Higher Nahm Transform in Noncommutative Geometry
Tsuyoshi Kato  (Kyoto University)
10:00-11:00, April 9, 2018   Science Building A1510
Abstract:
Anti-self-dual (ASD) connections for a compact smooth four manifold arise as critical values for the Yang-Mills action functional. Nahm transform is a nice correspondence between a vector bundle with ASD connections and vector bundle with ASD connections over Picard torus associated to X. In this talk we propose a noncommutative geometric version of the Nahm transform that generalises the Connes-Yang-Mills action functional formulated using Dixmier trace.
About the speaker:
Tsuyoshi Kato,日本京都大学教授,科研涉猎范围广泛,主要研究方向是非交换几何,K-理论,低维流形的几何,分析与拓扑,Yang-Mills规范理论以及它们之间的联系。他的研究成果发表在《Geometry and Topology》,《Geometric and Functional Analysis》,《Journal of Geometric Analysis》,《Communications in Mathematical Physics》等著名期刊上。他对算子代数和非交换几何的在亚洲地区的传播与交流有很大的推动力。他是近几年连续多届的中日非交换几何,指标理论会议的主要策划人。
Attachments: