256 showed in
Fig. 1. These images have plenty of texture and cartoon regions and are very adapted to test
the restoration models with local constraints, since the aim of local constraints is to recover
more textures while smoothing out noise.

In the proposed algorithms, we adopt the piecewise linear B-spline framelet since its
effectiveness. It is generated by one low pass filter h0 and two high pass filters h1, h2 which
are

h0 = 1

4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], h2 = 1

4
[−1, 2,−1].

The frame decomposition level (L) is chosen as 1 or 2 in compromise of quality and compu-
tational time. The convolution operator h in Model 1 and TV+Local1 is set as a mean filter
with window size 5 × 5. In the implementation of Model 2 and TV+Local2, we choose the
dictionary D as in [24]: the dictionary received by the full wavelet packet decomposition up to
level four in which the wavelet filter is set as “sym8” (applied by MATLAB using the freeware
Wavelab850 which can be downloaded from http://www-stat.stanford.edu/wavelab).
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The peak signal-to-noise ratio (PSNR) is adopted to measure the quality of the recovered
images which is defined as:

P SN R(u, ũ) = 10 log 10

(
2552

1
mn ‖u − ũ‖2

2

)

where u is the restored image and ũ is the true image, m and n denote the size of the image.
The stopping criterion is that the relative error between the successive iterate of the restored
image should satisfy the following inequality:

‖uk+1 − uk‖2

‖uk+1‖2
< ε.

We set ε = 10−4 for image denoising problems and ε = 0.5 ∗ 10−4 for image deblurring
problems.

All the experiments are performed under Windows 7 and MATLAB v7.4 with Intel Core
i5 M450 CPU and 2GB memory.

5.1 Image Denoising

For image denoising, we add Gaussian white noise with zero mean and standard deviation
σ = 20 on Fig. 1a and get the noisy image in Fig. 2a. Then we compare the denoising
performance of seven methods including ROF, TV+Local1, TV+Local2, FrameSB, SA-TV
and the proposed Algorithm 1′ and Algorithm 2 on this noisy image. In the following, we
list all the parameters involved in the proposed algorithms:

Algorithm 1′: λ0 = 0, ρ = 0.01, γ = 0.5, σ = 20, σ̄ 2 = 2.5σ 2, L = 1.
Algorithm 2: λ0 = 0, tu = 1, tλ = 0.1, td = 10, μ = 0.06, θ = 1, γ = 0.5, τ =
75, L = 1.

By ROF method in which global constraint is used, textures are almost lost while smooth-
ing out noise, see Fig. 2b. It is obvious that textures can be better preserved by models with
local constraints and FrameSB, see Fig. 2c–g. After a careful comparison of Fig. 2c, d with
Fig. 2e–g, we find that the frame based models can recover more textures and has less stair-
case effect in the cartoon regions than TV based methods. In terms of PSNR, the proposed
Algorithm 1′ has a higher PSNR of 0.6 dB than TV+Local1, and the proposed Algorithm 2
has a higher PSNR of 0.8 dB than TV+Local2. Moreover, the proposed methods with local
constraints can recover more textures than the FrameSB method with global constraint. The
PSNR of the Algorithm 1′ and Algorithm 2 is higher than FrameSB about 0.8 dB and 0.5 dB
respectively. The iterations and computational time of each algorithm are also reported. We
observe that the operation of dictionary is time consuming, and tight frame consumes more
time than TV in each iteration. All the algorithms with local constraints converges in less iter-
ations than the ROF model with global constraint. Among all TV+Local1 takes the shortest
time. In a whole, the proposed algorithms are efficient which converge to satisfactory results
in about 20 s.

Figure 3a–d show the value ofλ(x)or DT (λ+)(x) correspond to Fig. 2c, d, f, g respectively.
Since the image of DT (λ−)(x) seems similar with DT (λ+)(x), we omit them. We observe
that Fig. 3a, c are similar, while Fig. 3b, d are similar. This fact shows something different
behavior of the two types of local constraints in Model 1 and Model 2. Since a convolution
kernel h is used in Model 1, the output λ(x) seems smooth. However, a careful observation
tells us in every case, |λ(x)| and |DT (λ+)(x)| are large in the texture regions and relatively
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Fig. 2 Image denoising. a Image corrupted by Gaussian white noise with mean zero and standard deviation
20; b Result of ROF, PSNR = 24.45 dB, iteration = 348, T = 4.9 s; c Result of TV+Local1, PSNR = 26.75 dB,
iteration = 92, T = 2.5 s; d Result of TV+Local2, PSNR = 26.25 dB, iteration = 97, T = 19.3 s; e Result of
FrameSB, PSNR = 26.50 dB, iteration = 37, T = 12.7 s; f Result of Algorithm 1′, PSNR = 27.37 dB, iteration
= 174, T = 22.6 s; g Result of Algorithm 2, PSNR = 27.05 dB, iteration = 74, T = 23.2 s

small in the cartoon regions. Hence more fidelity is favored in the texture regions such that the
textures are better recovered by the models with local constraints than with global constraint
under the assumption that the same regularization technique is used. Actually, from the
denoising comparison on texture images, we also find that with the same type of fidelity
term, frame based regularization works better than TV regularization. We also remark that
comparing Fig. 3a, c, we find that Fig. 3c detects textures regions more accurate than Fig. 3a.

In Fig. 4, we compare the performance of the six methods including ROF, FrameSB,
TV+Local1, TV+Local2, the proposed Algorithm 1′ for Model 1 and Algorithm 2 for Model
2. We run each algorithm 200 iterations. Figure 4a shows that the proposed Algorithm 1′ and
Algorithm 2 achieve higher PSNR than other algorithms after about 50 iterations, meanwhile
Algorithm 1′ is slightly higher than Algorithm 2. ROF has the lowest PSNR among all. In
the first a few iterations of Algorithm 1′, there is an oscillation of PSNR. But after that, the
algorithm seems stable and converges to satisfactory result.
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Fig. 3 Final values of λ(x) or DT (λ+)(x). a λ(x) corresponds to Fig. 1c; b DT (λ+)(x) corresponds to
Fig. 1d; c λ(x) corresponds to Fig. 1f; d DT (λ+)(x) corresponds to Fig. 1g
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Fig. 4 Image denoising: comparison of PSNR of ROF, TV+Local1, TV+Local2, FrameSB and the proposed
Algorithm 1′ and Algorithm 2, all run 200 iterations

In Fig. 5, we display the denoising result of Fig. 2a with SA-TV method in [13]. Remark
that we use all the default parameters in the source code except that the initial λ0 is tuned to
achieve the optimal result. Finally, we choose λ0 = 3.6. SA-TV achieves PSNR of 26.55 dB
which is about 0.5 dB lower than our results with frame regularization in Fig. 2f, g.
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Fig. 5 The denoising result of SA-TV algorithm. a Denoising result, PSNR = 26.55 dB, outer iteration = 1,
T = 66.4 s; b Final value of λ(x)

5.2 Image Deblurring

In this subsection, we test the algorithms on image deblurring problems. We test both motion
blur and Gaussian blur with white Gaussian noise.

5.2.1 Motion Blur Case

The degraded image in Fig. 6a is generated like this: first apply a motion blur on the true
image Fig. 1b, then add Gaussian noise with zero mean and standard deviation σ = 1 on it.
The motion blur kernel is generated by the MATLAB routine “fspecial” with length of 30
pixels and angle 45 degree. In deblurring case, we assume periodic boundary conditions since
fast Fourier transform (FFT) will be used to solve uk+1 in both Algorithm 1′′ and Algorithm
2. All the parameters involved in the proposed algorithms are:

Algorithm 1′′: λ0 = 10, ρ = 1, γ1 = 0.1, γ2 = 1, σ = 1, σ̄ 2 = 1.3σ 2, L = 1.
Algorithm 2: λ0 = 0, tu = 1, tλ = 0.1, td = 10, μ = 20, θ = 1, γ = 0.5, σ = 1, τ =

2σ, L = 1.
Figure 6b–f display the result of six methods include ROF, TV+Local1, TV+Local2,

FrameSB and the proposed two models with the specified Algorithm 1′′ and Algorithm 2. In
Fig. 6b, we find that ROF removes so many textures, while textures are better preserved by
the other five methods. With TV regularization technique, there can be seen some staircase
effects occur on the faces and the left side cartoon regions in Fig. 6b–d. Figure 6f–g give the
results of frame based algorithms which preserve many textures with less staircase effects in
cartoon regions. Figure 6e shows that the result of FrameSB suffers less staircase effect than
TV based method, however, the textures is over smoothed compared with Fig. 6f, g. In terms
of PSNR, methods with local constraints are higher than ROF method of 1.4–3.0 dB. With
frame regularization, the proposed methods with local constraints have higher PSNR than
FrameSB with global constraint about 0.7 dB. In a whole, the proposed algorithms have the
highest PSNRs. The iterations and computational time are also reported. In the deblurring
case, models with local constraints converges at about 500 iterations which are slower than
ROF method with 189 iterations and FrameSB with 126 iterations. However, the algorithms
are still effective since about two-three minutes are needed to get satisfactory results.

The values of λ(x) or DT (λ+)(x) correspond to Fig. 6c, d, f, g are showed in Fig. 7. Again,
we omit the image of DT (λ−)(x) since it is similar to DT (λ+)(x). We observe that Fig. 7a, c
are similar in which local variance constraints are used, while Fig. 7b, d are similar in which
linear constraints of dictionary decomposition coefficients are used. A careful observation
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Fig. 6 Image deblurring. a Image corrupted by motion blur and Gaussian white noise of standard deviation
1; b Result of ROF, PSNR = 24.77 dB, iteration = 189, T = 4.6 s; c Result of TV+Local1, PSNR = 26.17 dB,
iteration = 470, T = 37.1 s; d Result of TV+Local2, PSNR = 26.61 dB, iteration = 512, T = 139.5 s; e Result of
FrameSB, PSNR = 26.23 dB, iteration = 126, T = 46.6 s; f Result of Algorithm 1′′, PSNR = 26.94 dB, iteration
= 726, T = 106.8 s; g Result of Algorithm 2, PSNR = 27.08 dB, iteration = 503, T = 183.4 s;

shows that |λ(x)| and |DT (λ+)(x)| are large in the texture regions and relatively small in the
cartoon regions. Hence the textures are better recovered by the models with local constraints
than the models with global constraint under the condition that the the same regularization
term is used.

The performance of the six methods are further compared in Fig. 8. We run each algorithm
500 iterations. We observe in Fig. 8a that the proposed Algorithm 1′′ and Algorithm 2 achieve
higher PSNR than other algorithms, and Algorithm 2 has the highest PSNR among all after
about 200 iterations. ROF has the lowest PSNR among all.

5.2.2 Gaussian Blur Case

In the case of Gaussian blur, we compare the proposed methods with ROF, SA-TV and
FrameSB in Fig. 9. The test image in Fig. 9a is generated like this: first apply a Gaussian blur
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Fig. 7 Final values of λ(x) or DT (λ+)(x). a λ(x) corresponds to Fig. 6c; b DT (λ+)(x) corresponds to
Fig. 6d; c λ(x) corresponds to Fig. 6f; d DT (λ+)(x) corresponds to Fig. 6g
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Fig. 8 Motion deblurring: comparison of PSNR of ROF, TV+Local1, TV+Local2, FrameSB and the proposed
Algorithm 1′′ and 2, all run 500 iterations

on the true image Fig. 1b, then add Gaussian noise with zero mean and standard deviation
σ = 5 on it. The Gaussian blur kernel is generated by the MATLAB routine “fspecial” with
window size 9 × 9 and standard deviation 1. All the default parameters in the source code of
[13] are used for SA-TV. All the parameters involved in the proposed algorithms are:
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Fig. 9 Image deblurring. a Image corrupted by Gaussian blur and Gaussian white noise of standard deviation
σ = 5; b Result of ROF, PSNR = 25.27 dB, iteration = 96, T = 2.5 s; c Result of FrameSB, PSNR = 27.19 dB,
iteration = 135, T = 47.5 s; d Result of SA-TV, PSNR = 27.53 dB, out iteration = 6, T = 1942.5 s; e Result
of Algorithm 1′′, PSNR = 27.95 dB, iteration = 603, T = 156.7 s; f Result of Algorithm 2, PSNR = 28.11 dB,
iteration = 177, T = 82.7 s; g Final value of λ(x) corresponds to d; h Final value of λ(x) corresponds to e; i
Final value of DT (λ+)(x) corresponds to f

Algorithm 1′′: λ0 = 0.3, ρ = 1, γ1 = 0.1, γ2 = 0.1, σ = 5, σ̄ 2 = 2σ 2, L = 2.
Algorithm 2: λ0 = 0, tu = 1, tλ = 0.1, td = 10, μ = 1.5, θ = 1, γ = 0.5, σ = 5, τ =
3σ, L = 2.

Figure 9b is the result of ROF method. Most of the textures are lost. With frame based
regularization, FrameSB recovers more textures, see Fig. 9c. It is obvious that the methods
with local constraints can better recover textures than ROF, see the second row of Fig. 9
for the results of SA-TV algorithm, Algorithm 1′′ and Algorithm 2. With a careful look at
Fig. 9c–f, we find that our algorithms recovers textures better than FrameSB and SA-TV.
For example, the textures on the left bottom part of Barbara’s scarf are almost smoothed out
by FrameSB and SA-TV, while the proposed algorithms keeps some of the textures. The
final value of λ(x) or DT (λ+)(x) are displayed in the third row, Fig. 9g–i. The appearance
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Table 1 Comparison of PSNR (dB): Gaussian noise case

Image ROF FrameSB TV+Local1 TV+Local2 Model 1 Model 2

Couple 27.91 28.07 28.10 28.37 29.10 29.38

Boat 28.37 28.46 28.62 28.79 29.35 29.72

Lena 30.42 30.65 28.20 30.88 31.25 31.53

Table 2 Comparison of PSNR (dB): motion blur case

Image ROF FrameSB TV+Local1 TV+Local2 Model 1 Model 2

Couple 27.35 28.14 28.52 28.42 28.66 28.89

Boat 27.96 28.71 28.78 28.98 29.17 29.44

Lena 31.38 31.44 31.42 31.93 32.19 32.39

Table 3 Comparison of PSNR (dB): Gaussian blur case

Image ROF FrameSB TV+Local1 TV+Local2 Model 1 Model 2

Couple 29.43 29.62 30.30 30.32 30.53 30.88

Boat 29.83 29.98 30.66 30.65 30.81 31.15

Lena 32.89 33.05 33.42 33.69 33.76 34.00

seems greatly different, however, the common property is that the absolute values are bigger
in texture regions than cartoon regions. For quantitative evaluation of the algorithms, we
reported the PSNR, iteration and the computational time. In terms of PSNR, the proposed
algorithms are about 0.7–0.9 dB higher than FrameSB, and about 0.4–0.6 dB higher than
SA-TV. We report only the outer iteration of SA-TV. Remark that in each outer iteration, a
maximum inner iteration is set as 50. SA-TV takes about half an hour to converge which is
far more computational expensive than our algorithms which take less than three minutes to
get satisfactory results.

To further demonstrate the effectiveness of our proposed methods, we present more results
and comparisons in Tables 1, 2 and 3. The three test images are downloaded from the website:
http://www.cs.tut.fi/foi/GCF-BM3D/. The three degradation cases in the Tables are generated
the same as in Sects. 5.1, 5.2.1 and 5.2.2. We find that the proposed Model 1 and Model 2
have higher performance than the other TV based models. Moreover, the proposed Model 2
has the highest PSNR among all.

6 Conclusions

Two models with tight frame regularization and two types of local constraints are studied in
this paper. For each model, we design effective numerical algorithms based on SB and DAL
methods, such that the original problem can be split into several simple subproblems with
closed-form solutions. The proposed models have better performance than TV regularization
based models by reducing staircase effect in the cartoon regions and preserving more textures.
The proposed frame based methods with local constraints also outperforms the frame based
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method with global constraint. Numerically the proposed algorithms are easy to implement
and efficient. As a byproduct, the algorithm used in this paper for TV+Local1 seems more
brief than the counterpart in existing literatures. The future work is to extend the models and
algorithms for image restoration problems with multiplicative noise and blur, which aims to
recover more textures and improve image quality.
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