【校庆学术报告】The Beurling--Wintner problem and analytic number theory
Kunyu Guo 郭坤宇  (Fudan University)
10:00-11:00, October 11, 2022   Tencent Meeting ID: 859 405 709
Abstract:
This talk concerns a long-standing problem on completeness of function systems generated by odd periodic extensions of functions in L^2(0,1). This problem, raised by Beurling and Wintner in the 1940s,is closely related to the Riemann Hypothesis. We completely solve the rational version of step functions (that is, for those functions with rational jump discontinuities) by approaches from analytic number theory, and present several deep applications including a complete solution to the rational version of Kolzov completeness problem. This is a joint work with Dr. Hui Dan.
About the speaker:
郭坤宇,复旦大学特聘教授和上海数学中心谷超豪研究所长聘教授、数学科学学院学术委员会主任,复旦大学“非线性数学模型与方法”教育部重点实验室主任。2005年获国家杰出青年科学基金、2006年被聘为教育部长江学者特聘教授。长期从事算子理论和算子代数的研究,取得了若干重要成果。独立或与他人合作在国际知名数学期刊发表论文80多篇;其中包括J.Funct.Anal.(13篇)、 J. Reine Angew. Math.(3篇)、 Math Ann、 Adv Math、Proc. London Math. Soc. 等。出版专著2部(Lecture Notes in Math.; π-Research Notes in Math.), 四个SCIE期刊编委。解决了算子理论中多个困难的问题,形成了复旦大学算子理论研究的特色。 国际同行评价为:“Fudan group led by Kunyu Guo…making steady progress…,a beautiful theory …”。先后两次获得上海市自然科学奖一等奖 (均为第一完成人)。
Attachments: