C*-algebras with approximate tracial oscillation zero
Huaxin Lin 林华新  (East China Normal University)
10:00-11:00, September 12, 2023   Science Building A503
Abstract:
A unital C*-algebra A has tracial approximate oscillation zero, if each positive element is approximated tracially by elements with small tracial oscillation. We show that if A has tracial approximate oscillation zero then A has stable rank one and the canonical map Γ from the Cuntz semigroup of A to the corresponding affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple C*-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map Γ is surjective.
About the speaker:
林华新教授是国际算子代数领域的领袖之一,主要研究C*-代数及其分类。林教授在90年代解决了矩阵论中长期未决的Halmos问题,2000年以后引入并发展了在C*-代数分类中起到核心作用的迹秩理论,独立证明了迹秩有限C*-代数的分类定理,首次基于简单抽象结构给出广泛的C*-代数分类,推动了整个C*-代数理论的发展,2014年以来,与他人合作完成了C*-代数领域中著名的“Elliott纲领”。林教授是美国数学会首届会士,2005年获上海市科学技术进步一等奖,被邀请在1997年欧盟算子代数大会、2014年国际数学家大会(ICM)算子代数卫星会议上作大会报告,2015年受CBMS、AMS和NSF联合特别邀请作十场系列讲座,2018年美洲数学家大会作报告。2023年获得首届国际基础科学大会(International Congress of Basic Science,简称 ICBS)颁发的前沿科学奖。
Attachments: