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In this paper, we propose to use Chambolle’s dual methods to solve Total Variation (TV) inpainting model
and (weighted) TV colorization model. The fidelity coefficients in these two models are functions which
taking zero in the inpainting region and a positive constant in the other region. Then Chambolle’s dual
method can not be directly used to solve these models since the fidelity coefficient will be denominator
in the algorithm. In order to overcome this drawback, we propose to approximate these models by adding
new variables. Then the approximated problems can be solved by alternating minimization method with
Chambolle’s dual method and closed form solutions which is fast and easy to implement. Mathematical
results of existence of minimizers are proved for both the original and the approximated problems.
Numerical results and comparison with other closely related methods demonstrate that our algorithms
are quite efficient.
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1. Introduction

Image inpainting is an important topic in computer vision and
image processing. The goal is to recover missing data in a damaged
image. It is widely used in film restoration, text removal, scratch
removal, and special effects in movies. An important class of digital
inpainting methods relates to partial differential equations (PDEs).
The term of digital inpainting was initially introduced by Bertalmio
et al. in [5]. The authors were the first to apply PDEs in image
inpainting. In their method, the information outside the inpainting
region is propagated into the inpainting region along isophotes dri-
ven by a third-order gradient decent flow. Ballester et al. in [3] pro-
posed to smoothly extend inside the inpainting domain both the
vector field obtained from the image gradient and the isophotes.
Bertalmio et al. in [6] introduced the Navier–Stokes equations for
fluid dynamics into image inpainting. Chan et al. in [13] proposed
total variation (TV) inpainting algorithm by modifying the Rudin–
Osher–Fatemi (ROF) model [29] with fidelity coefficient zero in the
inpainting domain and positive constant in the information do-
main. The inpainting error can be estimated [15]. Then the same
authors in [14] proposed a curvature-driven diffusion (CDD) PDE
inpainting model which extends the TV algorithm by taking into
account geometric information of isophotes (i.e. curvature) in the
total variation diffusion equation, thus can connect some broken
edges. Masnou et al. in [26] and Chan et al. in [17] studied the var-
ll rights reserved.

).
iational inpainting models based on Euler elastica in which curva-
ture is also involved. Grossauer et al. in [23] used the complex
Ginzburg Landau equation for digital inpainting in 2D and 3D.
Tai et al. in [32] proposed to first propagate the isophote directions
into the inpainting region by TV-Stokes equation and then the im-
age is restored to fit the constructed directions. These PDE-based
image inpainting methods have the advantage of preserving edges
very well, however, the slow and unstable numerical implementa-
tions greatly limit their practical use. PDE based inpainting tech-
niques are suitable for non-texture image inpainting. Another
class of approaches based on texture synthesis is suitable for tex-
ture image inpainting, in which exemplar-based method seems
very successful [18,28]. This two classes of methods can be com-
bined together [22,7]. Recently wavelet and framelet are used in
image inpainting [11,12].

Image colorization is to inpainting color image from a grayscale
image with color data given only in small regions. Levin et al. in
[25] proposed to minimize a quadratic cost function derived from
the color differences between a pixel and its weighted average
neighborhood. The solution is found by solving linear system. Sap-
iro in [30] proposed to minimize the difference between the gradi-
ent of luminance and the gradient of color which results in solving
Poisson equations. Yatziv et al. in [34] proposed a fast image and
video colorization method using chrominance blending with Dijk-
stra’s shortest path algorithm. Kang et al. in [24] extended TV
inpainting method to TV colorization. The main difference of TV
inpainting and TV colorization is that the latter has a constraint,
that is, the chrominance takes value on the sphere. The authors
also proposed a weighted harmonic model for image colorization.

http://dx.doi.org/10.1016/j.jvcir.2011.06.006
mailto:gxzhang@cs.ecnu.edu.cn
http://dx.doi.org/10.1016/j.jvcir.2011.06.006
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci
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In this paper, we take use of Chambolle’s dual method to solve
TV inpainting and TV colorization model. Chambolle’s dual method
is called dual method for simplicity in this paper. This dual method
has important advantages: firstly, it minimizes the exact TV norm
unlike usual approaches; secondly, it is fast and easy to implement.
This dual method is originally designed to solve the ROF model
with positive constant fidelity coefficient, and it cannot be directly
used in solving neither TV inpainting nor TV colorization. In [8,9],
the technique of adding new variable is widely used to approxi-
mate some variational denoising and segmentation functionals
such that the approximate problems can be solved efficiently by
Chambolle’s dual method. We follow their idea in this paper. We
approximate the TV inpainting and TV colorization model by add-
ing new variables, and then the approximate energies can be min-
imized by dual method and closed form solutions. Especially, we
use Lagrange multipliers method to handle the constraint in TV
colorization, which leads to a closed form solution of multipliers.

The outline of this paper is as follows. In Section 2, we propose
our methods to solve TV inpainting problem for gray scale image
and color image respectively. Some meaningful mathematical re-
sults are proved. In Section 3, we study the weighted TV coloriza-
tion model and the existence of minimizer. We give the numerical
results of our algorithms in Section 4. We also compare our ap-
proach with the most related methods. Finally, we conclude the
paper in Section 5.

2. TV inpainting with dual method

2.1. The model

For mathematical modeling, we review some properties of
bounded variation (BV) space. Assume X � R2 is the bounded do-
main with Lipschitz boundary. The bounded variation space
BV(X) is a subspace of functions u 2 L1(X) such that the following
quantity is finiteZ

X
jrujdx :¼ sup

Z
X

udivudx j u 2 C1
c ðX;R2Þ; juj 6 1

� �
BV(X) endowed with the norm kukBV ¼

R
X jrujdxþ kukL1ðXÞ is a Ba-

nach space. The term
R

X jrujdx is called the total variation of u. Here
ru is understood as a Radon measure. BV space is widely used in
variational image modeling [2]. It has the following compactness
property in BV-w⁄ topology: If {un} is a uniformly bounded se-
quence in BV(X), then up to a subsequence, there exists a function
u 2 BV(X) such that un N u weakly⁄ in BV(X) (i.e.,r un Nru weak-
ly⁄ in the sense of measure) and un ? u strongly in L1(X). See [2,20]
for more details.

The definition is generalized to vectorial functions. We define
the space BVðX;R3Þ of vector valued functions as the set of func-
tions u 2 L1ðX;R3Þ such that the vectorial TV normZ

X
jrujdx :¼ sup

Z
X

X3

i¼1

uidivqidx j q 2 C1
c ðX;R3�2Þ; jqj 6 1

( )
;

where jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq1j

2 þ jq2j
2 þ jq3j

2
q

. BVðX;R3Þ endowed with the

norm kukBVðX;R3Þ ¼
R

X jrujdxþ kukL1ðX;R3Þ is a Banach space. Stan-
dard results such as lower semi-continuous and compactness prop-
erty hold for vectorial BV functions [9].

In the following, we propose our approximate models of TV
inpainting for gray scale image and color image respectively.

2.1.1. Gray scale image inpainting
Assume X � R2 is the bounded image domain with Lipschitz

boundary and f : X! R is the gray scale image. Let D �X be the
inpainting domain and Dc = XnD be the complement of D in X.
The TV inpainting model proposed in [13] is a modified ROF model
as

min
u2BVðXÞ

EðuÞ ¼
Z

X
jrujdxþ k

2

Z
Dc
ðu� f Þ2dx

with k > 0 is a constant, or equivalently,

min
u2BVðXÞ

EðuÞ ¼
Z

X
jrujdxþ 1

2

Z
X

k̂ðu� f Þ2dx; ð1Þ

where

k̂ ¼ k; x 2 Dc

0; x 2 D

�
Though many fast algorithms have been proposed to solve the ROF
restoration model, most of them can not be directly used to solve
problem (1) since k̂ takes value zero in D. For example, considering
Chambolle’s dual algorithm in [10], the following formula will be
involved:

u ¼ f � 1
k̂

divp:

The algorithm of Nesterov [27] also includes the similar formula
and can not be used directly. The FISTA algorithm in [4] also in-
volves the factor 1=k̂. This difficulty can not be overcome by projec-
tion operator as algorithm I in [11]. In that algorithm, the inpainting
and denoising are split into two steps in fact, then it is not really
solving problem (1) exactly. While the split Bregman (SB) algorithm
proposed in [21] can be directly used to solve problem (1). The SB
algorithm is shown to be very fast in image denoising and is one
of the state of the art. The SB algorithm is closely related to many
other algorithms [19,31].

In this paper, we propose another method to overcome this dif-
ficulty. We add an auxiliary variable v and minimize

Ehðu;vÞ ¼
Z

X
jrv jdxþ 1

2h

Z
X
ðu� vÞ2dxþ 1

2

Z
X

k̂ðu� f Þ2dx; ð2Þ

where h is small enough such that v approximates u in the sense of
L2 norm.

2.1.2. Color image inpainting
Let f : X! R3 be a color image. Following the same line as the

gray image case, we can easily extend the TV inpainting model for
gray scale image to color image inpainting. The energy functional is

EðuÞ ¼
Z

X
jrujdxþ 1

2

Z
X

bkðu� fÞ2dx: ð3Þ

By adding auxiliary variable v, the above energy can be approxi-
mated by

Ehðu;vÞ ¼
Z

X
jrvjdxþ 1

2h

Z
X
ðu� vÞ2dxþ 1

2

Z
X

k̂ðu� fÞ2dx; ð4Þ

where h is small enough such that v approximates u in the sense of
L2 norm.

2.2. Mathematical analysis

First we consider the existence of minimizer to TV inpainting
model (1) for gray scale image. Remark that Chan et al. [17] proved
the existence of minimizer for a constrained TV inpainting model
where the constraint (u 2 [0,1]) simplifies the proof but is not nat-
ural. In this paper, we will consider the original TV inpainting prob-
lem. However, the problem is hard to handle directly. Let us
consider a minimizing sequence {un} 2 BV(X) for problem (1). Then
E(un) is bounded, i.e., there exists a constant C such that
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Z
X
jrunjdxþ 1

2

Z
X

k̂ðun � f Þ2dx 6 C:

Then we can deduce that
R

X jrunjdx is uniformly bounded. Unfortu-
nately we cannot deduce that un is uniformly bounded in L1(X). So
we need to consider a regularized version of E(u), that is, we con-
sider the following approximate problem

min
u2H1ðXÞ

E�ðuÞ ¼
Z

X
jrujdxþ 1

2

Z
X

k̂ðu� f Þ2dxþ �
2

Z
X
ðu2 þ jruj2Þdx:

ð5Þ

We first prove the existence and uniqueness of minimizer to prob-
lem (5). Then we prove that a maximum principle holds for a solu-
tion of (5). After that we get back to the original problem (1) by
letting �? 0+ in (5).

Proposition 1. For fixed � > 0, problem (5) has a unique minimizer
u� 2 H1(X).
Proof. Since the functional (5) is strictly convex, lower semi-con-
tinuous and coercive over the Hilbert space H1(X), we can get
the existence and the uniqueness of minimizer by a standard argu-
ment. h

By standard variational methods, we can derive the Euler-La-
grange equation of problem (5).

Proposition 2. Assume u� is the solution of problem (5), then u�
satisfies the Euler–Lagrange equation

�div
ru�
jru�j

� �
þ k̂ðu� � f Þ þ �u� � �Mu� ¼ 0 ð6Þ

in the distribution sense. Moreover, u� satisfies Neumann conditions
@u�
@N ¼ 0 on the boundary oX.

Note that in this paper �div ru�
jru� j

� �
is understood as the subdif-

ference of the total variation of u�. See [1] for more details.
Let us now show that u� satisfies a maximum principle.

Proposition 3. Assume f 2 L1(X) and u� is the solution of problem
(5). Then

ess inf
X

f 6 u� 6 ess sup
X

f :
Proof. We first multiply Eq. (6) by a function v 2 H1(X), and inte-
grate by parts:Z

X

ru�
jru�j

� �
rvdxþ k̂

Z
X
ðu� � f Þvdxþ �

Z
X

u�v þ �
Z

X
ru� �rvdx ¼ 0;

ð7Þ

where the Neumann boundary condition is used. Let G be a trunca-
tion function of class C1, such that G(t) = 0 on (�1,0], and G strictly
increasing on [0,+1), and G0 6M where M is a constant. We choose
v = G(u� � k) where k is a constant such that k P kfk1. Thanks to the
chain rule in H1(X), v = G(u� � k) also belongs to H1(X), and
rv = G0(u� � k)r u�. Then Eq. (7) can be rewritten asZ

X
jru�jG0ðu� � kÞdxþ k̂

Z
X
ðu� � f ÞGðu� � kÞdxþ �

Z
X

u�Gðu� � kÞdx

þ �
Z

X
jru�j2G0ðu� � kÞdx ¼ 0:

Using the properties of G, we deduce that

k̂
Z

X
ðu� � f ÞGðu� � kÞdxþ �

Z
X

u�Gðu� � kÞdx 6 0:
Then

k̂
Z

X
ðu� � kþ k� f ÞGðu� � kÞdxþ �

Z
X
ðu� � kþ kÞGðu� � kÞdx 6 0:

Since k � f P 0, we have

ðk̂þ �Þ
Z

X
ðu� � kÞGðu� � kÞdx 6 0

which implies u� 6 k. Since this last inequality holds for any k such
that k P kfk1, we obtain that u� 6 ess supXf. Similarly, we can prove
ess infXf 6 u�. h

Now we can pass to the limit �? 0+ in (5).

Theorem 1. Let f be in L1 (X), then problem (1) has at least one
solution u in BV(X) satisfying
ess inf
X

f 6 u 6 ess sup
X

f :
Proof. We already know that

ess inf
X

f 6 u� 6 ess sup
X

f ð8Þ

which means u� is uniformly bounded in L2(X). Meanwhile, since u�
is a solution of problem (5), we have E�(u�) 6 E�(v) for all v in H1(X),
i.e.,

E�ðu�Þ ¼
Z

X
jru�jdxþ 1

2

Z
X

k̂ðu� � f Þ2dxþ �
2

Z
X
ðu2
� þ jru�j2Þdx

6

Z
X
jrv jdxþ 1

2

Z
X

k̂ðv � f Þ2dxþ �
2

Z
X
ðv2 þ jrv j2Þdx

¼ E�ðvÞ:

If we take v � 0, it holds thatZ
X
jru�jdx 6

1
2

Z
X

k̂f 2dx:

We conclude that u� is uniformly bounded in BV(X) \ L2(X) uni-
formly in �. Consider a sequence �n such that �n > 0 and �n ? 0 as
n ?1. There exists u in BV(X) \ L2(X) such that up to a
subsequence,

u�n * u weakly� in BVðXÞ;

u�n ! u strongly in L1ðXÞ;

u�n * u weakly in L2ðXÞ:

From (8), we have essinfXf 6 u 6 esssupXf ;and thanks to the lower
semi-continuity of total variation and L2 norm, we obtain for all
v 2 H1(X) that

EðuÞ ¼
Z

X
jrujdxþ 1

2

Z
X

k̂ðu� f Þ2dx 6 lim inf
�!0þ

Z
X
jru�jdx

þ 1
2

Z
X

k̂ðu� � f Þ2dx

¼ lim inf
�!0þ

Z
X
jru�jdxþ 1

2

Z
X

k̂ðu� � f Þ2dx

þ �
2

Z
X
ðu2
� þ jru�j2Þdx ¼ lim inf

�!0þ
E�ðu�Þ 6 lim

�!0þ
E�ðvÞ

¼
Z

X
jrvjdxþ 1

2

Z
X

k̂ðv � f Þ2dx ¼ EðvÞ: ð9Þ

Since the function u 2 BV(X) \ L2(X) can be approximated by a se-
quence of functions in H1(X) (see [20], Section 5.2.2, Theorem 2),
we get that (9) holds for any v 2 BV(X), i.e., u is a minimizer of E. h
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Now we consider the existence of minimizer for the approximate
problem (2). This problem is hard to handle directly too. Hence
we first construct an approximate problem as

min
ðu;vÞ2L2ðXÞ�H1ðXÞ

E�hðu; vÞ ¼
Z

X
jrv jdxþ 1

2h

Z
X
ðu� vÞ2dx

þ 1
2

Z
X

k̂ðu� f Þ2dx

þ �
2

Z
X
ðv2 þ jrv j2Þdx: ð10Þ

With similar argument as above, we can prove the following results.
For simplicity, we state them without proof.

Proposition 4. For fixed � > 0, h > 0, problem (10) has a unique
minimizer ðu�h; v�hÞ 2 L2ðXÞ � H1ðXÞ.
Proposition 5. Assume ðu�h;v�hÞ is the solution of problem (10), then
ðu�h;v�hÞ satisfies the Euler-Lagrange equations

� div
rv�h
jrv�hj

� �
þ 1

h
v�h � u�h
	 


þ �v�h � �Mv�h ¼ 0; ð11Þ

u�h ¼
k̂hf þ v�h
1þ k̂h

ð12Þ

in the distribution sense. Moreover, v�h satisfies Neumann conditions
@v�

h
@N ¼ 0 on the boundary oX.
Proposition 6. Assume f 2 L1(X) and ðu�h;v�hÞ is the solution of prob-
lem (10). Then

ess inf
X

f 6 v�h 6 ess sup
X

f :
Theorem 2. Let f be in L1(X) and fix h > 0, then problem (2) has at
least one solution (uh, vh) in L2(X) � BV(X) satisfying

ess inf
X

f 6 vh 6 ess sup
X

f : ð13Þ

Finally we pass the limit as h ? 0+ and establish the relationship
of solutions to the approximate problem (2) and the original prob-
lem (1).
Theorem 3. As h ? 0+, the solution of the approximate problem (2)
converges to the solution of the original problem (1).
Proof. Assume (uh,vh) is a solution of problem (2) for fixed
h 2 (0,1), we have Eh(uh,vh) 6 Eh(w,u) for all
(w,u) 2 L2(X) � BV(X), i.e.,Z

X
jrvhjdxþ 1

2h

Z
X
ðuh � vhÞ2dxþ 1

2

Z
X

k̂ðuh � f Þ2dx

6

Z
X
jrujdxþ 1

2h

Z
X
ðw�uÞ2dxþ 1

2

Z
X

k̂ðw� f Þ2dx:

Let (w,u) � (0,0), we obtainZ
X
jrvhjdxþ 1

2h

Z
X
ðuh � vhÞ2dxþ 1

2

Z
X

k̂ðuh � f Þ2dx 6
1
2

Z
X

k̂f 2dx:

Then there exists a constant M such thatR
X jrvhjdx 6 M;

1
2

R
Xðuh � vhÞ2dx 6 Mh 6 M:

Together with the inequality (13), we conclude that uh is uniformly
bounded in L2(X) and vh is uniformly bounded in BV(X) \ L2(X) uni-
formly in �. Consider a sequence hn such that hn > 0 and hn ? 0 as
n ?1. There exists (u,v) 2 L2(X) \ BV(X) such that up to a
subsequence,

uhn * u weakly in L2ðXÞ;

vhn * v weakly� in BVðXÞ;

vhn ! v strongly in L1ðXÞ;

vhn * v weakly in L2ðXÞ;

uhn � vhn ! 0 strongly in L2ðXÞ:

Hence u = v a.e. x 2X. Thanks to the lower semi-continuity of total
variation and L2 norm, we obtain for all w 2 BV(X) that

EðuÞ ¼
Z

X
jrujdxþ 1

2

Z
X

k̂ðu� f Þ2dx

6 lim inf
n!1

Z
X
jrvhn jdxþ 1

2hn

Z
X
ðuhn � vhnÞ2dx

þ 1
2

Z
X

k̂ðuhn � f Þ2dx

¼ lim inf
n!1

Ehnðuhn ;vhnÞ 6 lim inf
n!1

Ehn ðw;wÞ

¼
Z

X
jrwjdxþ 1

2

Z
X

k̂ðw� f Þ2dx ¼ EðwÞ:

Thus u is a minimizer of E. h
Remark 1. Since the TV inpainting functional E in (1) and the
approximate funtional Eh in (2) are not strictly convex, uniqueness
of minimizers are not guaranteed. Nonuniqueness of minimizers
for the TV inpainting model is also discussed in [17]. See for exam-
ple the Fig. 4.1 in [17]. The above mathematical analysis and
results can be trivially extended to color TV inpainting model (3)
and its approximate problem (4), thus is omitted.
2.3. The algorithm

For gray scale image inpainting, the approximate problem (2)
can be solved by alternating minimization methods. We solve
the following two subproblems iteratively,

min
v

Z
X
jrv jdxþ 1

2h

Z
X
ðu� vÞ2dx; ð14Þ

min
u

1
2h

Z
X
ðu� vÞ2dxþ 1

2

Z
X

k̂ðu� f Þ2dx: ð15Þ

Problem (14) can be solved by Chambolle’s dual method. The solu-
tion is given by

v ¼ u� hdivp�; ð16Þ

where the vector p⁄ can be solved by fixed point method: Initializ-
ing p0 = 0 and iterating

pnþ1 ¼ pn þ sr divpn � u=hð Þ
1þ s r divpn � u=hð Þj j ð17Þ

with s 6 1/8 to ensure the convergence. See [10] for more details.
Problem (15) has closed form solution, i.e.,

u ¼ k̂hf þ v
1þ k̂h

:

Remark that in our implementation, we slightly modified the dual
method. In the alternative minimization process, one iteration is
needed to solve p⁄ with initial p in the last loop. The algorithm de-
tails are as follows.
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2.4. Algorithm I

� Initialization: u0 = f, p0 = 0.
� Iteration: for k = 0,1,2, . . .
pkþ1 ¼ pkþsr divpk�uk=hð Þ
1þs r divpk�uk=hð Þj j ;

vkþ1 ¼ uk � hdivpkþ1;

ukþ1 ¼ k̂hfþvkþ1

1þk̂h
:

� Termination criterion: k > kmax where kmax is the maximum iter-
ation defined by the user.

For color image inpainting, the approximated problem can be
solved by alternatively solving the following two subproblems

min
v

Z
X
jrvjdxþ 1

2h

Z
X
ðu� vÞ2dx; ð18Þ

min
u

1
2h

Z
X
ðu� vÞ2dxþ 1

2

Z
X

k̂ðu� fÞ2dx: ð19Þ

Problem (18) can be solved by Chambolle’s dual method which is
extended to color image by Bresson et al. in [9]. The solution is gi-
ven by

v ¼ u� hdivp�; ð20Þ

where the vector p⁄ can be solved by fixed point method: Initializ-
ing p0 = 0 and iterating

pnþ1 ¼ pn þ sr divpn � u=hð Þ
1þ s r divpn � u=hð Þj j ð21Þ

which means for each channel i = 1, 2, 3

pnþ1
i ¼

pn
i þ sr divpn

i � ui=h
	 


1þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1 r divpn
i � ui=h

	 
�� ��2q : ð22Þ

Similar to gray image case, the algorithm details are as follows.

2.5. Algorithm II

� Initialization: u0 = f, p0 = 0.
� Iteration: for k = 0,1,2, � � �
pkþ1 ¼ pkþsr divpk�uk=hð Þ
1þs r divpk�uk=hð Þj j ;

vkþ1 ¼ uk � hdivpkþ1;

ukþ1 ¼ k̂hfþvkþ1

1þk̂h
:

� Termination criterion: as Algorithm I.

3. TV colorization with dual method

3.1. The model

Decompose the color image f = (f1, f2, f3) into two components of
chromaticity component C0 and brightness B0 as follows:

B0 ¼ jfj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

1 þ f2
2 þ f2

3

q
; C0 ¼

f
B0
:

Then the chromaticity is a vector on the unit sphere in R3:
S2 ¼ fn 2 R3 : jnj ¼ 1g: This Chromaticity-Brightness (CB) model is
widely used in color image representation and modeling [16].

Assume the chromaticity C0 is known in Dc and the brightness
B0 is known everywhere in X. Then the colorization problem is
to recover the chromaticity in D. Kang et al. in [24] proposed two
models for image colorization. One is the TV colorization model:

min
C2BVðX;R3Þ;jCj¼1

Z
X
jrCjdxþ 1

2

Z
X

k̂jC� C0j2dx: ð23Þ

The other is via weighted harmonic map:

min
C2W1;2ðX;R3Þ;jCj¼1

Z
X

gjrCj2dxþ 1
2

Z
X

k̂jC� C0j2dx; ð24Þ

where g ¼ 1
1þkjrGr�B0 j2

;Gr is Gaussian filter with parameter r > 0 and

k > 0 is a constant parameter. The main difficulty in solving these
two models lies in how to deal with the constraint jCj = 1. In [24],
the constrained problem (24) is transformed into another con-
strained problem as

min
C2W1;2ðX;R3Þ;jCj61

Z
X

gjrCj2dxþ 1
2

Z
X

k̂jC� C0j2dxþ a
Z

X
ðjCj � 1Þ2dx;

ð25Þ

where a is a positive constant. Then problem (25) is solved by the
gradient descent method

Ct ¼ divðgrCÞ � k̂ðC� C0Þ � a 1� 1
jCj

� �
:

Meanwhile, C is projected to satisfy jCj 6 1 in each iteration. The
constraint in problem (23) is handled similar to (24) and then an
implicit scheme is used in the algorithm. In our implementation,
we find that the second model (24) is more effective and efficient
than model (23). Bresson et al. in [9] extended the ROF model to de-
noise the chromaticity component in color image:

min
C2BVðX;R3Þ

Z
X
jrCjdxþ k

2

Z
X
jC� C0j2dxþ a

Z
X
ðjCj � 1Þ2dx; ð26Þ

where k > 0 on the entire image. Dual method is extended to solve
this problem. Howover, this dual method can not be directly used in
the colorization problem since k̂ ¼ 0 in the inpainting domain D.
Notice that other method is proposed to handle the S2 constraint
in [33].

In this paper, we consider the following weighted TV coloriza-
tion model

min
C2BVðX;R3Þ;jCj¼1

FðCÞ ¼
Z

X
gjrCjdxþ 1

2

Z
X

k̂jC� C0j2dx: ð27Þ

In order to make use of the dual method, we add an auxiliary vari-
able U and approximate the above model by

min
C2BVðX;R3Þ;jCj¼1

FhðU;CÞ ¼
Z

X
gjrUjdxþ 1

2h

Z
X
jU� Cj2dx

þ 1
2

Z
X

k̂jC� C0j2dx; ð28Þ

where h is small enough.

3.2. Mathematical analysis

We first prove the existence of minimizer to the weighted TV
colorization model (27). Then we prove the existence of minimizer
to the approximate model (28). Finally we can prove that the solu-
tion of the approximate model (28) converges to the solution of the
original problem (27) as h ? 0+.

It is natural to assume B0 is in L1(X). Since Gr is a mollifier, it is
easy to see that

g ¼ 1

1þ kjrGr � B0j2
P

1
1þ kkB0k1

: ð29Þ
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Theorem 4. There exists a minimizer C 2 BVðX;R3Þ of problem (27)
satisfying jCj = 1.
Proof. Assume fCn 2 BVðX;R3Þ; jCnj ¼ 1g is a minimizing sequence
of problem (27) such that

lim
n!1

FðCnÞ ¼ inf
C

FðCÞ:

Then there exists a constant M > 0 such that

FðCnÞ ¼
Z

X
gjrCnjdxþ 1

2

Z
X

k̂jCn � C0j2dx 6 M:

Thanks to g is bounded below by a positive constant in (29) and
k̂ P 0, we deduce thatZ

X
jrCnjdx 6 M:

Together with jCnj = 1, we conclude that {Cn} is uniformly bounded
in BVðX;R3Þ \ L2ðX;R3Þ. Then there exists a subsequence, also de-
noted as {Cn}, and a function C 2 BVðX;R3Þ \ L2ðX;R3Þ such that

Cn * C weakly� in BVðX;R3Þ;
Cn ! C strongly in L1ðX;R3Þ;
Cn * C weakly in L2ðX;R3Þ;
Cn ! C a:e: x 2 X:

Thus jCj = 1 a.e. x 2X. By the lower semi-continuity of weighted to-
tal variation and L2 norm, we obtainZ

X
gjrCjdxþ 1

2

Z
X

k̂jC� C0j2dx

6 lim inf
n!1

Z
X

gjrCnjdxþ 1
2

Z
X

k̂jCn � C0j2dx:

That is

FðCÞ 6 lim inf
n!1

FðCnÞ ¼ inf
C

FðCÞ:

This proves that C is a minimizer of problem (27) satisfying
jCj = 1. h
Theorem 5. For fixed h > 0, there exists a minimizer ðUh;ChÞ 2
BVðX;R3Þ � L2ðX;R3Þ of the approximate problem (28) satisfying
jChj = 1.
Proof. Assume ðUn
h ;C

n
hÞ is a minimizing sequence satisfying

jCn
h j ¼ 1. There exists a constant M > 0 such that

FhðUn
h ;C

n
hÞ ¼

Z
X

gjrUn
h jdxþ 1

2h

Z
X
jUn

h � Cn
h j

2dx

þ 1
2

Z
X

k̂jCn
h � C0j2dx 6 M:

ThenR
X gjrUn

h jdx 6 M;

1
2h

R
X jU

n
h � Cn

h j
2dx 6 M: �

n
Thanks to g is bounded below by a positive constant and Ch is uni-
formly bounded in L2ðX;R3Þ, we deduce that Un

h is uniformly
bounded in BVðX;R3Þ. Therefore there exists a couple
ðU;CÞ 2 BVðX;R3Þ � L2ðX;R3Þ such that up to a subsequence

Un
h * Uh weakly� in BVðX;R3Þ;

Un
h ! Uh strongly in L1ðX;R3Þ;

Cn
h * Ch weakly in L2ðX;R3Þ:
By the lower semi-continuity of weighted total variation and L2

norm, we obtain

FhðUh;ChÞ ¼
Z

X
gjrUhjdxþ 1

2h

Z
X
jUh � Chj2dxþ 1

2

Z
X

k̂jCh � C0j2dx

6 lim inf
n!1

Z
X

gjrUn
h jdxþ 1

2h

Z
X
jUn

h � Cn
h j

2dx

þ 1
2

Z
X

k̂jCn
h � C0j2dx

6 lim inf
n!1

Fn
hðU

n
h ;C

n
hÞ:

This implies that (Uh,Ch) is a minimizer of the approximate problem
(28).

We now pass the limit as h ? 0+ and prove the convergence of
the solution sequence (Uh,Ch).

Theorem 6. As h ? 0+, the solution of the approximate problem (28)
converges to the solution of the weighted TV colorization problem
(27).
Proof. Assume (Uh,Ch) is a couple of solution to problem (28) for
fixed h 2 (0,1) satisfying jChj = 1, we have Fh(Uh,Ch) 6 Fh(V,W) for
all ðV;WÞ 2 BVðX;R3Þ � L2ðX;R3Þ, i.e.,Z

X
gjrUhjdxþ 1

2h

Z
X
jUh � Chj2dxþ 1

2

Z
X

k̂jCh � C0j2dx

6

Z
X

gjrVjdxþ 1
2h

Z
X
jV �Wj2dxþ 1

2

Z
X

k̂jW� C0j2dx:

By taking (V,W) � (0,0), we obtainZ
X

gjrUhjdxþ 1
2h

Z
X
jUh � Chj2dxþ 1

2

Z
X

k̂jCh � C0j2dx

6
1
2

Z
X

k̂C2
0dx:

Then there exists a constant M such thatR
X gjrUhjdx 6 M;

1
2

R
X jUh � Chj2dx 6 Mh 6 M:

Thanks to g is bounded below by a positive constant and jChj = 1, we
conclude that Uh is uniformly bounded in BVðX;R3Þ. Consider a se-
quence hn such that hn > 0 and hn ? 0 as n ?1. Then there exists
ðU;CÞ 2 BVðX;R3Þ � L2ðX;R3Þ such that up to a subsequence,

Uhn * U weakly� in BVðXÞ;

Uhn ! U strongly in L1ðXÞ;

Chn * C weaklyin L2ðXÞ;

Uhn � Chn ! 0 strongly in L2ðXÞ:

Hence U = C a.e. x 2X. Thanks to the lower semi-continuity of vec-
torial TV and L2 norm, we obtain for all W 2 BV(X) that

FðCÞ ¼
Z

X
gjrCjdxþ 1

2

Z
X

k̂jC� C0j2dx

6 lim inf
n!1

Z
X

gjrUhn jdxþ 1
2hn

Z
X
jUhn � Chn j2dx

þ 1
2

Z
X

bkjChn � C0j2dx ¼ lim inf
n!1

Fhn ðUhn ;ChnÞ

6 lim inf
n!1

Ehn ðW;WÞ ¼
Z

X
gjrWjdx

þ 1
2

Z
X

k̂jW� C0j2dx ¼ FðWÞ:

Thus C is a minimizer of F. h



Fig. 1. Comparison of gray image inpainting algorithms. (a) The test image with inpainting mask (in white), size 256 � 256; results of the proposed algorithm I: (b)–(d)
intermediate inpainting results at iterations 20, 40 and 120; (e) final inpainted image at iteration 200, computational time = 3.7 s; results of the split Bregman algorithm: (f)–
(h) intermediate inpainting results at iterations 20, 40 and 120; (i) final inpainted image at iteration 200, computational time = 6.5 s; results of the implicit TV inpainting
algorithm in [13]: (j)–(l) intermediate inpainting results at iteration 100, 1000 and 3000; (m) final inpainted image at iteration 5000, computational time = 87.4 s.
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3.3. The algorithm

We use Lagrange multipliers method and relax the constraint in
the approximate problem (28) as

min
l;U;C

Z
X

gjrUjdxþ 1
2h

Z
X
jU� Cj2dxþ 1

2

Z
X

k̂jC� C0j2dx

þ 1
2

Z
X
lðjCj2 � 1Þdx; ð30Þ

where l(x) is the pointwise Lagrange multipliers. The above uncon-
strainted approximate problem can be decomposed into two
subproblems:
min
U

Z
X

gjrUjdxþ 1
2h

Z
X
jU� Cj2dx; ð31Þ

min
l;C

1
2h

Z
X
jU� Cj2dxþ 1

2

Z
X

k̂jC� C0j2dxþ 1
2

Z
X
lðjCj2 � 1Þdx:

ð32Þ
(31) can be solved by extending the dual vectorial ROF model of
Bresson et al. [9] to weighted dual vectorial ROF model. The deriva-
tion of the formula is very easy and thus is omitted. See the formula
in the details of algorithm III. Taking the derivative of energy in (32)
with respect to C and setting the result to zero, we have



k k k

Fig. 2. Gray scale image inpainting by algorithm I and harmonic inpainting. The first row (a)–(d) are test images with inpainting mask filled in with random value, size of (a)–
(c) 100 � 100, size of (d) 256 � 256; The second row (e)–(h) are the inpainting results by algorithm I; the third row (i)–(l) are the results of harmonic inpainting.

Fig. 3. Gray scale image inpainting by algorithm I. (a) Lena image with 30% information left, size 512 � 512; (b) inpainted image of (a) by algorithm I, PSNR = 31.8 dB: (c) Lena
image with 10% information left; (d) inpainted image of (c) by algorithm I, PSNR = 25.9 dB. h = 1.
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1
h
ðC� UÞ þ bkðC� C0Þ þ lC ¼ 0: ð33Þ

Multiplying (33) by vector C and using the constraint jCj = 1 yields

lðxÞ ¼ 1
h
hU;Ci þ k̂hC;C0i �

1
h
� k̂; ð34Þ

where hUðxÞ;CðxÞi ¼
P3

i¼1UiðxÞCiðxÞ denotes the inner product of
vectors in R3. From (33) and (34), C is given by the following
formula

C ¼ Uþ k̂hC0

1þ k̂hþ lh
: ð35Þ

The algorithm details are as follows.
3.4. Algorithm III

� Initialization: C0 = C0, p0 = 0.
� Iteration: for k = 0,1,2, . . .
pkþ1 ¼ p þsr divp �C =hð Þ=g

1þs r divpk�Ck=hð Þj j=g
;

Ukþ1 ¼ Ckhdivpkþ1;

lkþ1 ¼ 1
h hU

kþ1;Cki þ k̂hCk;C0i � 1
h � k̂;

Ckþ1 ¼ Ukþ1þk̂hC0
1þk̂hþlkþ1h

:

� Termination criterion: as Algorithm I.



Fig. 4. Comparison of color image inpainting with algorithms. (a) The test image with mask, size 371 � 432; results of algorithm II: (b)–(e) intermediate inpainting results at
iterations 20, 40, 60 and 100; (f) final inpainted image at iteration 100, computational time = 14.7 s; results of the SB algorithm: (g)–(j) intermediate inpainting results at
iterations 20, 40, 60 and 100; (k) final inpainted image at iteration 100, computational time = 20.9 s; results of implicit algorithm as in [13] for model (3): (l)–(o) intermediate
inpainting results at iteration 100, 200, 400 and 1000; (p) final inpainted image at iteration 1500, computational time = 141.3 s.
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Compared with the method in [24], the advantages of our method
are: (1) the Lagrange multipliers l(x) can be automatically given
by closed form solution in our method, while in [24], the Lagrange
multiplier a should be defined by the user; (2) C has closed form
solution in our method, while in [24], C is solved by implicit scheme
or gradient descent method with small time step; (3) In [24], the
chromaticity is projected to satisfy jCj 6 1 in each iteration in order
to ensure the stability of the algorithm, which is not necessary in
our algorithm.
4. Numerical results

We test our algorithms I, II and III on various images in this
section. Default parameters are k = 10 ⁄ (1 � vD), h = 10, s = 0.125
for algorithm I and II; k = 10 ⁄ (1 � vD), h = 0.05, s = 0.125, r = 3,
k = 0.05 for algorithm III. We will note if other parameters are
used. The experiments are performed under Windows XP and
MATLAB v7.4 with Intel Core 2 Duo CPU at 1.66 GHz and 2 GB
memory.
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Some of the results are compared with other inpainting meth-
ods including the implicit TV inpainting algorithm in [13], the split
Bregman (SB) algorithm in [21] and the harmonic inpainting meth-
od. The reason we choose these algorithms for comparison is that
the algorithm in [13] and the harmonic inpainting are classical
algorithms and the SB algorithm is one of the state of the art algo-
rithm for TV restoration problems in the aspect of speed.
4.1. Test algorithm I

We test our algorithm I for gray scale image inpainting in
Figs. 1–3. In Fig. 1, we show the intermediate results in the evolu-
tion process of algorithm I in the second row. The result Fig. 1(e) at
iteration 200 consuming 3.7 s seems quite good. The results for SB
algorithm are displayed in the third row. It gives the similar final
result Fig. 1(i) at iteration 200 consuming 6.5 s. We also show
the results of TV inpainting model [13] in the evolution process
in the fourth row. The result Fig. 1(m) at iteration 5000 consuming
87.4 seconds is acceptable. Our algorithm I is obviously faster than
the algorithm in [13] and is also faster than the SB algorithm.

In Fig. 2, four synthetic images are tested. Our results are better
than the results of harmonic inpainting. The inpainting results of
Figs. 2(a) and (b) by algorithm I are totally different: the bar is bro-
ken in Fig. 2(e) while the bar is connected in Fig. 2(f). Actually, if
the height of inpainting mask h is larger than the width w of the
black bar as in Fig. 2(a), the inpainting result is a broken bar as
Fig. 2(e), while if h < w as in Fig. 2(b), the inpainting result is a con-
nected bar as Fig. 2(f). This phenomenon is also observed in [13],
and the mathematical analysis is given there. Another drawback
of algorithm I (also observed in TV inpainting model [13]) is that
it can not remain curvature of isophote, see Fig. 2(g) for example.
Fig. 5. Comparison of a small region in Fig. 4. (a) The test image; (b) inpainted by

Fig. 6. Color image denoising and inpainting by algorithm II. (a) Test image with mask w
size 384 � 256; (b) denoised and inpainted image by algorithm II. k = 0.05(1 � vD).
In Fig. 3, we test our algorithm I using Lena image with 30% and
10% information left which is chosen randomly. The inpainted
images by algorithm I are satisfactory.
4.2. Test algorithm II

We test our algorithm II for color image inpainting in Figs. 4–8.
In Fig. 4, the intermediate results of both algorithm II, SB algorithm,
and implicit algorithm as in [13] for color TV inpainting model (3)
are displayed. To get the visually acceptable results in the last col-
umn, algorithm II takes 100 iterations and 14.7 s, SB algorithm
takes 100 iterations and 20.9 s, meanwhile implicit algorithm takes
1500 iterations and 141.3 s. One region of the images are zoomed
in for detailed comparison in Fig. 5. It shows that our result is
slightly better than that of implicit algoritm for model (3) and sim-
ilar to that of SB algorithm.

In Figs. 6–8, more color images are tested. Fig. 6(a) is a noisy im-
age with mask. Fig. 6(b) show that our method can simultaneously
denoise and inpaint the image. Figs. 7 and 8 show that our algo-
rithm is effective in scratch removal and text removal.
4.3. Test algorithm III

We test our algorithm III for image colorization in Figs. 9–12.
We compare algorithm III and the method in [24] (model (25)) in
Fig. 9. The parameters for [24] are set as: time step dt = 0.1,
a = 10, k = 10⁄(1 � vD). The recovered chromaticity by algorithm
III (Fig. 9(e)) seems slightly better than that of method in [24]
(Fig. 9(g)). To obtain the results, algorithm III needs 300 iteration
and 5.8 seconds, while model (25) in [24] needs 15000 iterations
and 170.2 s. It shows that algorithm III is much faster than method
in [24]. Fig. 10 displays the colorization of an image with 50% color
algorithm II; (c) inpainted by SB algorithm [21]; (d) inpainted by model (3).

hich is contaminated by Gaussian noise with zero mean and standard deviation 20,



Fig. 9. Comparison of image colorization by algorithm III and method in [24]. (a) the original color image, size 101 � 131; (b) chromaticity of (a); (c) the color in the two strips
are known; results of algorithm III: (d) the colorized image; (e) the recovered chromaticity, computational time = 5.8 s, iteration = 300; results of the method in [24]: (f) the
colorized image; (g) the recovered chromaticity, computational time = 170.2 s, iteration = 15000.

Fig. 7. Scratch removal by algorithm II. (a) Test image with mask, size 600 � 406; (b) inpainted image.

Fig. 8. Text removal by algorithm II. (a) Test image with mask, size 800 � 600; (b) inpainted image.
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Fig. 11. Image colorization by algorithm III. (a) the original color image, size 512 � 512; (b) chromaticity of (a); (c) 10% color information are known (randomly chosen);
results of algorithm III: (d) the colorized image; (e) the recovered chromaticity.

Fig. 10. Image colorization by algorithm III. (a) The original color image, size 256 � 256; (b) chromaticity of (a); (c) 50% color information are known (chessboard mask);
results of algorithm III: (d) the colorized image; (e) the recovered chromaticity.
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information left. Fig. 11 shows the colorization of an image with
10% color information left which is chosen randomly. The colorized
images are very close to the original images. More images are col-
orized in Fig. 12 with given color in small regions. The results are
satisfactory.

5. Conclusion

In this paper, we propose to approximate the TV inpainting
model and TV colorization model by adding auxiliary variables in
the original functionals such that the approximate problems can
be solved by Chambolle’s dual method and closed form solutions.
The algorithms are far more efficient than the numerical schemes
in [13,24] and competitive with the SB algorithm. Many mathe-
matical results of the models are proved. We also observe in the
experiments that our algorithm as well as TV inpainting has the
drawback that it cannot remain the curvature of isophote. To over-
come this drawback, geometric information such as curvature is
introduced into the models in [14,17]. However, the numerical
scheme is not efficient. In our future work, we plan to make use



Fig. 12. Image colorization by algorithm III. First column: image with some known color; second column: the recovered chromaticity; third column: the colorized image.
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of dual method to solve these models. Since higher order equation
or functional are involved, the problem is more difficult.
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