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Selection of regularization parameter in total
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We consider and study total variation (TV) image restoration. In the literature there are several regularization
parameter selection methods for Tikhonov regularization problems (e.g., the discrepancy principle and the gen-
eralized cross-validation method). However, to our knowledge, these selection methods have not been applied
to TV regularization problems. The main aim of this paper is to develop a fast TV image restoration method
with an automatic selection of the regularization parameter scheme to restore blurred and noisy images. The
method exploits the generalized cross-validation (GCV) technique to determine inexpensively how much regu-
larization to use in each restoration step. By updating the regularization parameter in each iteration, the re-
stored image can be obtained. Our experimental results for testing different kinds of noise show that the visual
quality and SNRs of images restored by the proposed method is promising. We also demonstrate that the
method is efficient, as it can restore images of size 256�256 in �20 s in the MATLAB computing environment.
© 2009 Optical Society of America
OCIS codes: 100.1758, 100.1830, 100.2000, 100.3020.

t
t
t

a
f
d
i
t
n

r

w
p
t
d
a
d

w

. INTRODUCTION
igital image restoration and reconstruction play an im-
ortant part in various areas of applied sciences such as
edical and astronomical imaging, film restoration, and

mage and video coding. In this paper, we focus on a com-
on degradation model: an ideal image f�Rn2

is observed
n the presence of a spatially invariant point spread func-
ion (PSF) and noise n�Rn2

. Thus the observed image g
Rn2

is modeled as

g = Hf + n. �1�

athematically, our aim is to determine f given a blurring
atrix H generated by a spatially invariant PSF and an

bserved image g. Traditionally, the standard image res-
oration methods involve computation in the frequency
omain, facilitated by efficient fast Fourier transform
FFT) algorithms. There has been new movement toward
ore variational approaches [1]. The variational ap-

roaches are often designed to process certain desirable
eometrical properties.

. Total Variation Image Restoration
t is well known that restoring an image f is a very ill-
onditioned problem. A regularization method should be
sed in the image restoration process. The main disad-
antage of using quadratic regularization functionals
uch as the H1 semi-norm of f (in the continuous setting),

� �f x
2 + f y

2�dxdy,

s the inability to recover sharp discontinuities (edges) [2].
athematically, this is clear because discontinuous func-
1084-7529/09/112311-10/$15.00 © 2
ions do not have a bounded H1 semi-norm. To remedy
his, Rudin et al. [2] proposed the use of the total varia-
ion (TV)

� �f x
2 + f y

2dxdy

s a regularization functional. The reason for using this
unctional is that it measures the jumps of f, even if it is
iscontinuous. The main advantage of the TV formulation
s the ability to preserve edges in the image as a result of
he piecewise smooth regularization property of the TV
orm.
In this paper, we consider the following TV-based image

estoration problem by

min
f

1

�
�Hf − g� + �f�TV, �2�

here �x� is equal to �x�2
2��i	xi	2 or � · �1��i	xi	. Here � is a

ositive regularization parameter that measures the
rade-off between a good fit and a TV regularization. The
iscrete version of TV regularization term � · �TV is given
s follows. The discrete gradient operator � :Rn2→Rn2

is
efined by

��f�j,k = ���f�j,k
x ,��f�j,k

y �

ith

��f�j,k
x = 
fj+1,k − fj,k, if j � n

0, if j = n � ,
009 Optical Society of America
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��f�j,k
y = 
fj,k+1 − fj,k, if k � n

0, if k = n � ,

or j ,k=1, . . . ,n. Here fj,k refers to the �jn+k�th entry of
he vector f [it is the �j ,k�th pixel location of the image].
he discrete total variation of f is defined by

�f�TV ª �
1�j,k�n

	��f�j,k	2 = �
1�j,k�n

�	��f�j,k
x 	2 + 	��f�j,k

y 	2.

ere 	 · 	2 is the Euclidean norm in R2.
Numerical results have shown that TV regularization

s useful in image restoration; see [2,3]. There are some
apers [4–7] that describe why and how TV regulariza-
ion works. In [4], Bellettini et al. analyzed conservation
f shape and scale parameters controlling evolution
ithin the TV-flow context. In [6], Dobson and Santosa

tudied how TV regularization affects frequency distribu-
ions to show that the effectiveness of TV image restora-
ion depends on the size and gray-scale intensity of the
mage geometric feature, and TV regularization is par-
icularly effective for restoring blocky images but not for
extured images. In [7], Strong and Chan showed that TV
egularization tends to preserve edge locations and that
estored intensity change is exactly inversely propor-
ional to local feature scale. In addition, Strong and Chan
nvestigated how the total variation image restoration is
ffected by the regularization parameter �. Their results
nclude that for smooth radially symmetric function fea-
ures, function intensity change is inversely proportional
o radial distance and directly proportional to �. Based on
heir results, they can choose the values of regularization
arameters to be spatially varying in Eq. (2) for spatially
daptive image restoration.
TV regularization schemes have been extended to the

ase of vector-valued (e.g., color) images [8], superresolu-
ion [9], blind deconvolution [10], and other applications
or restoring nonflat image features [11]. We refer readers
o [12] for recent developments of TV image restoration
pplications.
A number of numerical methods have been proposed for

olving Eq. (2). These methods include partial-
ifferential-equation-based methods [2,3,13,14], primal-
ual methods [15–17], and Newton-type methods [18–20].
ecently, Huang et al. [21] proposed and developed a fast
V minimization method for the TV image restoration
odel. In their paper, an auxiliary variable and an addi-

ional quadratic term is added to the objective function
2). In the alternative minimization framework, minimiz-
ng the new objective function can be interpreted as a
wo-stage process, i.e., denoising and blurring. Experi-
ental results in [21] have shown that the quality of im-

ges restored by their method is competitive with the
uality of those restored by existing TV restoration meth-
ds. This approach has also been successfully used for
1-norm data-fitting term, i.e., �Hf−g�1 in [22]. Wang et al.
23,24] also proposed and developed the alternating mini-
ization algorithm for deblurring and denoising jointly

y solving a TV regularization problem. Their algorithm
s derived from the well-known variable-splitting and
enalty techniques in optimization. The idea is that at
ach pixel an auxiliary variable is introduced to transfer
ts gradient out of nondifferentiable term. Extensive nu-
erical results show that their algorithm performs favor-
bly in comparison with several state-of-the-art algo-
ithms.

. Selection of Regularization Parameters
t is well known that blurring matrices are in general ill-
onditioned and that deblurring algorithms will be ex-
remely sensitive to noise; see, for instance, Gonzalez and
oods [25]. The ill-conditioning of the blurring matrices

tems from the wide range of magnitude of their eigenval-
es; see Engl et al. [26]. Therefore, excess amplification of
he noise at small eigenvalues can occur. The method of
egularization is used to achieve stability for image resto-
ation problems. In Eq. (2), the restored image is attained
y using regularization, which restricts the set of admis-
ible solutions.

There are several possible strategies for choosing regu-
arization parameters, e.g., the discrepancy principle
26,27], the generalized cross-validation method [28,29],
nd the L-curve method [30,31]. The discrepancy prin-
iple is an a posteriori strategy for choosing a regulariza-
ion parameter as a function of the error level (the input
rror level must be known). The generalized cross-
alidation method can be applied to determine regulariza-
ion parameters when the input error level is unknown.
he L-curve method is based mainly on the plot of the
orm of the regularized solution versus the norm of the
orresponding data-fitting residual. The method is used to
hoose a regularization parameter related to the charac-
eristic L-shaped “corner” of the plot. However, to our
nowledge, these regularization-parameter-selection
ethods have not been developed for TV image restora-

ion problems. Since the TV formulation in Eq. (2) is non-
inear, the generalized cross-validation evaluation for-

ula cannot be derived explicitly. Recently, Lin and
ohlberg [32] extended the method of unbiased predictive

isk estimator (UPRE) to the TV regularization problem
y considering a quadratic approximation to the TV term.
owever, they reported the experimental results only on
small problem.
Recently, Babacan et al. [33] proposed a variational
ethod for solving deconvolution problems with TV regu-

arization. Their idea is to use a stochastic method ap-
roximating a posteriori distribution by a product of dis-
ributions using Kullback–Leibler divergence. Their
esulting method is simple and efficient, and it can up-
ate a regularization parameter in TV image restoration
n an iterative manner. Molina et al. [34] also studied this
ind of variational method for blind deconvolution appli-
ations.

. Outline
he main aim of this paper is to solve the problem of
egularization parameter selection in Eq. (2) to restore
he original image f from an observed blurred and noisy
mage g in the alternative minimization framework. The

ethod exploits the generalized cross-validation tech-
ique to determine how much regularization is used in
ach restoration step. By updating these regularization
arameters in the iterative procedure, the restored image
ecomes increasingly close to the original image. Our ex-
erimental results show that the quality of images re-
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tored by the proposed method with no prior knowledge of
oise is quite good. We will also demonstrate that the pro-
osed method is also very efficient.
The outline of this paper is as follows. In Section 2, an

utomatic method for selection of regularization param-
ters in TV image restoration is presented. In Section 3,
umerical examples are given to demonstrate the effec-
iveness of the proposed method. Finally, concluding re-
arks are given in Section 4.

. SELECTION OF REGULARIZATION
ARAMETERS
e first present a variable-splitting method and an alter-

ating minimization scheme to solve Eq. (2) [21,22].
When the data-fitting term is measured in l2-norm in-

tead of Eq. (2), we minimize the following functional:

min
f,u

1

�
�Hf − g�2

2 +
�

2
�u − f�2

2 + �u�TV. �3�

ere we add an auxiliary variable u in Eq. (3) and as-
ume that the data-fitting term is measured in the square
f the Euclidean norm. We note that when � is sufficiently
arge, we force f close to u. Thus the minimization prob-
em in Eq. (3) is close to the original problem:

min
f

1

�
�Hf − g�2

2 + �f�TV. �4�

When the data-fitting term is measured in the l1-norm,
e minimize the following functional:

min
f,u,v

1

�
��

2
�v − �Hf − g��2

2 + �v�1 + ��

2
�u − f�2

2 + �u�TV .

�5�

ere we use two auxiliary variables u and v in the algo-
ithm. In this case, when � is sufficiently large, we force f
lose to u and �Hf−g� close to v. Thus the minimization
roblem in Eq. (5) is close to the original problem:

min
f

1

�
�Hf − g�1 + �f�TV. �6�

An alternative minimization method is employed to
olve Eq. (3) by iteratively minimizing the two subprob-
ems. One subproblem is solved for determination of f,
nd the other subproblem is solved for determination of u.
n the algorithm, we can simultaneously increase the
alue of � so that the original problem in Eq. (4) can be
pproximately solved. The algorithm can be described as
ollows.

Algorithm 1
Step 0. Initialize �̂ and u;
Step 1. Fix u and solve f:

min
f

�Hf − g�2
2 + ��f − u�2

2, �7�

here � is estimated by the generalized cross-validation
ethod that will be discussed in the next subsection. [We

ote that � can be related to � and � in Eq. (3) by the for-
ula �= �� / 2.] The solution of f can be determined by
olving a linear system:

�HTH + �I�f = HTg + �u.

Such a linear system can be solved efficiently by
sing fast transform-based methods and preconditioning
echniques for Toeplitz-like matrices; see [35];

Step 2. Fix f and solve u:

min
u

�̂

2
�u − f�2

2 + �u�TV.

The solution u can be solved by many TV denoising
ethods such as Chambolle’s projection algorithm [36] or

emismooth Newton’s method [37]. The algorithm goes to
tep 1 if the convergence criterion is not satisfied, other-
ise, it goes to Step 3;
Step 3. The value of �̂ is increased by a factor ��1, i.e.,

ˆ
ª �̂�. The algorithm goes to Step 1.

Similarly, an alternative minimization method is em-
loyed to solve Eq. (5) by iteratively minimizing the fol-
owing three subproblems and simultaneously increasing
he value of �. The algorithm can be described as follows.

Algorithm 2
Step 0. Initialize �̂ and f;
Step 1. Fix f and u, solve v:

min
v

�̂

2
�v − �Hf − g��2

2 + �v�1.

There is an explicit solution of v:

v = sign�Hf − g� � max
	Hf − g	 −
1

�̂
,0� ,

here � denotes the elementwise product, and the conven-
ion 0· �0/0�=0 is required.

Step 2. Fix f and v, solve u:

min
u

�̂

2
�u − f�2

2 + �u�TV.

The solution u can be solved by many TV denoising
ethods such as Chambolle’s projection algorithm [36] or

he semismooth Newton method [37].
Step 3. Fix u and v and solve f:

min
f

�v − �Hf − g��2
2 + ��u − f�2

2, �8�

here � is estimated by the generalized cross-validation
ethod that will be discussed in the next subsection. The

olution of f can be determined by solving a linear system:

�HTH + �I�f = HT�g + v� + �u.

The algorithm goes to Step 1 if the convergence cri-
erion is not satisfied, otherwise, it goes to Step 4.

Step 4. The value of �̂ is increased by a factor ��1, i.e.,
ˆ
ª �̂�. The algorithm goes to Step 1.
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In the above two iterative algorithms, we need to input
he values of the regularization parameters in Eqs. (7)
nd (8). We propose to employ the generalized cross-
alidation (GCV) method to determine a suitable value of
he regularization parameter in the process of iteration.

. Generalized Cross-Validation Method
eneralized cross-validation [28] is a technique that esti-
ates a regularization parameter directly without requir-

ng an estimate of the noise variance. It is based on the
oncept of prediction errors. The basic idea is to take kth
bservation out of all observed data, and then to use the
emaining observations to predict the kth observation. If
he regularization parameter is a good choice, the kth
omponent of the fitted data should be a good predictor for
th observation on average.
For the minimization problems in Eqs. (7) and (8), it is

ecessary to solve the problem in the following form:

min
f

�Hf − z�2
2 + ��f − u�2

2,

here z=g for Algorithm 1 and z=g+v for Algorithm 2.
ased on this form, we let f�

�k� �k=1, ¯ ,n2� be the vector
hat minimizes the error measure:

�
j=1,j�k

n2

��z − Hu�j − �Hf�j�2, �9�

here � · �j is the jth element of a vector. If � is such that

�
�k� is a good estimate of f, then �Hf�

�k��k should be a good
pproximation of �z−Hu�k on average. For a given �, the
verage squared error between the predicted value
Hf�

�k��k and the observed value �z−Hu�k is given by

1

n2�
k=1

n2

��z − Hu�k − �Hf�
�k��k�2.

The generalized cross-validation is a weighted version
f the above error:

	��� �
1

n2�
k=1

n2

��z − Hu�k − �Hf�
�k��k�2�

1 − mk,k���

1 −
1

n2�
j=1

n2

mj,j���� ,

here mj,j��� is the �j , j�th entry of the so-called influence
atrix

M��� = H�HTH + �I�−1HT.

n [28], Golub et al. have shown that 	��� can be written
s

	��� = n2
��I − M�����z − Hu��2

2

trace�I − M����2 .

he optimal regularization parameter � is chosen to be
he one that minimizes 	���. Since 	��� is a nonlinear
unction, the minimizer usually cannot be determined
nalytically. However, if H is a blurring matrix generated
y a symmetric PSF, H can be diagonalized by a fast
ransform matrix [35]; then we can rewrite 	��� as
	��� =

n2�
j=1

n2 
diag� �


j
2 + �

��z − Hu��
j

2

��
j=1

n2
�


j
2 + �

2 , �10�

here 
j is the jth eigenvalue of H and � is the corre-
ponding discrete transform matrix (e.g., discrete cosine
ransform matrix or discrete Fourier matrix). We recall
hat 
j can be obtained by taking the fast transform of the
rst column of H [35].
When H cannot be diagonalized by a fast transform
atrix, we can use the Hutchinson stochastic estimator to

ompute an approximation of 	���. It has been shown in
38] that the term trace�I−M���� can be rewritten as fol-
ows: � · trace��HTH+�I�−1�. Let x denote a random vector
or the Hutchinson estimator. We can define

	̃��� � n2
��I − M����z − Hu���2

2

�2�xT�HTH + �I�−1x�2 . �11�

e employ 	̃��� to approximate 	��� and estimate a suit-
ble value of the regularization parameter to be used in
he image restoration. We note that the evaluation of 	���
nvolves the solution of linear systems with the matrix

TH+�I, which can be solved by the conjugate gradient
ethod [39]. The conjugate gradient method can be im-

roved by using preconditioning techniques. Transform-
ased preconditioning techniques have been proved to be
ery successful [35].

We remark that numerical approximation techniques
ave been proposed and developed to further reduce the
omputational complexity of determination of the optimal
egularization parameter for the minimization of 	��� or
���; see [40]. In [38], the approach employs Gauss
uadrature to compute lower and upper bounds on the
eneralized cross-validation function. This method re-
uires matrix-vector multiplications, and the factoriza-
ion of large matrices can be avoided. Some recent meth-
ds are proposed and studied in [41,42].

. EXPERIMENTAL RESULTS
n this section, we illustrate the performance of the pro-
osed algorithms. Signal-to-noise ratio (SNR), blurred
ignal-to-noise ratio (BSNR), and improvement in signal-
o-noise ratio (ISNR) are used to measure the quality of
he restored images. They are defined as follows:

SNR = 20 log10� �f − mean�f��2

�u − f�2
 ,

BSNR = 20 log10� �g�2

�n�2
 ,

ISNR = 20 log10� �f − g�2

�f − u�2
 ,

here f, g, u, and n are the original image, observed im-
ge, recovered image, and the noise vector, respectively,
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nd mean�f� denotes the mean of f. Three images are used
o test the proposed algorithms. The first two images are
f size 256�256, and the third one is of size 301�301.
hese images are shown in Fig. 1.

. Experiment 1
he “Cameraman” image is blurred by a Gaussian PSF of
ize 7 with the standard derivation of 5, the “Barbara” im-
ge is blurred by out-of-focus PSFs with radii of 3 and 7,
nd the “CarNo” image is blurred by motion PSFs of
ength 9 and 15 pixels. Then a Gaussian noise is added to
ach blurred image, and the resulting observed and noisy
mages are shown in Figs. 2–4 (a) and (b). We also display
he images restored by Algorithm 1 in Figs. 2–4 (c) and
d), respectively. It can be seen that the restored images
re quite good visually. In the tests, we set the number of
terations for Steps 1 and 2 in the inner loop to 5, � to 2,
nd the number of overall iterations in Algorithm 1 is 20.
To evaluate the performance of the proposed algo-

ithms, we compare the restoration results with the res-
oration method in [21] by choosing the the “optimal” pa-
ameters � and � in Eq. (3). We tested 10,000
ombinations of � and �; 100 values of � were uniformly
nd logarithmically sampled from 10−9 to 100, and 100
alues of � were sampled starting from 1 with a step size
f 10. We selected the result with the highest SNR among
he tested values, and report them in Table 1. We note
hat it is very time-consuming to try a lot of different com-
inations of � and � to find the optimal regularization pa-
ameters. Indeed, we see from Table 1 that the computa-
ion time required by such calculation is very large. The
ain issue of this approach is that the original image is

ssumed to be known in the selection of regularization pa-
ameters in the method by [21]. However, in practice the
riginal image is not known.

Fig. 1. Original images. (a) Cameraman. (b) Barbara.
In Table 2, we summarize the restoration results using
lgorithm 1. We also test the Hutchinson estimator for
omputing regularization parameters in the proposed al-
orithm when the blurring matrices are not diagonalized;
ee Table 3. We see from the tables that the performance
f Algorithm 1 is about the same as that of Algorithm 1
ith the Hutchinson estimator in terms of SNR and com-
utation time. When we compare the restoration method
n [21] in Table 1, it is clear that the computation time of
esting 10,000 different combinations of two regulariza-
ion parameters is much more than that of Algorithm 1.
owever, the image restoration results (in SNR) of the

estoration method in [21] and Algorithm 1 are not sig-
ificantly different. Visually, the restored images by the
estoration method in [21] and Algorithm 1 are about the
ame; see Figs. 2–4. The main advantage of the proposed
mage restoration method is that the original image is not
equired in the selection of regularization parameters.

ig. 2. Restored Cameraman images. (a) Gaussian PSF of
hsize=7, �=5), BSNR=40 dB. (b) Gaussian PSF of (hsize=14,
=5), BSNR=30 dB. (c) Image restored by Algorithm 1 for 2(a).

d) Image restored by Algorithm 1 for 2(b). (e) Image restored by
he method in [26] for 2(a). (f) Image restored by the method in
26] for 2(b).
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On the other hand, we give in Table 4 the two regular-
zation parameters searched from 10,000 different combi-
ations of � and � by the image restoration method in

21]. In the proposed method, we use the GCV method to
stimate the regularization parameter � [see Eq. (7)], and
he corresponding parameter �̂ can be calculated by 2� / �̂.
e note that �̂ in Algorithm 1 increases with respect to

he iterations ��̂=1,2,4,8,16,32,64,128,256,512�, and
he method in [21] searches the 100 values of � starting
rom 1 with a step size of 10. Therefore, in Table 4 we can
how only the parameters �̂ where the tested value of �̂ is
lose to the best regularization parameter � searched by
he method in [21]. We see from the table that �̂ computed
y the proposed method is not too bad, as the restored im-
ges are visually quite good (Figs. 2–4). We also find in
able 4 that the parameters �̂ determined by Algorithm 1
re close to those determined by Algorithm 1 with the
utchinson estimator.

ig. 3. Restored Barbara images. (a) Out-of-focus PSF of
adius=3, BSNR=40 dB. (b) Out-of-focus PSF of radius=7,
SNR=30 dB. (c) Image restored by Algorithm 1 to 3(a). (d) Im-
ge restored by Algorithm 1 to 3(b). (e) Image restored by the
ethod in [26] to 3(a). (f) Image restored by the method in [26] to

(b).

Next we compare the proposed method with ALG1 in

33], where Babacan et al. use a stochastic method ap-
roximating a posteriori distribution by a product of dis-
ributions using Kullback–Leibler divergence for estimat-
ng the regularization parameter and restoring an image.
n [33], Babacan et al. reported that this is the best
mong all their tested variational methods. In Table 5, we

ig. 4. Restored CarNo images. (a) Motion PSF of length 9,
SNR=40 dB. (b) Motion PSF of length 15, BSNR=30 dB. (c) Im-
ge restored by Algorithm 1 to 4(a). (d) Image restored by Algo-
ithm 1 to 4(b). (e) Image restored by the method in [21] to 4(a).
f) Image restored by the method in [21] to 4(b).

Table 1. Restoration Results Using the Restoration
Method in [21]

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian �7,5� /40 18.13 4.38�104

Cameraman Gaussian �14,5� /30 12.10 4.01�104

Barbara Out-of-focus �3� /40 17.99 3.98�104

Barbara Out-of-focus �7� /30 13.49 4.62�104

CarNo Motion �9� /40 22.03 1.05�104

CarNo Motion �15� /30 16.75 1.21�105
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ist the restoration results (ISNRs) of the ALG1 and the
roposed method. We see from the table that the proposed
ethod is competitive with the ALG1.

. Experiment 2
he Barbara image is blurred by a Gaussian PSF of size 7
ith a standard derivation of 5. In the tests, salt-and-
epper, uniform, Laplace, partial Gaussian, and random-
alued impulse noises are added to the blurred image. For
hese blurred and noisy images, it is more suitable to use
he data-fitting measured in l1-norm [20]. In Fig. 5, we
rst show the performance of Algorithm 2 for different

evels of salt-and-pepper noise. According to the figures,
he restoration results are very promising. Here we set
he number of iterations for Steps 1–3 in the inner loop to
e 5, � to be 2, and the number of overall iterations in Al-
orithm 2 to be 20. In Fig. 6, we show the images restored
y using Algorithm 2 for the other kinds of noise. We see
rom

Table 3. Restoration Results Using Algorithm 1
with the Hutchinson Estimator

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian �7,5� /40 17.35 17.82
Cameraman Gaussian �14,5� /30 11.74 19.39

Barbara Out-of-focus �3� /40 17.40 17.48
Barbara Out-of-focus �7� /30 13.34 17.44

CarNo Motion �9� /40 20.40 30.97
CarNo Motion �15� /30 15.64 31.00

Table 2. Restoration Results Using Algorithm 1

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian �7,5� /40 17.47 14.13
Cameraman Gaussian �14,5� /30 11.65 16.22

Barbara Out-of-focus �3� /40 17.40 14.25
Barbara Out-of-focus �7� /30 13.30 14.34

CarNo Motion �9� /40 20.41 25.69
CarNo Motion �15� /30 15.65 25.70

Table 4. Parameter

Image PSF/BSNR

Method
in [21]

�

ameraman Gaussian �7,5� /40 8.11�10−5

ameraman Gaussian �14,5� /30 2.85�10−5

Barbara Out-of-focus �3� /40 1.00�10−4

Barbara Out-of-focus �7� /30 3.51�10−4

CarNo Motion �9� /40 1.23�10−4

CarNo Motion �15� /30 6.58�10−4
the figures that the visual quality of the restored im-
ges is good. We note that the proposed algorithm does
ot require any prior knowledge of the original image.
In Table 6, we show the restoration results of Algorithm
for different kinds of noise. The SNRs show that the re-

tored images are acceptable. It is important to note that
n addition, the computation time required by Algorithm 2
s very small. These results demonstrate that the pro-
osed algorithm is effective and efficient.

. Experiment 3
n Fig. 7, we show the convergence of Algorithms 1 and 2
n terms of SNRs. Both plots show that the SNRs of the
estored images increase with respect to increasing value
f �̂. Here we set the increasing rate of �̂ to 2. We recall
hat the new �̂ value is equal to the old �̂ value times �,
.e., �=2. When �̂ reaches a certain value, the SNRs of the
estored images are kept at about the same value. These
esults suggest that the proposed algorithm can be
topped early even when the �̂ value is not sufficiently
arge.

In Figs. 8 and 9, we show the SNRs of the images re-
tored by Algorithms 1 and 2, respectively. In Figs. 8(a)

Different Methods

Algorithm 1

Algorithm 1 with
the Hutchinson

Estimator

�̂ �̂ �̂ �̂

7.59�10−5 256 7.31�10−5 256
2.84�10−4 64 1.31�10−4 64

1.95�10−3 1024 1.95�10−3 1024
1.29�10−4 256 2.45�10−4 256

2.90�10−4 256 2.90�10−4 256
1.22�10−3 128 1.41�10−3 128

Table 5. Comparison between Algorithm 1 and
ALG1 in [33]

Image PSF/BSNR
ALG1
(ISNR)

Algorithm 1
(ISNR)

Lena Gaussian �3� /40 4.78 5.44
Lena Gaussian �3� /30 3.87 4.17
Lena Gaussian �3� /20 2.87 2.57

Cameraman Gaussian �3� /40 3.39 5.02
Cameraman Gaussian �3� /30 2.63 3.43
Cameraman Gaussian �3� /20 1.72 1.82

Lena Uniform �9� /40 8.42 6.92
Lena Uniform �9� /30 5.89 4.43
Lena Uniform �9� /20 3.72 3.15

Cameraman Uniform �9� /40 8.57 7.86
Cameraman Uniform �9� /30 5.41 5.57
Cameraman Uniform �9� /20 2.42 2.88
s by

�

231
81

981
351

341
141
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nd 9(a), we fix the initial value of �̂ to be 1 and check the
NRs of the restored images for different values of �
1.5,2,3,4,5,6,7,8,9,10. We see from the figures that

hey are not very sensitive to �. For Algorithms 1 and 2,
e find that the maximum differences among the SNRs of

he restored images over their average SNRs are 2.71%
nd 1.89%. These results show that for different values of
, the resulting SNRs of the restored images are not sig-
ificantly affected. On the other hand, we fix the value �
o be 2 and check the SNRs of the restored images for dif-
erent values of initial �̂=1,2,4,8,16,32,64,128,
56,512 in Figs. 8(b) and 9(b). We see from the figures
hat they can be sensitive to large initial value of �̂; for
nstance, the SNRs of the images restored by Algorithm 1
rop after use of the initial �̂=64; the SNRs of the images
estored by Algorithm 2 drop after use of the initial �̂
32. In both Algorithms 1 and 2, we need to solve the
inimization problem minu��̂ /2��u− f�2

2+ �u�TV. It is clear
hat when �̂ is large, the denoising task cannot be per-
ormed effectively. Therefore, we do not recommend use of
large initial value of �̂ in the proposed image restoration

ig. 5. Restored images of different levels of salt-and-pepper
oise. (a) 10%. (b) Image restored to 5(a). (c) 30%. (d) Image re-
tored to 5(c). (e) 50%. (f) Image restored to 5(e).
rocess. According to our results in Figs. 8(b) and 9(b), the
nitial value of �̂ can be set to be 1.

. CONCLUDING REMARKS
n this paper, we studied selection of regularization pa-
ameters in total variation (TV) image restoration. We de-
elop fast TV image restoration methods with an auto-
atic selection of the regularization parameter scheme to

estore blurred and noisy images. The methods exploit
he generalized cross-validation (GCV) technique to de-
ermine inexpensively how much regularization is used in
ach restoration step. By updating the regularization pa-
ameter in each iteration, the restored image can be ob-
ained. Our experimental results for different kinds of
oise have shown that the visual quality of images re-
tored by the proposed methods are quite promising even
ithout prior knowledge of the original image. We have

Table 6. Restored Images for Different Kinds of
Noise Using Algorithm 2

Noise (BSNR) SNR (dB) Time (s)

Uniform �40 dB� 17.68 10.82
Uniform �30 dB� 15.76 10.10

Laplace �40 dB� 15.83 10.03
Laplace �30 dB� 14.52 8.96

Partial Guassian (50% and 40 dB) 16.29 10.33
Partial Guassian (50% and 30 dB) 15.11 9.83

Random-valued impulse (20%) 15.42 10.13
Random-valued impulse (40%) 13.89 9.91

ig. 6. Images restored for other kinds of noise. (a) Uniform
oise. (b) Laplace noise. (c) Partial Gaussian noise (50%). (d)
andom-valued noise (20%).
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ig. 8. (Color online) Test of Algorithm 1 on the Gaussian PSF of (hsize=7, �=5), BSNR=40 dB. (a) SNRs of the restored images with

espect to values of �, initial �=1. (b) SNRs of the restored images with respect to initial values of �, �=2.
ig. 9. (Color online) Test of Algorithm 2 on the out-of-focus PSF of radius=7, BSNR=30 dB. (a) SNRs of the restored images with
espect to values of �, initial �=1. SNRs of the restored images with respect to initial values of �, �=2.
ig. 7. (Color online) Test of convergence of Algorithms 1 and 2. (a) Test of Algorithm 1 on the Cameraman image using the Gaussian
SF of (hsize=7, �=5, BSNR=40 dB). (b) Test of Algorithm 2 on the Barbara image using the Gaussian PSF of (hsize=7, �=5), 40% of
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lso demonstrated that the proposed algorithms are very
fficient for image restoration.
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