
Neural Network and Classification
• Binary Classification
• Multiclass Classification
• Example: Multiclass Classification

Binary Classification

Figure 4-2. Training data binary classification

1

The neural network produces numerical outputs that range from 0-1, while we have the

symbolic correct outputs given as △ and ●. We cannot calculate the error in this way; we need to switch the symbols
to numerical codes. We can assign the maximum and minimum values of the sigmoid function to the two classes as
follows:

Figure 4-4. Change the class symbols and the data is classified differently

Multiclass Classification

2

Figure 4-7. Training data with multiclass classifier

In order to calculate the error, we switch the class names into numeric

codes, as we did in the previous section.

This expression technique is called one-hot encoding or 1-of-N encoding.

Now, the training data is displayed in the following format:

3

Figure 4-9. Training data is displayed in a new format

The output from the i-th output node of the softmax function is calculated as follows:

4

Following this definition, the softmax function satisfies the following condition:

The derivative of softmax function:

The back propagation of cross entropy function for multiclass classification.

C-- the number of class

The vector form

The training process of the multiclass classification neural network is summarized in these steps.

1. Construct the output nodes to have the same value as the number of classes. The softmax function is used as the
activation function.

2. Switch the names of the classes into numeric vectors via the one-hot encoding method.

Class 1 --> [1 0 0]

Class 2 --> [0 1 0]

Class 3 --> [0 0 1]

3. Initialize the weights of the neural network with adequate values.

4. Enter the input from the training data { input, correct output } into the neural network and obtain the output. Calculate
the error between the output and correct output and determine the delta, δ, of the output nodes.

5. Propagate the output delta backwards and calculate the delta of the subsequent hidden nodes.

5

6. Repeat Step 5 until it reaches the hidden layer on the immediate right of the input layer.

7. Adjust the weights of the neural network using this learning rule:

8. Repeat Steps 4-7 for all the training data points.

9. Repeat Steps 4-8 until the neural network has been trained properly.

Example: Multiclass Classification

Figure 4-13. The neural network model for this new dataset

rng(3);

X = zeros(5, 5, 5);

X(:, :, 1) = [0 1 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 0;

6

 1 1 1 1 1
];

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 0 0 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 1 1 1 1 1;
 0 0 0 1 0
];

X(:, :, 5) = [1 1 1 1 1;
 1 0 0 0 0;
 1 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

D = [1 0 0 0 0;
 0 1 0 0 0;
 0 0 1 0 0;
 0 0 0 1 0;
 0 0 0 0 1
];

W1 = 2*rand(50, 25) - 1;
W2 = 2*rand(5, 50) - 1;

for epoch = 1:10000 % train
 [W1,W2] = MultiClass(W1, W2, X, D);
end

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Softmax(v)
end

y = 5×1
 1.0000
 0.0000
 0.0000
 0.0000
 0.0000
y = 5×1
 0.0000
 1.0000
 0.0000
 0.0000
 0.0000

7

y = 5×1
 0.0000
 0.0000
 1.0000
 0.0000
 0.0000
y = 5×1
 0.0000
 0.0000
 0.0000
 1.0000
 0.0000
y = 5×1
 0.0000
 0.0000
 0.0000
 0.0000
 1.0000

%TestMultiClass; % W1, W2

X = zeros(5, 5, 5);

X(:, :, 1) = [0 0 1 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 0 0 0 1 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 1;
 1 1 1 1 1
];

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 1 1 1 0;
 0 1 0 0 0;
 0 1 1 1 0;
 0 0 0 1 0;
 0 1 1 1 0
];

8

X(:, :, 5) = [0 1 1 1 1;
 0 1 0 0 0;
 0 1 1 1 0;
 0 0 0 1 0;
 1 1 1 1 0
];

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 figure,imshow(imresize(X(:, :, k),20,'nearest'));axis on
 y = Softmax(v)
end

y = 5×1
 0.0208
 0.0006
 0.0363
 0.9164
 0.0259

y = 5×1
 0.0000
 0.9961
 0.0038
 0.0000
 0.0000

9

y = 5×1
 0.0001
 0.0198
 0.9798
 0.0001
 0.0002

y = 5×1
 0.0930
 0.3057
 0.5397
 0.0408
 0.0208

y = 5×1
 0.0363
 0.3214
 0.0717
 0.0199
 0.5506

Exercise: Classify the iris dataset and compare your result with KNN.

Referenece: KNNClassifier_iris.mlx

10

