The existence of Macroscopic unique states

Huaxin Lin 林华新  (East China Normal University)

14:00-15:00, March 25, 2024   Science Building A503




Abstract:

Let H be an infinite dimensional separable Hilbert space and B(H) the C*-algebra of bounded operators on H. Suppose that T1,T2,...,Tn are self-adjoint operators in B(H). We show that, if commutators [Ti,Tj] are sufficiently small in norm, then ``Approximately Macroscopically Unique" states always exist for any values in a synthetic spectrum of the n-tuple of self-adjoint operators. This is achieved under the circumstance for which the n-tuple may not be approximated by commuting ones. This answers a question proposed by David Mumford for measurements in quantum theory. If commutators are not small in norm but small modulo compact operators, then ``Approximate Macroscopic Uniqueness" states also exist.

About the speaker:

林华新教授是国际算子代数领域的领袖之一,主要研究C*-代数及其分类。林教授在90年代解决了矩阵论中长期未决的Halmos问题,2000年以后引入并发展了在C*-代数分类中起到核心作用的迹秩理论,独立证明了迹秩有限C*-代数的分类定理,首次基于简单抽象结构给出广泛的C*-代数分类,推动了整个C*-代数理论的发展,2014年以来,与他人合作完成了C*-代数领域中著名的“Elliott纲领”。林教授是美国数学会首届会士,2005年获上海市科学技术进步一等奖,被邀请在1997年欧盟算子代数大会、2014年国际数学家大会(ICM)算子代数卫星会议上作大会报告,2015年受CBMS、AMS和NSF联合特别邀请作十场系列讲座,2018年美洲数学家大会作报告。2023年获得首届国际基础科学大会(International Congress of Basic Science,简称 ICBS)颁发的前沿科学奖。

Attachments: