Hilbert submodules and tracial approximate oscillation zero
Huaxin Lin 林华新  (East China Normal University)
11:00-12:00, December 13, 2022   Tencent Meeting ID: 715 6327 1242
Abstract:
This is Lecture 3 of the lecture series. The notion of a Hilbert C*-module is a generalization of the notion of a Hilbert space. The first use of such objects was made by I. Kaplansky. The research on Hilbert C*-modules began in the 70’s in the work of the induced representations of C*-algebras by M. A. Rieffel and the doctoral dissertation of W. L. Paschke. It is also used to study Morita equivalence of C*-algebras, KK-theory of C*-algebras, operator K-theory, C*-algebra quantum group and theory of operator spaces. In this lecture series, I would like to revisit the theory of Hilbert C*-module and discuss some of its recent exciting applications.
About the speaker:
林华新教授是国际算子代数领域的领袖之一,主要研究C*-代数及其分类。林教授在90年代解决了矩阵论中长期未决的Halmos问题,2000年以后引入并发展了在C*-代数分类中起到核心作用的迹秩理论,独立证明了迹秩有限C*-代数的分类定理,首次基于简单抽象结构给出广泛的C*-代数分类,推动了整个C*-代数理论的发展,2014年以来,与他人合作完成了C*-代数领域中著名的“Elliott纲领”。林教授是美国数学会首届会士,2005年获上海市科学技术进步一等奖,被邀请在1997年欧盟算子代数大会、2014年国际数学家大会(ICM)算子代数卫星会议上作大会报告,2015年受CBMS、AMS和NSF联合特别邀请作十场系列讲座,2018年美洲数学家大会作报告。
Attachments: