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a b s t r a c t

In this paper, we propose a fast algorithm to solve the well known total variation (TV)
inpainting model. Classically, the Euler–Lagrange equation deduced from TV inpainting
model is solved by the gradient descent method and discretized by an explicit scheme,
which produces a slow inpainting process. Sometimes an implicit scheme is also used to
tackle the problem. Although the implicit scheme is several times faster than the explicit
one, it is still too slow in many practical applications. In this paper, we propose to use
an operator splitting method by adding new variables in the Euler–Lagrange equation of
TV inpainting model such that the equation is split into a few very simple subproblems.
Then we solve these subproblems by an alternate iteration. Numerically, the proposed
algorithm is very easy to implement. In the numerical experiments, we mainly compare
our algorithm with the existing implicit TV inpainting algorithms. It is shown that our algo-
rithm is about ten to twenty times faster than the implicit TV inpainting algorithms with
similar inpainting quality. The comparison of our algorithm with harmonic inpainting algo-
rithm also shows some advantages and disadvantages of the TV inpainting model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Image inpainting is an important topic in image processing. The goal of inpainting is to recover missing data in a damaged
image. Its applications cover film restoration, text removal, scratch removal, and special effects in movies. An important class
of digital inpainting methods relates to partial differential equations (PDEs). The term of digital inpainting was initially intro-
duced by Bertalmío et al. [1]. The authors were also the first to apply PDEs in image inpainting. They proposed a third-order
gradient descent flow to propagate the information outside the inpainting region into the inpainting region along isophotes.
Ballester et al. [2] proposed to smoothly extend inside the inpainting domain both the vector field obtained from the image
gradient and the isophotes. Bertalmío et al. [3] introduced the Navier–Stokes equations for fluid dynamics into image inpaint-
ing. Chan et al. [4] proposed total variation (TV) inpainting algorithm by modifying the Rudin–Osher–Fatemi (ROF) model [5].
Chan et al. gives the error analysis of TV inpainting model in Chan and Kang [6]. In [7], the same authors of [4] proposed a
curvature-driven diffusion (CDD) PDE inpainting model which extends the TV algorithm by taking into account geometric
information of isophotes (i.e. curvature) in the total variation diffusion equation, thus can connect some broken edges and
maintain curvature of isophotes. Masnou et al. [8] and Chan et al. [9] studied the variational inpainting models based on Euler
elastica in which curvature is also involved. Grossauer et al. used the complex Ginzburg Landau equation for digital inpainting
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in 2D and 3D [10]. Tai et al. [11] proposed to first propagate the isophote directions into the inpainting region by TV-Stokes
equation and then restore the image by fitting the constructed directions. These PDE-based image inpainting methods have
the advantage of preserving edges very well, however, the slow and unstable numerical implementations greatly limit their
practical use. PDE based inpainting techniques are suitable for non-texture image inpainting.

Another class of approaches based on texture synthesis is suitable for texture image inpainting, in which the exemplar-
based method seems to be very successful [12–14]. The two classes of methods can be combined together [15,16].
Variational nonlocal method is also proved to be successful in texture inpainting [17].

All of the above works considered inpainting in image domain. Recently, there were some works which considered
inpainting in transformed domain. For instance, You et al. [18] studied the problem in wavelet domain, and Cai et al. [19]
studied in both the image domain and general transformed domain.

In this paper we implement the TV inpainting model [4] by the operator splitting method using the technique developed
in Shen [20]. Since it is hard to give the iteration formula for the inpainted image directly, we use the operator splitting
method [21,22] after obtaining the Euler–Lagrange equation. This is done by introducing intermediate variables, and each
variable can be solved relatively easier. Thus we could establish an alternate iteration formula so that the inpainting process
could be expressed by the iteration. The algorithm is fast and simple to implement.

The outline of this paper is as follows. In Section 2, we propose our method to solve TV inpainting problem for gray scale
images and color images respectively. In Section 3, we give the numerical results of our algorithm. We also compare our ap-
proach with the implicit TV inpainting algorithm in Chan and Shen [4]. Finally, we conclude the paper in Section 4.

2. The proposed method

2.1. TV inpainting model

Assume X � R2 be the image domain and u0 : X! R be the gray scale image. Let D � X be the inpainting domain and
Dc ¼ X n D be the complement of D in X. The TV inpainting model proposed in [4] is a modified ROF model as
min
uðxÞ2BVðXÞ

EðuðxÞÞ ¼ TVðuðxÞÞ þ 1
2

Z
X

bkðxÞðuðxÞ � u0ðxÞÞ2dx ð1Þ
where
bkðxÞ ¼ k; x 2 Dc

0; x 2 D

�

and k is a positive constant. Recall that there are two definitions of TV norm as:
anisotropic TVðuÞ ¼ rx1 uk1 þ krx2 u
�� ��

1;

isotropic TVðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx1 u2 þrx2 u2

q��� ���
1
;

where x ¼ ðx1; x2Þ 2 X and k � k1 denotes the L1 norm. Remark that the isotropic one is always used in image inpainting.
The above TV inpainting model is classically solved by the gradient descent method and discretized by an explicit scheme

or implicit scheme which is relatively slow. Though many fast algorithms (such as Chambolle’s fast dual projection method
[23] and the split Bregman method [24]) have been developed to solve the ROF model, they cannot be directly used in TV
inpainting since bk takes zero value in the inpainting regions. In this paper, we will propose a new fast algorithm to solve
TV inpainting problem.

2.2. The proposed algorithm

Consider the following TV model
min
u2BVðXÞ

EðuÞ ¼ aTVðuÞ þ 1
2

Z
X

bkðu� u0Þ2dx ð2Þ
where a is a positive weight parameter. For ease of notation, let L ¼ r ¼ ðrx1 ;rx2 Þ denote the gradient operator along the
first and second coordinates, f is an operator such that ðTVðuÞ ¼ f ðLuÞ. Note that the two definitions of TV norm correspond to
two definitions of the operator f.

By variational method, we get the Euler–Lagrange equation of Eq. (2)
0 2 a@ðf � LÞðuÞ þ bkðu� u0Þ ð3Þ
where @ denotes the subdifferential operator. Eq. (3) is equivalent to
0 2 L�@f ðaLuÞ þ bkðu� u0Þ ð4Þ
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Using the general property:
x 2 @f ðyÞ () y 2 @f �ðxÞ ð5Þ
for a convex function f and its convex conjugate
f �ðyÞ ¼ sup
x
fhy; xi � f ðxÞg
we obtain the equivalent condition: u satisfies Eq. (4) if and only if there exists an auxiliary variable w ¼ ðw1;w2Þ such that
0 ¼ L�wþ bkðu� u0Þ ð6Þ
aLu 2 @f �ðwÞ ð7Þ
where L� is the adjoint operator of L. To solve the Eqs. (6) and (7), we use the operator splitting method [21,22] by introduc-
ing two scalars s1; s2 > 0, and obtain
ð6Þ () 0 ¼ s1L�wþ u� s ð8Þ
s ¼ u� bks1ðu� u0Þ ð9Þ

ð7Þ () 0 2 s2@f �ðwÞ þw� t ð10Þ
t ¼ wþ s2aLu ð11Þ
From Eq. (8), it is easy to get the solution of u
u ¼ s� s1L�w ð12Þ
Due to Eq. (5), Eq. (10) is equivalent to
0 2 s2wþ @f ðw� tÞ
Using the definition of f which is determined by the definition of TV norm, we can deduce that the solution is
w ¼min ktk; 1
s2

� �
t
ktk ð13Þ
where 0
0 is defined to be 0; ktk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

1 þ t2
2

q
for the isotropic TV norm and ktk ¼ jt1j þ jt2j for the anisotropic TV norm. See [22]

for the derivation of the solution for the isotropic case. The anisotropic case can be solved in a similar way, which is thus
omitted.

In the discrete case, assume the image is an n� n matrix, then the operators r ¼ ðrx1 ;rx2 Þ are defined as
rx1 uð1; jÞ ¼ 0; j ¼ 1 : n

rx1 uði; jÞ ¼ uði; jÞ � uði� 1; jÞ; i ¼ 2 : n; j ¼ 1 : n

rx2 uði;1Þ ¼ 0; i ¼ 1 : n
rx2 uði; jÞ ¼ uði; jÞ � uði; j� 1Þ; i ¼ 1 : n; j ¼ 2 : n:
It is easy to derive that the adjoint operators of r ¼ ðrx1 ;rx2 Þ are rT ¼ ðrT
x1
;rT

x2
Þ defined as
rT
x1

uðn; jÞ ¼ 0; j ¼ 1 : n

rT
x1

uði; jÞ ¼ uði; jÞ � uðiþ 1; jÞ; i ¼ 1 : n� 1; j ¼ 1 : n

rT
x2

uði;nÞ ¼ 0; i ¼ 1 : n

rT
x2

uði; jÞ ¼ uði; jÞ � uði; jþ 1Þ; i ¼ 1 : n; j ¼ 1 : n� 1
and L�w ¼ rT w ¼ rT
x1

w1 þrT
x2

w2.
Hence, we propose to solve the TV inpainting problem by the following alternative iteration algorithm.

The algorithm

� Initialization: u0 ¼ u0;w0 ¼ 0.
� Iteration: for k=0, 1,2, . . .
skþ1 ¼ uk � bks1ðuk � u0Þ
ukþ1 ¼ skþ1 � s1rT wk

tkþ1 ¼ wk þ s2aruk

wkþ1 ¼min ktkþ1k; 1
s2

� �
tkþ1

ktkþ1k
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� Termination criterion: k > kmax where kmax is the maximum iteration defined by the user.

It is straightforward to extend the above algorithm into color image case. We omit the details.

3. Numerical results

We test the proposed algorithm on various images in this section. Default parameters are k ¼ 10 � ð1� vDÞ;
s1 ¼ 0:1; s2 ¼ 0:03 and we choose parametera by lettings2a ¼ 1. The default TV norm is isotropic. If other parameters are used,
we will point out. The experiments are performed under Windows XP and MATLAB v7.4 with Intel Core 2 Duo CPU at 1.66 GHz
and 2 GB memory.

3.1. Test on gray images

We test our algorithm for gray scale image inpainting in Figs. 1–3 . Some of the results are compared with TV inpainting
algorithm in [4]. In Fig. 1, we show the intermediate results in the evolution process of our algorithm in the first row. The
result at iteration 200 consuming 4.2 s seems quite good. In contrast, we show the results of TV inpainting method [4] (im-
plicit method) in the evolution process in the second row. The result at iteration 5000 consuming 87.4 s is acceptable. Our
algorithm is obviously faster than that in [4].

In Fig. 2, we test our algorithm using Lena image with 30% and 10% information left which is chosen randomly. The
inpainted images by the proposed algorithm are satisfactory.

In Fig. 3, three synthetic images are tested by the proposed algorithms with anisotropic/isotropic TV norm and the har-
monic inpainting algorithm [25]. The harmonic inpainting algorithm is aimed to solve the Laplace equation with Dirichlet
Fig. 1. Comparison of gray image inpainting with our algorithm and TV inpainting algorithm in [4]. (a) The test image with inpainting mask (in white), size
256 � 256; Results of the proposed algorithm: (b) and (c) intermediate inpainting result at iterations 20 and 100; (d) final inpainted image at iteration 200,
computational time = 4.2 s; Results of the TV inpainting algorithm in [4]: (e)–(g) intermediate inpainted image at iteration 100, 500 and 3000; (h) final
inpainted image at iteration 5000, computational time = 87.4 s.

Fig. 2. Gray scale image inpainting by the proposed algorithm. (a) Lena image with 30% information left, size 512 � 512; (b) inpainted image of (a),
PSNR = 32.4 dB: (c) Lena image with 10% information left; (d) inpainted image of (c), PSNR = 25.9 dB.



Fig. 3. Gray image inpainting by the proposed algorithm and harmonic inpainting. The first column (a), (e), (i) are test images with inpainting mask filled in
with random value, with size 100 � 100; The second column (b), (f), (j) are the inpainting results by our algorithm with isotropic TV norm; The third column
(c), (g), (k) are the inpainting results by our algorithm with anisotropic TV norm; The last column (d), (h), (l) are the results of harmonic inpainting.
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boundary condition in the inpainting region D. Our results are better than those of harmonic inpainting. The inpainting re-
sults by our algorithm of Fig. 3a and e are totally different: the bar is connected in Fig. 3b and c while the bar is broken in
Fig. 3f and g. Actually, if the height of inpainting mask h is smaller than the width w of the black bar as in Fig. 3a, the inpaint-
ing result is a connected bar as Fig. 3b and c, while if h > w as in Fig. 3e, the inpainting result is a broken bar as Fig. 3f and g.
This phenomenon is also observed in [4], where the mathematical analysis is given. We also compare the algorithms with
isotropic and anisotropic TV norm in the second column and third column. For bar image, the results are the same. While for
Fig. 3i, the two TV norms yield totally different results. This phenomenon can be explained by the definition of TV norm.
Fig. 4. Comparison of color image inpainting with the proposed algorithm and the algorithm in [4]. (a) The test image with mask, size 371 � 432; Results of
the proposed algorithm: (b) and (c) intermediate inpainting result at iterations 20 and 60; (d) final inpainted image at iteration 100, computational
time = 14.8 s; Results of model in [4]: (e)–(g) intermediate inpainted image at iteration 100, 200 and 1000; (h) final inpainted image at iteration 1500,
computational time = 141.3 s.



Fig. 5. Text removal by our algorithm. (a) Test image with mask, size 438 � 297; (b) inpainted image.

Fig. 6. Color image denoising and inpainting by the proposed algorithm. (a) Test image with mask which is contaminated by Gaussian noise with zero mean
and standard deviation 20, size 591 � 394; (b) denoised and inpainted image by our algorithm.
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It is shown in Fig. 3 that TV model has the drawback that it cannot maintain the curvature of isophotes. Remark that the
CDD model [7] and Euler elastica model [9] can overcome this drawback by introducing curvature into their models.

3.2. Test on color images

We test our algorithm for color image inpainting in Figs. 4–6. In Fig. 4, we extend the TV inpainting algorithm in [4] to
color image and compare our algorithm with it. The intermediate results are displayed. Our algorithm takes 100 iterations
and 14.8 s while the implicit algorithm in [4] takes 1500 iterations and 141.3 s to obtain visually comparable results.

In Figs. 5 and 6, two natural color images are tested. Fig. 6a is the test image with mask. It is contaminated by Gaussian
white noise with standard deviation 20. Fig. 6b shows that our method can simultaneously denoise and inpaint the image. In
this example, the parameters are different from others, k ¼ 1 � ð1� vDÞ; s1 ¼ 0:015; s2 ¼ 1. Figs. 5 and 6 show that our algo-
rithm is effective in text removal and scratch removal.

3.3. The choice of parameters

In all the tests the parameters k; s1; s2 are chosen by trail and error. We use the same parameters for all the examples
except Fig. 6. The reason is in Fig. 6 we consider both inpainting and denoising and the parameters are chosen in order to
balance these two parts, while in other tests only inpainting is considered. In general, our algorithm is not very sensitive
to these parameters. A small change of these values gives similar results.

4. Conclusion

We have proposed a novel algorithm based on operator splitting scheme to solve the classical TV inpainting problem. We
have shown that this method is very fast compared with the implicit numerical schemes used early for this problem. First,
we calculate the first order optimal condition, i.e. the Euler–Lagrange equation of the energy functional. Usually it is a com-
plicated nonlinear PDE when total variation is involved. Second, we add some new variables to substitute the difficult part in
the PDE such that the original PDE can be split into several simple subproblems. Each subproblem has closed form solution.
Then the algorithm is obtained by solving these simple subproblems iteratively. The key point of our method depends on
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suitably choosing variables and operators to split, which is something skillful. On the other hand, we observe in the exper-
iments that our algorithm as well as TV inpainting algorithm in [4] has the drawback that it cannot keep the curvature of
isophote (see Fig. 3). To overcome this drawback, geometric information such as curvature must be introduced into the mod-
els, for instance, CDD model [7] and Euler elastica model [9]. However, the existing numerical schemes for these models
evolve the gradient descent flow, which is very slow due to its time step limitation. In our future work, we plan to extend
our algorithm to solve the problem. Since higher order equations or functionals are involved, these problems are very diffi-
cult. Moreover, it is hoped that the similar idea can be useful in designing fast and easy to implement numerical schemes to
solve other PDEs involved in image processing problems.
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