Finite Decomposition Complexity of Groups
Yan Wu  (Jiaxing University)
14:00 pm-15:00 pm, May 20th, 2016   Science Building A1510
Abstract:
Inspired by the property of finite asymptotic dimension of Gromov, a geometric concept of finite decomposition complexity is introduced in game theoretic terms by E. Guentner, R. Tessera and G. Yu. Finite decomposition complexity is a large scale property of a metric space. It generalizes finite asymptotic dimension and applies to a wide class of groups . Here I will give some examples and prove that Thompson's group F equipped with the word-metric with respect to the infinite generating set does not have finite decomposition complexity.
About the speaker:
Attachments: