Liao et al.

Vol. 26, No. 11/November 2009/J. Opt. Soc. Am. A 2311

Selection of regularization parameter in total
variation image restoration

Haiyong Liao," Fang Li,? and Michael K. Ng"*

Center for Mathematical Imaging and Vision and Department of Mathematics,
Hong Kong Baptist University, Hong Kong, China

*Department of Mathematics, East China Normal University, Shanghai, China
*Corresponding author: mng@math.hkbu.edu.hk

Received April 8, 2009; revised August 13, 2009; accepted September 8, 2009;
posted September 15, 2009 (Doc. ID 109847); published October 9, 2009

We consider and study total variation (TV) image restoration. In the literature there are several regularization
parameter selection methods for Tikhonov regularization problems (e.g., the discrepancy principle and the gen-
eralized cross-validation method). However, to our knowledge, these selection methods have not been applied
to TV regularization problems. The main aim of this paper is to develop a fast TV image restoration method
with an automatic selection of the regularization parameter scheme to restore blurred and noisy images. The
method exploits the generalized cross-validation (GCV) technique to determine inexpensively how much regu-
larization to use in each restoration step. By updating the regularization parameter in each iteration, the re-
stored image can be obtained. Our experimental results for testing different kinds of noise show that the visual
quality and SNRs of images restored by the proposed method is promising. We also demonstrate that the
method is efficient, as it can restore images of size 256 X 256 in =20 s in the MATLAB computing environment.
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1. INTRODUCTION

Digital image restoration and reconstruction play an im-
portant part in various areas of applied sciences such as
medical and astronomical imaging, film restoration, and
image and video coding. In this paper, we focus on a com-
mon degradation model: an ideal image f e R"” is observed
in the presence of a spatially invariant point spread func-

tion (PSF) and noise n e R”*. Thus the observed image g
e B"” is modeled as
g=Hf+n. (1)

Mathematically, our aim is to determine f given a blurring
matrix H generated by a spatially invariant PSF and an
observed image g. Traditionally, the standard image res-
toration methods involve computation in the frequency
domain, facilitated by efficient fast Fourier transform
(FFT) algorithms. There has been new movement toward
more variational approaches [1]. The variational ap-
proaches are often designed to process certain desirable
geometrical properties.

A. Total Variation Image Restoration

It is well known that restoring an image f is a very ill-
conditioned problem. A regularization method should be
used in the image restoration process. The main disad-
vantage of using quadratic regularization functionals
such as the H! semi-norm of f (in the continuous setting),

f (2 +f2)dady,

is the inability to recover sharp discontinuities (edges) [2].
Mathematically, this is clear because discontinuous func-
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tions do not have a bounded H! semi-norm. To remedy
this, Rudin et al. [2] proposed the use of the total varia-
tion (TV)

J VFa+ fydxdy

as a regularization functional. The reason for using this
functional is that it measures the jumps of f, even if it is
discontinuous. The main advantage of the TV formulation
is the ability to preserve edges in the image as a result of
the piecewise smooth regularization property of the TV
norm.

In this paper, we consider the following TV-based image
restoration problem by

1
min —[Hf - gl + [flrv, 2)

F o«
where ||x|| is equal to x[3==;|x;% or || |; =Zilx;|. Here ais a
positive regularization parameter that measures the
trade-off between a good fit and a TV regularization. The
discrete version of TV regularization term |[|-|zy is given

as follows. The discrete gradient operator V:R" —R" is
defined by

(VDjn = (V7 1 (VD)
with

f}+1,k _f},k7 lf.] <n
0, ifj=n

5
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(V=

f},k+1_f},k7 lfk <n
0, ifh=n °

for j,k=1,...,n. Here f;; refers to the (jn+k)th entry of
the vector f [it is the (j,%k)th pixel location of the image].
The discrete total variation of f is defined by

Troar 12 . lioay 12
= >, [(VA)l2 = > \"|(Vﬁj,k|2+|(vf)3'/,k|2'

1<jk=n 1<jk=n

Here |- |5 is the Euclidean norm in R2.

Numerical results have shown that TV regularization
is useful in image restoration; see [2,3]. There are some
papers [4-7] that describe why and how TV regulariza-
tion works. In [4], Bellettini et al. analyzed conservation
of shape and scale parameters controlling evolution
within the TV-flow context. In [6], Dobson and Santosa
studied how TV regularization affects frequency distribu-
tions to show that the effectiveness of TV image restora-
tion depends on the size and gray-scale intensity of the
image geometric feature, and TV regularization is par-
ticularly effective for restoring blocky images but not for
textured images. In [7], Strong and Chan showed that TV
regularization tends to preserve edge locations and that
restored intensity change is exactly inversely propor-
tional to local feature scale. In addition, Strong and Chan
investigated how the total variation image restoration is
affected by the regularization parameter a. Their results
include that for smooth radially symmetric function fea-
tures, function intensity change is inversely proportional
to radial distance and directly proportional to a. Based on
their results, they can choose the values of regularization
parameters to be spatially varying in Eq. (2) for spatially
adaptive image restoration.

TV regularization schemes have been extended to the
case of vector-valued (e.g., color) images [8], superresolu-
tion [9], blind deconvolution [10], and other applications
for restoring nonflat image features [11]. We refer readers
to [12] for recent developments of TV image restoration
applications.

A number of numerical methods have been proposed for
solving Eq. (2). These methods include partial-
differential-equation-based methods [2,3,13,14], primal-
dual methods [15-17], and Newton-type methods [18—20].
Recently, Huang et al. [21] proposed and developed a fast
TV minimization method for the TV image restoration
model. In their paper, an auxiliary variable and an addi-
tional quadratic term is added to the objective function
(2). In the alternative minimization framework, minimiz-
ing the new objective function can be interpreted as a
two-stage process, i.e., denoising and blurring. Experi-
mental results in [21] have shown that the quality of im-
ages restored by their method is competitive with the
quality of those restored by existing TV restoration meth-
ods. This approach has also been successfully used for
l;-norm data-fitting term, i.e., |Hf-gl|; in [22]. Wang et al.
[23,24] also proposed and developed the alternating mini-
mization algorithm for deblurring and denoising jointly
by solving a TV regularization problem. Their algorithm
is derived from the well-known variable-splitting and
penalty techniques in optimization. The idea is that at
each pixel an auxiliary variable is introduced to transfer
its gradient out of nondifferentiable term. Extensive nu-
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merical results show that their algorithm performs favor-
ably in comparison with several state-of-the-art algo-
rithms.

B. Selection of Regularization Parameters

It is well known that blurring matrices are in general ill-
conditioned and that deblurring algorithms will be ex-
tremely sensitive to noise; see, for instance, Gonzalez and
Woods [25]. The ill-conditioning of the blurring matrices
stems from the wide range of magnitude of their eigenval-
ues; see Engl et al. [26]. Therefore, excess amplification of
the noise at small eigenvalues can occur. The method of
regularization is used to achieve stability for image resto-
ration problems. In Eq. (2), the restored image is attained
by using regularization, which restricts the set of admis-
sible solutions.

There are several possible strategies for choosing regu-
larization parameters, e.g., the discrepancy principle
[26,27], the generalized cross-validation method [28,29],
and the L-curve method [30,31]. The discrepancy prin-
ciple is an a posteriori strategy for choosing a regulariza-
tion parameter as a function of the error level (the input
error level must be known). The generalized cross-
validation method can be applied to determine regulariza-
tion parameters when the input error level is unknown.
The L-curve method is based mainly on the plot of the
norm of the regularized solution versus the norm of the
corresponding data-fitting residual. The method is used to
choose a regularization parameter related to the charac-
teristic L-shaped “corner” of the plot. However, to our
knowledge, these regularization-parameter-selection
methods have not been developed for TV image restora-
tion problems. Since the TV formulation in Eq. (2) is non-
linear, the generalized cross-validation evaluation for-
mula cannot be derived explicitly. Recently, Lin and
Wohlberg [32] extended the method of unbiased predictive
risk estimator (UPRE) to the TV regularization problem
by considering a quadratic approximation to the TV term.
However, they reported the experimental results only on
a small problem.

Recently, Babacan et al. [33] proposed a variational
method for solving deconvolution problems with TV regu-
larization. Their idea is to use a stochastic method ap-
proximating a posteriori distribution by a product of dis-
tributions using Kullback—Leibler divergence. Their
resulting method is simple and efficient, and it can up-
date a regularization parameter in TV image restoration
in an iterative manner. Molina et al. [34] also studied this
kind of variational method for blind deconvolution appli-
cations.

C. Outline

The main aim of this paper is to solve the problem of
regularization parameter selection in Eq. (2) to restore
the original image f from an observed blurred and noisy
image g in the alternative minimization framework. The
method exploits the generalized cross-validation tech-
nique to determine how much regularization is used in
each restoration step. By updating these regularization
parameters in the iterative procedure, the restored image
becomes increasingly close to the original image. Our ex-
perimental results show that the quality of images re-
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stored by the proposed method with no prior knowledge of
noise is quite good. We will also demonstrate that the pro-
posed method is also very efficient.

The outline of this paper is as follows. In Section 2, an
automatic method for selection of regularization param-
eters in TV image restoration is presented. In Section 3,
numerical examples are given to demonstrate the effec-
tiveness of the proposed method. Finally, concluding re-
marks are given in Section 4.

2. SELECTION OF REGULARIZATION
PARAMETERS

We first present a variable-splitting method and an alter-

nating minimization scheme to solve Eq. (2) [21,22].
When the data-fitting term is measured in /,-norm in-

stead of Eq. (2), we minimize the following functional:

1 B
min —|Hf - g + S u - I3 + lullzv. (3)
fu @ 2

Here we add an auxiliary variable « in Eq. (3) and as-
sume that the data-fitting term is measured in the square
of the Euclidean norm. We note that when g is sufficiently
large, we force f close to u. Thus the minimization prob-
lem in Eq. (3) is close to the original problem:

1
min —NEf -l + v (4)

When the data-fitting term is measured in the /;-norm,
we minimize the following functional:

S 1/p 9 B 2
min — EHU_(Hf_g)HQ"'”v”l + §||U—ﬂ|2+”u“TV :

fiu,v
(5)

Here we use two auxiliary variables « and v in the algo-
rithm. In this case, when g is sufficiently large, we force f
close to u and (Hf-g) close to v. Thus the minimization
problem in Eq. (5) is close to the original problem:

1
min —[Hf - gl; + [fllrv. (6)
f «

An alternative minimization method is employed to
solve Eq. (3) by iteratively minimizing the two subprob-
lems. One subproblem is solved for determination of f,
and the other subproblem is solved for determination of u.
In the algorithm, we can simultaneously increase the
value of B so that the original problem in Eq. (4) can be
approximately solved. The algorithm can be described as
follows.

Algorithm 1

Step 0. Initialize ,é and u;
Step 1. Fix u and solve f:

m}jn\le—gl\§+ AF = uli, (7)

where v is estimated by the generalized cross-validation
method that will be discussed in the next subsection. [We
note that y can be related to @ and B in Eq. (3) by the for-
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mula y=aB/2.] The solution of f can be determined by
solving a linear system:

(HTH + y)f =Hg + yu.

Such a linear system can be solved efficiently by
using fast transform-based methods and preconditioning
techniques for Toeplitz-like matrices; see [35];

Step 2. Fix f and solve u:

A

min _flu £ + [l
u

The solution « can be solved by many TV denoising
methods such as Chambolle’s projection algorithm [36] or
semismooth Newton’s method [37]. The algorithm goes to
Step 1 if the convergence criterion is not satisfied, other-
wise, it goes to Step 3;

Step 3. The value of [§ is increased by a factor 6>1, i.e.,
,f}:: ,236. The algorithm goes to Step 1.

Similarly, an alternative minimization method is em-
ployed to solve Eq. (5) by iteratively minimizing the fol-
lowing three subproblems and simultaneously increasing
the value of B. The algorithm can be described as follows.

Algorithm 2
Step 0. Initialize 8 and f:
Step 1. Fix f and u, solve v:

P 5
min _ffv ~ (Hf - &)l + [l
v
There is an explicit solution of v:

1
v = sign(Hf - g) omax{ |[Hf -g| - =,0 ¢,
B

where ° denotes the elementwise product, and the conven-
tion 0:(0/0)=0 is required.
Step 2. Fix f and v, solve u:

min w3 + [l
u

The solution « can be solved by many TV denoising
methods such as Chambolle’s projection algorithm [36] or
the semismooth Newton method [37].

Step 3. Fix u and v and solve f:

mfinnv - (Hf - 25+ Alu - 15, (8

where 7y is estimated by the generalized cross-validation
method that will be discussed in the next subsection. The
solution of f can be determined by solving a linear system:

(HTH + yI)f =H"(g +v) + yu.

The algorithm goes to Step 1 if the convergence cri-
terion is not satisfied, otherwise, it goes to Step 4.
Step 4. The value of [3 is increased by a factor >1, i.e.,
,Z%:: ,236‘. The algorithm goes to Step 1.
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In the above two iterative algorithms, we need to input
the values of the regularization parameters in Eqgs. (7)
and (8). We propose to employ the generalized cross-
validation (GCV) method to determine a suitable value of
the regularization parameter in the process of iteration.

A. Generalized Cross-Validation Method
Generalized cross-validation [28] is a technique that esti-
mates a regularization parameter directly without requir-
ing an estimate of the noise variance. It is based on the
concept of prediction errors. The basic idea is to take kth
observation out of all observed data, and then to use the
remaining observations to predict the kth observation. If
the regularization parameter is a good choice, the kth
component of the fitted data should be a good predictor for
kth observation on average.

For the minimization problems in Eqs. (7) and (8), it is
necessary to solve the problem in the following form:

m}jn||Hf-Z||§ + A - ul,

where z=g for Algorithm 1 and z=g+v for Algorithm 2.
Based on this form, we let f(yk) (k=1,---,n2) be the vector
that minimizes the error measure:

n2

> (z-Hul;-[Hf))?, )

J=1j#k

where [-]; is the jth element of a vector. If y is such that
f(yk) is a good estimate of f, then [Hf(f)]k should be a good
approximation of [z—Hu], on average. For a given v, the
average squared error between the predicted value
[Hf(f)]k and the observed value [z-Hu];, is given by

2

1 n
—2; ([z - Hul, - [HfP )2
=1

n

The generalized cross-validation is a weighted version
of the above error:

2

1 n
") = >, (z - Hul, - [HfP],)?
n" k=1

1=my(y)
2 5

1 n
1- > mj(y)
n j=1
where m; ;(y) is the (j,j)th entry of the so-called influence
matrix
M(y)=HHTH + yI)"'HT.

In [28], Golub et al. have shown that 7(y) can be written
as

M- M) - Hu)l;
trace(I — M(y))?

(y)=n

The optimal regularization parameter y is chosen to be
the one that minimizes 7(y). Since 7(y) is a nonlinear
function, the minimizer usually cannot be determined
analytically. However, if H is a blurring matrix generated
by a symmetric PSF, H can be diagonalized by a fast
transform matrix [35]; then we can rewrite 7(y) as
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2

: y
n? dia;
E g( N+

J J

n? 2 ’
55%)
ANy

where \; is the jth eigenvalue of H and ® is the corre-
sponding discrete transform matrix (e.g., discrete cosine
transform matrix or discrete Fourier matrix). We recall
that \; can be obtained by taking the fast transform of the
first column of H [35].

When H cannot be diagonalized by a fast transform
matrix, we can use the Hutchinson stochastic estimator to
compute an approximation of 7(vy). It has been shown in
[38] that the term trace(I-M(y)) can be rewritten as fol-
lows: y-trace((HTH+vI)~1). Let x denote a random vector
for the Hutchinson estimator. We can define

U -M()e-Hu) [
~ " T HTH + D) )

)d)[z - Hu]
Y

(10)

A7) (11)

We employ 7(y) to approximate 7(y) and estimate a suit-
able value of the regularization parameter to be used in
the image restoration. We note that the evaluation of ()
involves the solution of linear systems with the matrix
HTH + yI, which can be solved by the conjugate gradient
method [39]. The conjugate gradient method can be im-
proved by using preconditioning techniques. Transform-
based preconditioning techniques have been proved to be
very successful [35].

We remark that numerical approximation techniques
have been proposed and developed to further reduce the
computational complexity of determination of the optimal
regularization parameter for the minimization of 7(y) or
7(y); see [40]. In [38], the approach employs Gauss
quadrature to compute lower and upper bounds on the
generalized cross-validation function. This method re-
quires matrix-vector multiplications, and the factoriza-
tion of large matrices can be avoided. Some recent meth-
ods are proposed and studied in [41,42].

3. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the pro-
posed algorithms. Signal-to-noise ratio (SNR), blurred
signal-to-noise ratio (BSNR), and improvement in signal-
to-noise ratio (ISNR) are used to measure the quality of
the restored images. They are defined as follows:

IF- mean(f)lz)

SNR =20 10g10< ||u f”
— /2

llgll
BSNR = 20 1og10( 2],

Il

IF - &l
ISNR =20 10g10 m 5
— 42

where f, g, u, and n are the original image, observed im-
age, recovered image, and the noise vector, respectively,
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and mean(f) denotes the mean of f. Three images are used
to test the proposed algorithms. The first two images are
of size 256 X 256, and the third one is of size 301X 301.
These images are shown in Fig. 1.

A. Experiment 1
The “Cameraman” image is blurred by a Gaussian PSF of
size 7 with the standard derivation of 5, the “Barbara” im-
age is blurred by out-of-focus PSFs with radii of 3 and 7,
and the “CarNo” image is blurred by motion PSFs of
length 9 and 15 pixels. Then a Gaussian noise is added to
each blurred image, and the resulting observed and noisy
images are shown in Figs. 2—4 (a) and (b). We also display
the images restored by Algorithm 1 in Figs. 24 (¢) and
(d), respectively. It can be seen that the restored images
are quite good visually. In the tests, we set the number of
iterations for Steps 1 and 2 in the inner loop to 5, 6 to 2,
and the number of overall iterations in Algorithm 1 is 20.
To evaluate the performance of the proposed algo-
rithms, we compare the restoration results with the res-
toration method in [21] by choosing the the “optimal” pa-
rameters a« and B in Eq. (3). We tested 10,000
combinations of « and B; 100 values of a were uniformly
and logarithmically sampled from 10~ to 10°, and 100
values of B were sampled starting from 1 with a step size
of 10. We selected the result with the highest SNR among
the tested values, and report them in Table 1. We note
that it is very time-consuming to try a lot of different com-
binations of @ and B to find the optimal regularization pa-
rameters. Indeed, we see from Table 1 that the computa-
tion time required by such calculation is very large. The
main issue of this approach is that the original image is
assumed to be known in the selection of regularization pa-
rameters in the method by [21]. However, in practice the
original image is not known.

THE EMPIRE STATE

()

Fig. 1. Original images. (a) Cameraman. (b) Barbara.
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Fig. 2. Restored Cameraman images. (a) Gaussian PSF of
(hsize=7, 0=5), BSNR=40 dB. (b) Gaussian PSF of (hsize=14,
o=5), BSNR=30 dB. (¢) Image restored by Algorithm 1 for 2(a).
(d) Image restored by Algorithm 1 for 2(b). (e) Image restored by
the method in [26] for 2(a). (f) Image restored by the method in
[26] for 2(b).

In Table 2, we summarize the restoration results using
Algorithm 1. We also test the Hutchinson estimator for
computing regularization parameters in the proposed al-
gorithm when the blurring matrices are not diagonalized;
see Table 3. We see from the tables that the performance
of Algorithm 1 is about the same as that of Algorithm 1
with the Hutchinson estimator in terms of SNR and com-
putation time. When we compare the restoration method
in [21] in Table 1, it is clear that the computation time of
testing 10,000 different combinations of two regulariza-
tion parameters is much more than that of Algorithm 1.
However, the image restoration results (in SNR) of the
restoration method in [21] and Algorithm 1 are not sig-
nificantly different. Visually, the restored images by the
restoration method in [21] and Algorithm 1 are about the
same; see Figs. 2-4. The main advantage of the proposed
image restoration method is that the original image is not
required in the selection of regularization parameters.
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(e) ®)
Fig. 3. Restored Barbara images. (a) Out-of-focus PSF of
radius=3, BSNR=40 dB. (b) Out-of-focus PSF of radius=7,
BSNR=30 dB. (c) Image restored by Algorithm 1 to 3(a). (d) Im-
age restored by Algorithm 1 to 3(b). (e) Image restored by the
method in [26] to 3(a). (f) Image restored by the method in [26] to
3(b).

On the other hand, we give in Table 4 the two regular-
ization parameters searched from 10,000 different combi-
nations of @ and B by the image restoration method in
[21]. In the proposed method, we use the GCV method to
estimate the regularization parameter y [see Eq. (7)], and

the corresponding parameter & can be calculated by 2v/.
We note that B in Algorithm 1 increases with respect to
the iterations (,2%:1,2,4,8,16,32,64,128,256,512), and
the method in [21] searches the 100 values of B starting
from 1 with a step size of 10. Therefore, in Table 4 we can

show only the parameters & where the tested value of 3 is
close to the best regularization parameter B searched by
the method in [21]. We see from the table that & computed
by the proposed method is not too bad, as the restored im-
ages are visually quite good (Figs. 2—4). We also find in
Table 4 that the parameters & determined by Algorithm 1
are close to those determined by Algorithm 1 with the
Hutchinson estimator.
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(e) )
Fig. 4. Restored CarNo images. (a) Motion PSF of length 9,
BSNR=40 dB. (b) Motion PSF of length 15, BSNR=30 dB. (¢) Im-
age restored by Algorithm 1 to 4(a). (d) Image restored by Algo-
rithm 1 to 4(b). (e) Image restored by the method in [21] to 4(a).
(f) Image restored by the method in [21] to 4(b).

Next we compare the proposed method with ALG1 in
[33], where Babacan et al. use a stochastic method ap-
proximating a posteriori distribution by a product of dis-
tributions using Kullback—Leibler divergence for estimat-
ing the regularization parameter and restoring an image.
In [33], Babacan et al. reported that this is the best
among all their tested variational methods. In Table 5, we

Table 1. Restoration Results Using the Restoration
Method in [21]

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian (7,5)/40 18.13 4.38x10*
Cameraman Gaussian (14,5)/30 12.10 4.01x 104
Barbara Out-of-focus (3)/40 17.99 3.98x10*
Barbara Out-of-focus (7)/30 13.49 4.62x 104
CarNo Motion (9)/40 22.03 1.05x 10*

CarNo Motion (15)/30 16.75 1.21x 105
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Table 2. Restoration Results Using Algorithm 1

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian (7,5)/40 17.47 14.13
Cameraman  Gaussian (14,5)/30 11.65 16.22
Barbara Out-of-focus (3)/40 17.40 14.25
Barbara Out-of-focus (7)/30 13.30 14.34
CarNo Motion (9)/40 20.41 25.69

CarNo Motion (15)/30 15.65 25.70

Table 3. Restoration Results Using Algorithm 1
with the Hutchinson Estimator

Image PSF/BSNR SNR (dB) Time (s)

Cameraman Gaussian (7,5)/40 17.35 17.82
Cameraman Gaussian (14,5)/30 11.74 19.39
Barbara Out-of-focus (3)/40 17.40 17.48
Barbara Out-of-focus (7)/30 13.34 17.44
CarNo Motion (9)/40 20.40 30.97

CarNo Motion (15)/30 15.64 31.00

list the restoration results (ISNRs) of the ALG1 and the
proposed method. We see from the table that the proposed
method is competitive with the ALG1.

B. Experiment 2

The Barbara image is blurred by a Gaussian PSF of size 7
with a standard derivation of 5. In the tests, salt-and-
pepper, uniform, Laplace, partial Gaussian, and random-
valued impulse noises are added to the blurred image. For
these blurred and noisy images, it is more suitable to use
the data-fitting measured in /;-norm [20]. In Fig. 5, we
first show the performance of Algorithm 2 for different
levels of salt-and-pepper noise. According to the figures,
the restoration results are very promising. Here we set
the number of iterations for Steps 1-3 in the inner loop to
be 5, 6 to be 2, and the number of overall iterations in Al-
gorithm 2 to be 20. In Fig. 6, we show the images restored
by using Algorithm 2 for the other kinds of noise. We see
from
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Table 5. Comparison between Algorithm 1 and

ALG1 in [33]
ALG1 Algorithm 1
Image PSF/BSNR (ISNR) (ISNR)
Lena Gaussian (3)/40 4.78 5.44
Lena Gaussian (3)/30 3.87 4.17
Lena Gaussian (3)/20 2.87 2.57
Cameraman Gaussian (3)/40 3.39 5.02
Cameraman Gaussian (3)/30 2.63 3.43
Cameraman Gaussian (3)/20 1.72 1.82
Lena Uniform (9)/40 8.42 6.92
Lena Uniform (9)/30 5.89 4.43
Lena Uniform (9)/20 3.72 3.15
Cameraman Uniform (9)/40 8.57 7.86
Cameraman Uniform (9)/30 5.41 5.57
Cameraman Uniform (9)/20 2.42 2.88

the figures that the visual quality of the restored im-
ages is good. We note that the proposed algorithm does
not require any prior knowledge of the original image.

In Table 6, we show the restoration results of Algorithm
2 for different kinds of noise. The SNRs show that the re-
stored images are acceptable. It is important to note that
in addition, the computation time required by Algorithm 2
is very small. These results demonstrate that the pro-
posed algorithm is effective and efficient.

C. Experiment 3
In Fig. 7, we show the convergence of Algorithms 1 and 2
in terms of SNRs. Both plots show that the SNRs of the

restored images increase with respect to increasing value
of ,é Here we set the increasing rate of /AS to 2. We recall
that the new ,f} value is equal to the old ,23 value times 6,
i.e., #=2. When ,23 reaches a certain value, the SNRs of the
restored images are kept at about the same value. These
results suggest that the proposed algorithm can be
stopped early even when the 3 value is not sufficiently
large.

In Figs. 8 and 9, we show the SNRs of the images re-
stored by Algorithms 1 and 2, respectively. In Figs. 8(a)

Table 4. Parameters by Different Methods

Algorithm 1 with

Method the Hutchinson
in [21] Algorithm 1 Estimator
Image PSF/BSNR @ Y B & B
Cameraman Gaussian (7,5)/40 8.11x107® 231 7.59%x 107 256 7.31X107° 256
Cameraman Gaussian (14,5)/30 2.85%x107° 81 2.84x10* 64 1.31x10* 64
Barbara Out-of-focus (3)/40 1.00x10°* 981 1.95x 1073 1024 1.95x 1073 1024
Barbara Out-of-focus (7)/30 3.51x10™* 351 1.29x107* 256 2.45x107* 256
CarNo Motion (9)/40 1.23x 1074 341 2.90x 1074 256 2.90xX107* 256
CarNo Motion (15)/30 6.58x10™* 141 1.22x 1073 128 1.41x1073 128
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(e)

Fig. 5. Restored images of different levels of salt-and-pepper
noise. (a) 10%. (b) Image restored to 5(a). (¢c) 30%. (d) Image re-
stored to 5(c). (e) 50%. (f) Image restored to 5(e).

and 9(a), we fix the initial value of ,23 to be 1 and check the
SNRs of the restored images for different values of 6
=15,2,3,4,5,6,7,8,9,10. We see from the figures that
they are not very sensitive to 6. For Algorithms 1 and 2,
we find that the maximum differences among the SNRs of
the restored images over their average SNRs are 2.71%
and 1.89%. These results show that for different values of
0, the resulting SNRs of the restored images are not sig-
nificantly affected. On the other hand, we fix the value 6
to be 2 and check the SNRs of the restored images for dif-
ferent values of initial B: 1,2,4,8,16,32,64,128,
256,512 in Figs. 8(b) and 9(b). We see from the figures
that they can be sensitive to large initial value of B; for
instance, the SNRs of the images restored by Algorithm 1

drop after use of the initial 3=64; the SNRs of the images

restored by Algorithm 2 drop after use of the initial B
=32. In both Algorithms 1 and 2, we need to solve the

minimization problem min,(B/2)|u-fl2+|u|zv. It is clear

that when j3 is large, the denoising task cannot be per-
formed effectively. Therefore, we do not recommend use of

a large initial value of ,@3 in the proposed image restoration

Liao et al.

Fig. 6. Images restored for other kinds of noise. (a) Uniform
noise. (b) Laplace noise. (¢c) Partial Gaussian noise (50%). (d)
Random-valued noise (20%).

process. According to our results in Figs. 8(b) and 9(b), the
initial value of ,23 can be set to be 1.

4. CONCLUDING REMARKS

In this paper, we studied selection of regularization pa-
rameters in total variation (TV) image restoration. We de-
velop fast TV image restoration methods with an auto-
matic selection of the regularization parameter scheme to
restore blurred and noisy images. The methods exploit
the generalized cross-validation (GCV) technique to de-
termine inexpensively how much regularization is used in
each restoration step. By updating the regularization pa-
rameter in each iteration, the restored image can be ob-
tained. Our experimental results for different kinds of
noise have shown that the visual quality of images re-
stored by the proposed methods are quite promising even
without prior knowledge of the original image. We have

Table 6. Restored Images for Different Kinds of
Noise Using Algorithm 2

Noise (BSNR) SNR (dB) Time (s)

Uniform (40 dB) 17.68 10.82
Uniform (30 dB) 15.76 10.10

Laplace (40 dB) 15.83 10.03

Laplace (30 dB) 14.52 8.96

Partial Guassian (50% and 40 dB) 16.29 10.33
Partial Guassian (50% and 30 dB) 15.11 9.83
Random-valued impulse (20%) 15.42 10.13
Random-valued impulse (40%) 13.89 9.91
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2319

(Color online) Test of convergence of Algorithms 1 and 2. (a) Test of Algorithm 1 on the Cameraman image using the Gaussian

PSF of (hsize=7, 0=5, BSNR=40 dB). (b) Test of Algorithm 2 on the Barbara image using the Gaussian PSF of (hsize=7, 0=5), 40% of

random-valued impulse noise.
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Fig. 9.
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(b)

(Color online) Test of Algorithm 1 on the Gaussian PSF of (hsize=7, 0=5), BSNR=40 dB. (a) SNRs of the restored images with
respect to values of 6, initial B=1. (b) SNRs of the restored images with respect to initial values of B, #=2.

13¢

1251

(b)

respect to values of 6, initial S=1. SNRs of the restored images with respect to initial values of B, §=2.

(Color online) Test of Algorithm 2 on the out-of-focus PSF of radius=7, BSNR=30 dB. (a) SNRs of the restored images with
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also demonstrated that the proposed algorithms are very
efficient for image restoration.
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