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A classification of finite simple amenable
Z-stable C*-algebras, II: C*-algebras with

rational generalized tracial rank one

Guihua Gong, Huaxin Lin and Zhuang Niu

Presented by George A. Elliott, FRSC

Abstract. A classification theorem is obtained for a class of unital

simple separable amenable Z-stable C∗-algebras which exhausts all possi-

ble values of the Elliott invariant for unital stably finite simple separable
amenable Z-stable C∗-algebras. Moreover, it contains all unital simple sep-

arable amenable C∗-algebras which satisfy the UCT and have finite rational

tracial rank.

Résumé. Dans cet article et le précédent on donne une classification

complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe
des C*-algèbres simples, moyennables, séparables, à élément unité, absor-

bant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble

des valeurs possibles de l’invariant pour cette class. La partie I réalise une
grande partie de ce projet, et la partie II l’achève.

This is the second part of the paper entitled “A classification of finite simple
amenable Z-stable C*-algebras” (see [21]).

The main theorem of this part is the following isomorphism theorem:

Theorem (see Theorem 29.8). Let A and B be two unital separable simple
amenable Z-stable C∗-algebras which satisfy the UCT. Suppose that gTR(A ⊗
Q) ≤ 1 and gTR(B ⊗Q) ≤ 1. Then A ∼= B if and only if

Ell(A) ∼= Ell(B).

See Section 29 for a brief explanation. We also refer to the first part [21], in
particular, Section 2 of [21], for the notations and definitions.
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22. Construction of Maps In this section, we will introduce some technical
results on the existence of certain maps.

Recall that C is the class of C∗-algebras which are 1-dimensional NCCWs (see
3.1 of [21]). Let A be a unital simple C∗-algebra. We say A ∈ B1 if the following
property holds: Let ε > 0, let a ∈ A+ \ {0}, and let F ⊂ A be a finite subset.
There exist a non-zero projection p ∈ A and a C∗-subalgebra C ∈ C with 1C = p
such that

‖xp− px‖ < ε for all x ∈ F,

dist(pxp,C) < ε for all x ∈ F, and(e 22.1)

1− p . a.(e 22.2)

If C as above can always be chosen in C0, that is, with K1(C) = {0}, then we
say that A ∈ B0.

Recall that we refer to the first part [21], in particular, Section 2 of [21], for
the notations and definitions.

Lemma 22.1. Let X be a finite CW complex, let C = PMk(C(X))P, and let
A1 ∈ B0 be a unital simple C∗-algebra. Assume that A = A1 ⊗ U for a UHF-
algebra U of infinite type. Let α ∈ KKe(C,A)++ (see Definition 2.10 of [21]).
Then there exists a unital monomorphism ϕ : C → A such that [ϕ] = α. Moreover
we may write ϕ = ϕ′n ⊕ ϕ′′n, where ϕ′n : C → (1 − pn)A(1 − pn) is a unital
monomorphism, ϕ′′n : C → pnApn is a unital homomorphism with [ϕ′′n] = [Φ] in
KK(C, pnApn) for some homomorphism Φ with finite dimensional range, and

lim
n→∞

max{τ(1− pn) : τ ∈ T (A)} = 0 for all τ ∈ T (A),

where pn ∈ A is a sequence of projections.

Proof. To simplify the matter, we may assume that X is connected. Suppose
that the lemma holds for the case C = Mk(C(X)) for some integer k ≥ 1.
Consider the case C = PMk(C(X))P. Note C⊗K ∼= C(X)⊗K. Let q ∈Mm(A)
be a projection (for some integer m ≥ 1) such that [q] = α([1Mk(C(X))]). Put
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A2 = qMm(A)q. Then α ∈ KKe(Mk(C(X)), A2)++. Let ψ : Mk(C(X)) →
qMm(A)q be the map given by the lemma for the case that C = Mk(C(X)).
Note now C = PMk(C(X))P. Let ψ′ = ψ|C . Since P ≤ 1Mk(C(X)), ψ

′(1C) =
ψ′(P ) ≤ q. Moreover, [ψ′(1C)] = [1A]. Since A = A1 ⊗ U, there is a unitary
v ∈ A2 such that v∗ψ′(1C)v = 1A. Define ϕ = Adv ◦ψ′. We see that the general
case reduces to the case C = Mk(C(X)). This case then reduces to the case
C = C(X).

Since quasitraces of C and A are traces (see 9.10 of [21]) by Corollary 3.4 of
[3], α(kerρC) ⊂ kerρA.

Since Ki(C) is finitely generated, i = 0, 1, KK(C,A) = KL(C,A). Let α ∈
KLe(C,A)++. We may identify α with an element in HomΛ(K(C),K(A)) by a
result in ([6]).

Write A = limn→∞(A1 ⊗ Mrn , ın,n+1), where rn|rn+1, rn+1 = mnrn and
ın,n+1(a) = a⊗ 1Mmn

, n = 1, 2, .... Since K∗(C) is finitely generated and conse-
quently, K(C) is finitely generated modulo Bockstein Λ operations, there is an
element α1 ∈ KK(C,A1⊗Mrn) such that α = α1× [ın], where [ın] ∈ KK(A1⊗
Mrn , A) is induced by the inclusion ın : A1⊗Mrn → A. Increasing n, we may as-
sume that α1(kerρC) ⊂ kerρA1⊗Mrn

and further that α1 ∈ KKe(C,A1⊗Mrn)++.
Replacing A1 by A1 ⊗ Mrn , we may assume that α = α1 × [ı], where α1 ∈
KKe(C,A1)++ and ı : A1 → A is the inclusion.

It induces an element α̃1 ∈ KL(C ⊗ U,A ⊗ U). Let K0(U) = D, a dense
subgroup of Q. Note that Ki(C ⊗ U) = Ki(C) ⊗ D, i = 0, 1, by the Künneth
formula.

We verify that α̃1(K0(C ⊗ U)+ \ {0}) ⊂ K0(A ⊗ U)+ \ {0}. Consider x =∑m
i=1 xi ⊗ di ∈ K0(C ⊗ U)+ \ {0} with xi ∈ K0(C) and di ∈ D, i = 1, 2, ...,m.

There is a projection p ∈Mr(C) for some r ≥ 1 such that [p] = x. Let t ∈ T (C);
then

m∑
i=1

t(xi)di > 0.(e 22.3)

It should be noted that, since C = C(X) and X is connected, t(xi) ∈ Z and
t(xi) = t′(xi) for all t, t′ ∈ T (C). Since α1([1C ]) = [1A1

], τ ◦ α1(xi) = t(xi) for
any τ ∈ T (A1) and t ∈ T (C). By (e 22.3),

τ(α̃1(x)) =

m∑
i=1

τ ◦ α1(xi)di =

m∑
i=1

t(xi)di > 0(e 22.4)

for all τ ∈ T (A1). This shows that α̃1 is strictly positive. For any C∗-algebra A′,
in this proof, we will use jA′ : A′ → A′⊗U for the homomorphism jA′(a) = a⊗1U
for all a ∈ A′. Evidently,

α = α̃1 ◦ jC = jA1
◦ α1.(e 22.5)

Let d := pn1
1 pn2

2 · · · be the supernatural number associated with U (and D),
where each pi is a distinct prime number. If there are infinitely many of them, we
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may also write d :=
∏∞
i=1 li, where each li is an integer. We define m1 := l1pk1

so that the prime number is not a factor of l1, and mi := lipki so that pki is not
a factor of li and m1m2 · · ·mi−1. Since pki → ∞ as i → ∞, limi→∞

mi
li

= ∞.
Moreover

∏∞
i=1mi = d. If there are only finitely many distinct pi’s, write d =

pn1
1 pn2

2 · · · p
nf
f p∞k1 · · · p

∞
kI
, where ni < ∞ (1 ≤ i ≤ f). Let l1 := pn1

1 pn2
2 · · · p

nf
f ,

m1 := l1pk1 · · · pkI , li := pk1pk2 · · · pkI and mi := pik1p
i
k2
· · · pikl for i ≥ 2. Then

d =
∏∞
i=1 li =

∏∞
i=1mi and limi→∞

mi
li

=∞.
Write U = limn→∞(Mrn , ın), where r1 = 1, and rn =

∏n−1
i=1 mi (n > 1),

rn+1 = mnrn and ın(a) = a ⊗ 1Mmn
for a ∈ Mrn , n = 1, 2, .... We may assume

that r1 = 1. Let r′1 = 1, r′n =
∏n−1
i=1 li (n > 1). Let U1 := limn→∞(Mr′n

, ı′n),
where ı′n(b) = b⊗Mln for b ∈Mr′n

.
Let ηn : Mr′i

→ Mri by ηi(a) = a ⊗ 1mi/li for a ∈ Mr′i
, respectively. Then

{ηn} induces a unital homomorphism η : U1 → U which induces an isomorphism
from K0(U1) onto K0(U).

Recall that we assume thatX is connected. Fix a base point x0 ∈ X. Let C0 :=
C0(X \ {x0}). Then C is KK-equivalent to C⊕C0 and K(C) = K(C)⊕K(C0).
Let {xn} be a sequence of points in X \ {x0} such that {xk, xk+1, ..., xn, ...} is
dense in X for each k and each point in {xn} repeated infinitely many times.
Let B = limn→∞(Cn := Mrn(C), ψn), where

ψn(f) = diag(f, f..., f︸ ︷︷ ︸
ln

, f(x1), f(x2), ..., f(xmn−ln)) for all f ∈Mrn(C),

n = 1, 2, ....Note that ψn is injective. Set en = diag(1Mrn·ln
, 0, ..., 0) ∈Mrn+1

(C),
n = 1, 2, ...

It is standard that B has tracial rank zero (see [23] and also, 3.77 and 3.79
of [31]). Moreover, K(B) = K(U) ⊕ K(C0 ⊗ U1) and K0(B)+ = {(d, z) : d ∈
D+, z ∈ K0(C0⊗U1)}∪{(0, 0)}. Note that B is a unital simple AH-algebra with
no dimension growth, with real rank zero, and with a unique tracial state. Also
h := ψ1,∞ : C → B gives [h]|K(C)(z) = z ⊗ 1D for z ∈ K(C) and [h]|K(C0)(x) =
x⊗ [1U1 ] for x ∈ K(C0). Let η0 : C0⊗U1 → C0⊗U be defined by η0 := idC0 ⊗η.
Define κ ∈ KL(B,B) by κ|K(C⊗U) = idK(C⊗U) and κ|K(C0⊗U1) = η0. Note that
κ ∈ KL(B,B)++. Recall K(C⊗U) = K(C⊗U)⊕K(C0⊗U). One may also view
κ as an element in HomΛ(K(C⊗U)⊕K(C0⊗U1),K(C⊗U)) = KL(B,C⊗U).
It has an inverse κ−1 ∈ KL(C ⊗ U,B). We have κ−1 ◦ [jC ] = [h].

Note that 1−ψn,∞(en) commutes with the image of h for all n ≥ N. Moreover,
(1−ψn,∞(en))h(c)(1−ψn,∞(en)) = ψn,∞((1−en)ψN,n◦ϕ1,N (c)(1−en)) for all c ∈
C. Therefore the map (1− ψn,∞(en))h(C)(1− ψn,∞(en)) has finite dimensional
range.

We also have α̃1 ◦ κ ∈ KLe(B,A)++, where (recall) A = A1 ⊗ U. We also
note that B has a unique tracial state. Let γ : T (A) → T (B) be defined by
γ(τ) = t0 where t0 ∈ T (B) is the unique tracial state. It follows that α̃1 ◦ κ and
γ are compatible. By Corollary 21.11 of [21], there is a unital homomorphism
H : B → A such that [H] = α̃1 ◦ κ. Define ϕ : C → A by ϕ = H ◦ h. Then, ϕ is
injective, and, by (e 22.5) and [h] = κ−1 ◦ [jC ] , we have [ϕ] = α.
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To show the last part, define qn = ψn+1,∞(en) ∈ B, n = N + 1, N + 2, ....
Define pn = 1−H(qn), n = N + 1, N + 2, .... One checks that

lim
n→∞

max{τ(1− pn) : τ ∈ T (A)} = lim
n→∞

ln
mn

= 0.(e 22.6)

Note that for n > N , qn commutes with the image of h and the homomorphism
(1− qn)h(1− qn) : C → (1− qn)B(1− qn) has finite dimensional range. Define
ϕ′n : C → (1− pn)A(1− pn) by ϕ′n(f) = H(qn)H ◦ h(f)H(qn) for f ∈ C. Define
ϕ′′n(f) = (1− pn)H ◦ h(f)(1− pn), which is a point-evaluation map. The lemma
follows. �

We also have the following:

Lemma 22.2. Let C = Mk(C(T)) and let A be a unital infinite dimensional
simple C∗-algebra with stable rank one and with the property (SP). Then the
conclusion of 22.1 also holds for a given α ∈ KKe(C,A)++.

Proof. Let p1 ∈ C be a minimal rank one projection. Since kα([p1]) =
α([1C ]) = [1A], A contains mutually equivalent and mutually orthogonal projec-

tions e1, e2, ..., ek such that
∑k
i=1 ei = 1A. Thus A = Mk(A′), where A′ ∼= e1Ae1.

Since eiAei are unital infinite dimensional simple C∗-algebras with stable rank
one and with (SP), the general case can be reduced to the case that k = 1. Fix 1 >
δ > 0. Choose a non-zero projection p ∈ A such that τ(p) < δ for all τ ∈ T (A).
Note K1(pAp) = K1(A), since A is simple. Let α1 : K1(C(T)) → K1(pAp) be
the homomorphism given by α. Let z ∈ C(T) be the standard unitary generator.
Let x = α1([z]) ∈ K1(pAp). Since pAp has stable rank one, there is a unitary
u ∈ pAp such that [u] = x in K1(pAp) = K1(A). Define ϕ′ : C(T) → pAp
by ϕ′(f) = f(u) for all f ∈ C(T). Define ϕ′′ : C(T) → (1 − p)A(1 − p) by
ϕ′′(f) = f(1)(1 − p) for all f ∈ C(T) (where f(1) is the point evaluation at 1
on the unit circle). Define ϕ = ϕ′ ⊕ ϕ′′ : C(T) → A. The map ϕ verifies the
conclusion of lemma follows. �

Corollary 22.3. Let X be a connected finite CW complex, let
C = PMm(C(X))P, where P ∈ Mm(C(X)) is a projection, let A1 ∈ B0 be a
unital separable simple C∗-algebra which satisfies the UCT, and let A = A1⊗U,
where U is a UHF-algebra of infinite type. Suppose that α ∈ KKe(C,A)++ and
γ : T (A)→ Tf (C(X)) is a continuous affine map. Then there exists a sequence
of contractive completely positive linear maps hn : C → A such that

(1) limn→∞ ‖hn(ab)− hn(a)hn(b)‖ = 0, for any a, b ∈ C,
(2) for each hn, the map [hn] is well defined and [hn] = α, and
(3) limn→∞max{|τ ◦ hn(f)− γ(τ)(f)| : τ ∈ T (A)} = 0 for any f ∈ C.

Proof. By Theorem 21.10 of [21], one may assume that A is a unital C∗-
algebra as described in Theorem 14.10 of [21]. It follows from Lemma 22.1 that
there is a unital homomorphism hn : C → A such that [hn] = α. Moreover,

hn = h′n ⊕ h′′n,
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where h′′n : C → pnApn is a homomorphism with [h′′n] = [Φ
′
] in KK(C, pnApn)

for some point evaluation map Φ
′
, where pn is a projection in A with τ(1− pn)

converging to 0 uniformly as n→∞. We will modify the map hn = h′n ⊕ h′′n to
get the homomorphism.

We assert that for any finite subset H ⊂ Cs.a, and ε > 0, and any sufficiently
large n, there is a unital homomorphism h̃n : C → pnApn such that [h̃n] = [Φ]
in KK(C, pnApn) for a homomorphism Φ with finite dimensional range, and

|τ ◦ h̃n(f)− γ(τ)(f)| < ε for all τ ∈ T (A)

for all f ∈ H. The corollary then follows by replacing the map h′′n by the map
h̃n—of course, we use the fact that limn→∞ τ(1− pn) = 0.

Let H1,1 (in place of H1,1) be the finite subset of Lemma 17.1 of [21] with
respect to H (in place of H), ε/8 (in place of σ), and C (in place of C). Since
γ(T (A)) ⊂ Tf (C(X)), there is σ1,1 > 0 such that

γ(τ)(h) > σ1,1 for all h ∈ H1,1 for all τ ∈ T (A).

Let H1,2 ⊂ C+ (in place of H1,2) be the finite subset of Lemma 17.1 of [21]
with respect to σ1,1. Since γ(T (A)) ⊂ Tf (C(X)), there is σ1,2 > 0 such that

γ(τ)(h) > σ1,2 for all h ∈ H1,2 for all τ ∈ T (A).

Let M be the constant of Lemma 17.1 of [21] with respect to σ1,2. By Lemma
16.12 of [21] (also see the proof of Lemma 16.12 of [21]) for sufficiently large n,
there are a C*-subalgebra D ⊂ pnApn ⊂ A such that D ∈ C0, and a continuous
affine map γ′ : T (D)→ T (C) such that

|γ′( 1

τ(p)
τ |D)(f)− γ(τ)(f)| < ε/4 for all τ ∈ T (A) for all f ∈ H,

where p = 1D, τ(1− p) < ε/(4 + ε), and further (see part (2) of Lemma 16.12 of
[21])

γ′(τ)(h) > σ1,1 for all τ ∈ T (D) for all h ∈ H1,1, and(e 22.7)

γ′(τ)(h) > σ1,2 for all τ ∈ T (D) for all h ∈ H1,2.(e 22.8)

Since A is simple and not elementary, one may assume that the dimensions of
the irreducible representations of D are at least M . Thus, by Lemma 17.1 of
[21], there is a homomorphism ϕ : C → D such that [ϕ] = [Φ] in KK(C,D) for
a point evaluation map Φ, and that

|τ ◦ ϕ(f)− γ′(τ)(f)| < ε/4 for all f ∈ H for all τ ∈ T (D).

Pick a point x ∈ X, and define h̃ : C → pnApn by

f 7→ f(x)(pn − p)⊕ ϕ(f) for all f ∈ C.

Then a calculation as in the proof of Theorem 17.3 of [21] shows that the homo-
morphism h′n ⊕ h̃ verifies the assertion. �
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Corollary 22.4. Let C ∈ H (see Definition 14.5 of [21]) and let A1 ∈ B0 be a
unital separable simple C∗-algebra which satisfies the UCT and let A = A1 ⊗ U
for some UHF-algebra U of infinite type. Suppose that α ∈ KKe(C,A)++, λ :
U(C)/CU(C)→ U(A)/CU(A) is a continuous homomorphism, and γ : T (A)→
Tf (C) is a continuous affine map such that α, λ, and γ are compatible. Then
there exists a sequence of unital completely positive linear maps hn : C → A such
that

(1) limn→∞ ‖hn(ab)− hn(a)hn(b)‖ = 0 for any a, b ∈ C,
(2) for each hn, the map [hn] is well defined and [hn] = α,
(3) limn→∞max{|τ ◦ hn(f)− γ(τ)(f)| : τ ∈ T (A)} = 0 for all f ∈ C, and
(4) limn→∞ dist(h‡n(ū), λ(ū)) = 0 for any u ∈ U(C).

Proof. Let ε > 0. Let U be a finite subset of U(C) such that U generates
Jc(K1(C)), where Jc(K1(C)) is as in Definition 2.16 of [21]. Let σ > 0, δ > 0
and G be the constant and finite subset of Lemma 21.5 of [21] with respect to
U, ε, and λ (in the place of α). Without loss of generality, one may assume that
δ < ε.

Let F be a finite subset such that F ⊃ G. Let H ⊂ C be a finite subset
of self-adjoint elements with norm at most one. By Corollary 22.3, there is a
completely positive linear map h′ : C → A such that h′ is F-δ-multiplicative, [h′]
is well defined and [h′] = α, and

(e 22.9) |τ(h′(f))− γ(τ)(f)| < ε, τ ∈ T(A), f ∈ H.

By Theorem 21.9 of [21], the C*-algebra A is isomorphic to one of the model
algebras constructed in Theorem 14.10 of [21], and therefore there is an inductive
limit decomposition A = lim

−→
(Ai, ϕi), where Ai and ϕi are as described in Theo-

rem 14.10 of [21]. Without loss of generality, one may assume that h′(C) ⊂ Ai
for some i. Therefore, by Theorem 14.10 of [21], the map ϕi,∞ ◦ h′ has a decom-
position

ϕi,∞ ◦ h′ = ψ0 ⊕ ψ1

such that ψ0, ψ1 satisfy (1)–(4) of Lemma 21.5 of [21] with the σ and δ above.
It then follows from Lemma 21.5 of [21] that there is a homomorphism Φ :

C → e0Ae0, where e0 = ψ0(1C), such that
(i) Φ is homotopic to a homomorphism with finite dimensional range and

(e 22.10) [Φ]∗0 = [ψ0], and

(ii) for each w ∈ U, there is gw ∈ U0(B) with cel(gw) < ε such that

(e 22.11) λ(w̄)−1(Φ⊕ ψ1)‡(w̄) = ḡw.

Consider the map h := Φ ⊕ ψ1. Then h is F-ε-multiplicative. By (e 22.10),
one has

[h] = [ψ0]⊕ [ψ1] = [h′] = α.
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By (e 22.9) and Condition (4) of Lemma 21.5 of [21], one has, for all f ∈ H,

|τ(h(f))− γ(τ)(f)| ≤ |τ(h′(f))− γ(τ)(f)|+ δ < ε+ δ < 2ε.

It follows from (e 22.11) that, for all u ∈ U,

dist(h(u), λ(u)) < ε.

Since F, H, and ε are arbitrary, this proves the corollary. �

Corollary 22.5. Let C ∈ H and let A1 ∈ B0 be a unital separable simple
C∗-algebra which satisfies the UCT, and let A = A1 ⊗ U for some UHF-algebra
U of infinite type. Suppose that α ∈ KLe(C,A)++ and λ : U(C)/CU(C) →
U(A)/CU(A) is a continuous homomorphism, and γ : T (A) → Tf (C) is a con-
tinuous affine map such that α, λ, and γ are compatible. Then there exists a
unital homomorphism h : C → A such that

(1) [h] = α,
(2) τ ◦ h(f) = γ(τ)(f) for any f ∈ C, and
(3) h‡n = λ.

Proof. Let us construct a sequence of unital completely positive linear maps
hn : C → A which satisfies (1)–(4) of Corollary 22.4, and moreover, is such
that the sequence {hn(f)} is Cauchy for any f ∈ C. Then the limit map h =
limn→∞ hn is the desired homomorphism.

Let {Fn} be an increasing sequence in the unit ball of C with its union dense
in the unit ball of C. Define ∆(a) = min{γ(τ)(a) : τ ∈ T(A)}. Since γ is
continuous and T(A) is compact, the map ∆ is an order preserving map from
C1,q

+ \ {0} to (0, 1). Let G(n),H1(n),H2(n) ⊂ C, U(n) ⊂ U∞(C), P(n) ⊂ K(C),
γ1(n), γ2(n), and δ(n) be the finite subsets and constants of Theorem 12.7 of
[21] with respect to Fn, 1/2n+1, and ∆/2. We may assume that δ(n) decreases
to 0 if n→∞, P(n) ⊂ P(n+ 1), n = 1, 2, ..., and

⋃∞
n=1 P(n) = K(C).

Let G1 ⊂ G2 ⊂ · · · be an increasing sequence of finite subsets of C such
that

⋃
Gn is dense in C, and let U1 ⊂ U2 ⊂ · · · be an increasing sequence

of finite subsets of U(C) such that
⋃

Un is dense in U(C). One may assume
that Gn ⊃ G(n) ∪ G(n − 1), Gn ⊃ H1(n) ∪H1(n + 1) ∪H2(n) ∪H2(n − 1), and
Un ⊃ U(n) ∪ U(n− 1).

By Corollary 22.4, there is a G1-δ(1)-multiplicative map h′1 : C → A such that

(4) the map [h′1] is well defined and [h1] = α,
(5) |τ ◦ hn(f)− γ(τ)(f)| < min{γ1(1), 1

2∆(f) : f ∈ H1} for any f ∈ G1, and
(6) dist(h‡n(ū), λ(ū)) < γ2(1) for any u ∈ Un.

Define h1 = h′1. Assume that h1, h2, ..., hn : C → A are constructed such that

(7) hi is Gi-δ(i)-multiplicative, i = 1, ..., n,
(8) the map [hi] is well defined and [hi] = α, i = 1, ..., n,
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(9) |τ ◦ hi(f) − γ(τ)(f)| < min{ 1
2γ1(i), 1

2∆(f) : f ∈ H1(i)} for any f ∈ Gi,
i = 1, ..., n,

(10) dist(h‡i (ū), λ(ū)) < 1
2γ2(i) for any u ∈ Ui, i = 1, ..., n, and

(11) ‖hi−1(g)− hi(g)‖ < 1
2i−1 for all g ∈ Gi−1, i = 2, 3, ..., n.

Let us construct hn+1 : C → A such that

(12) hn+1 is Gn+1-δ(n+ 1)-multiplicative,

(13) the map [hn+1] is well defined and [hn+1] = α,

(14) |τ ◦ hn+1(f)− γ(τ)(f)| < min{ 1
2γ1(n+ 1), 1

2∆(f) : f ∈ H1(n+ 1)} for any
f ∈ Gn+1,

(15) dist(h‡n+1(ū), λ(ū)) < 1
2γ2(n+ 1) for any u ∈ U, i = 1, ..., n, and

(16) ‖hn(g)− hn+1(g)‖ < 1
2n for all g ∈ Fn.

Then the statement follows.

By Corollary 22.4, there is G(n+1)-δ(n+1)-multiplicative map h′n+1 : C → A
such that h′n+1 is Gn+1-δ(n + 1)-multiplicative, the map [h′n+1] is well defined
and [h′n+1] = α,

(e 22.12) |τ ◦ h′n+1(f)− γ(τ)(f)| < min{1

2
γ1(n+ 1),

1

2
∆(f) : f ∈ H2(n+ 1)}

for any f ∈ Gn+1, and

dist((h′n+1)‡(ū), λ(ū)) <
1

2
γ2(n+ 1)

for any u ∈ U, i = 1, ..., n. In particular, this implies that

[h′n+1]|Pn = [hn]|Pn ,

and for any f ∈ H2(n) (note that H2(n) ⊂ Gn),

|τ ◦ hn(f)− τ ◦ h′n+1(f)| < γ1(n)/2 + |γ(τ)(f)− τ ◦ h′n+1(f)|

< γ1(n)/2 + γ1(n+ 1)/2 < γ1(n).

Also by (e 22.12), for any f ∈ H1(n), one has

τ(h′n+1(f)) ≥ γ(τ)(f)− 1

2
∆(f) >

1

2
∆(f).

By the inductive hypothesis, one also has

τ(hn(f)) ≥ γ(τ)(f)− 1

2
∆(f) >

1

2
∆(f) for all f ∈ H1(n).
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For any u ∈ U(n), one has

dist(h′n+1(u), hn(u)) <
1

2
γ2(n+ 1) + dist(γ(u), hn(u))

<
1

2
γ2(n+ 1) +

1

2
γ2(n) < γ1(n).

Note that both h′n+1 and hn are G(n)-δ(n)-multiplicative, and so, by Theorem
12.7 of [21], there is a unitary W ∈ A such that

‖W ∗h′n+1(g)W − hn(g)‖ < 1/2n for all g ∈ Fn.

Then the map hn+1 := AdW ◦ h′n+1 satisfies the desired conditions, and the
statement is proved. �

Lemma 22.6. Let C ∈ C0. Let ε > 0, F ⊂ C be any finite subset. Suppose that
B is a unital separable simple C∗-algebra in B0, A = B ⊗ U for some UHF-
algebra of infinite type, and α ∈ KKe(C ⊗ C(T), A)++. Then there is a unital
F-ε-multiplicative completely positive linear map ϕ : C ⊗ C(T)→ A such that

[ϕ] = α.(e 22.13)

Proof. Denote by α0 and α1 the induced maps induced by α on K0-groups
and K1-groups.

By Theorem 18.2 of [21], there exist an F-ε-multiplicative map ϕ1 : C ⊗
C(T) → A ⊗ K and a homomorphism ϕ2 : C ⊗ C(T) → A ⊗ K with finite
dimensional range such that

[ϕ1] = α+ [ϕ2] in KK(C,A).

In particular, one has (ϕ1)∗1 = α1. Without loss of generality, one may assume
that both ϕ1 and ϕ2 map C into Mr(A) for some integer r.

Since Mr(A) ∈ B0, for any finite subset G ⊂Mr(A) and any ε′ > 0, there are
G-ε′-multiplicative maps L1 : Mr(A)→ (1− p)Mr(A)(1− p) and L2 : Mr(A)→
S0 ⊂ pMr(A)p for a C*-subalgebra S0 ∈ C0 with 1S0

= p such that

(1) ||a− L1(a)⊕ L2(a)|| < ε′ for any a ∈ G and
(2) τ((1− p)) < ε′ for any τ ∈ T (Mr(A)).

Since K1(S0) = {0}, choosing G sufficiently large and ε′ sufficiently small, one
may assume that L1 ◦ ϕ1 is F-ε-multiplicative, and

[L1 ◦ ϕ1]|K1(C⊗C(T)) = (ϕ1)∗1 = α1.

Moreover, since the positive cone of K0(C⊗C(T)) is finitely generated, choosing
ε′ even smaller, one may assume that the map

κ := α0 − [L1 ◦ ϕ1]|K0(C⊗C(T) : K0(C ⊗ C(T))→ K0(A)
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is positive. Pick a point x0 ∈ T, and consider the evaluation map

π : C ⊗ C(T) ∈ f ⊗ g 7→ f · g(x0) ∈ C.

Then π∗0 : K0(C ⊗ C(T))→ K0(C) is an order isomorphism, since K1(C) = 0.
Choose a projection q ∈ A with [q] = κ([1]). Since qAq ∈ B0, by Corollary

18.9 of [21], there is a unital homomorphism h : C → qAq such that

[h]0 = κ ◦ π−1
∗0 on K0(C),

and hence one has

(h ◦ π)∗0 = κ, on K0(C ⊗ C(T)).

Put ϕ = (L1 ◦ ϕ1)⊕ (h ◦ π) : C ⊗ C(T)→ A. Then it is clear that

ϕ∗0 = [L1◦ϕ1]|K0(C⊗C(T))+κ = [L1◦ϕ1]|K0(C⊗C(T))+α0−[L1◦ϕ1]|K0(C⊗C(T)) = α0

and [ϕ]1 = [L1 ◦ ϕ1]|K1(C⊗C(T)) = α1.

Since K∗(C ⊗ C(T)) is finitely generated and torsion free, one has that [ϕ] = α
in KK(C ⊗ C(T), A). �

Lemma 22.7. Let C ∈ C0. Let ε > 0, F ⊂ C ⊗ C(T) be a finite subset, σ > 0,
and H ⊂ (C⊗C(T))s.a. be a finite subset. Suppose that A is a unital C∗-algebra
in B0, B = A ⊗ U for some UHF-algebra U of infinite type, α ∈ KKe(C ⊗
C(T), B)++, and γ : T (B) → Tf(C ⊗ C(T)) is a continuous affine map such
that α and γ are compatible. Then there is a unital F-ε-multiplicative completely
positive linear map ϕ : C ⊗ C(T)→ B such that

(1) [ϕ] = α and
(2) |τ ◦ ϕ(h)− γ(τ)(h)| < σ for any h ∈ H.

Moreover, if A ∈ B1, β ∈ KKe(C,A)++, γ′ : T (A) → Tf (C) is a continuous
affine map which is compatible with β, and H′ ⊂ Cs.a. is a finite subset, then
there is also a unital homomorphism ψ : C → A such that

[ψ] = β and |τ ◦ ψ(h)− γ′(τ)(h)| < σ for all f ∈ H′.(e 22.14)

Proof. Since K∗(C ⊗ C(T)) is finitely generated and torsion free, by the
UCT, the element α ∈ KK(C ⊗ C(T), A) is determined by the induced maps
α0 ∈ Hom(K0(C ⊗ C(T)),K0(A)) and α1 ∈ Hom(K1(C ⊗ C(T)),K1(A)). We
may assume that projections in Mr(C ⊗ C(T)) (for some fixed integer r > 0)
generate K0(C ⊗ C(T)).

We may also assume that ‖h‖ ≤ 1 for all h ∈ H. Fix a finite generating set
G of K0(C ⊗ C(T)). Since γ(τ) ∈ Tf(C ⊗ C(T)) for all τ ∈ T (B) and τ(B) is

compact, one is able to define ∆ : (C ⊗ C(T))
q,1
+ \ {0} → (0, 1) by

∆(ĥ) =
1

2
inf{γ(τ)(h) : τ ∈ T (B)}.
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Fix a finite generating set G of K0(C ⊗ C(T)). Let H1 ⊂ C ⊗ C(T), δ > 0, and
K ∈ N be the finite subset and the constants of Lemma 16.10 of [21] with respect
to F, H, ε, σ/4 (in place of σ), and ∆.

Since A ∈ B0 and U is of infinite type, for any finite subset G′ ⊂ B and
any ε′ > 0, there are unital G′-ε′-multiplicative completely positive linear maps
L1 : B → (1 − p)B(1 − p) and L2 : B → D ⊗ 1MK

⊂ D ⊗MK ⊂ pBp for a
C*-subalgebra D ∈ C0 with 1D⊗MK

= p such that

(3) ||a− L1(a)⊕ L2(a)|| < ε′ for any a ∈ G′, and
(4) τ((1− p)) < min{ε′, σ/4} for any τ ∈ T (B).

Put S = D ⊗ MK . Since Ki(C ⊗ C(T)) is finite generated, HomΛ(K(C ⊗
C(T)),K(C ⊗ C(T))) is determined on a finitely generated subgroup GK of
K(C ⊗ C(T)) (see Corollary 2.12 of [6]). Choosing G′ large enough and ε′ small
enough, one may assume [L1] and [L2] are well defined on α(GK), and

(e 22.15) α = [L1] ◦ α+ [j] ◦ [L2] ◦ α,

where j : S → A is the embedding. Note that since K1(S) = {0}, one has

α1 = [L1] ◦ α|K1(C⊗C(T)).

Define κ′ = [L2] ◦ α|K0(C⊗C(T)), which is a homomorphism from K0(C ⊗ C(T))
to K0(D ⊗ 1MK

) = K0(D) (here we identify D ⊗ 1MK
with D) which maps

[1C⊗C(T)] to [1D⊗1MK
]. Let {ei,j : 1 ≤ i, j ≤ K} be a system of matrix units

for MK . View ei,j ∈ D⊗MK . Then ei,j commutes with the image of L2. Define
L′2 : B → D ⊗ e1,1 by L′2(a) = e11L2(a)e1,1 for all a ∈ B.

Put κ = [L′2] ◦ α|K0(C⊗C(T)). Put D′ = D ⊗ e1,1.
Choosing G′ larger and ε′ smaller, if necessary, one has a continuous affine

map γ′ : T (D′)→ T (C ⊗ C(T)) such that, for all τ ∈ T (A),

(5) |γ′( 1
τ(e1,1)τ |D′)(f)− γ(τ)(f)| < σ/4 for any f ∈ H,

(6) γ′(τ)(h) > ∆(ĥ) for any h ∈ H1, and
(7) |γ′( 1

τ(e1,1)τ |D′)(p)− τ(κ([p]))| < δ for all projections p ∈Mr(C ⊗ C(T)).

Then it follows from Theorem 16.10 of [21] that there is an F-ε-multiplicative
contractive completely positive linear map ϕ2 : C ⊗ C(T) → MK(D) = S such
that

(ϕ2)∗0 = Kκ = κ′

and
|(1/K)t ◦ ϕ2(h)− γ′(t)(h)| < σ/4, h ∈ H, t ∈ T (D′).

On the other hand, since (1−p)A(1−p) ∈ B0, by Lemma 22.6, there is a unital
F-ε-multiplicative completely positive linear map ϕ1 : C⊗C(T)→ (1−p)A(1−p)
such that

[ϕ1] = [L1] ◦ α in KK(C ⊗ C(T), A).
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Define ϕ = ϕ1⊕j ◦ϕ2 : C⊗C(T)→ (1−p)A(1−p)⊕S ⊂ A. Then, by (e 22.15),
one has

ϕ∗0 = (ϕ1)∗0 + (j ◦ϕ2)∗0 = ([L1] ◦α)|K0(C⊗C(T)) + ([j ◦L2] ◦α)|K0(C⊗C(T)) = α0

and
ϕ∗1 = (ϕ1)∗1 + (j ◦ ϕ2)∗1 = ([L1] ◦ α|K1(C⊗C(T)) = α1.

Hence [ϕ] = α in KK(C ⊗ C(T)).
For any h ∈ H and any τ ∈ T (A), one has (note that ‖h‖ ≤ 1 for all h ∈ H,

and τ(1− p) < δ/4),

|τ ◦ ϕ(h)− γ(τ)(h)|

< |τ ◦ ϕ(h)− τ ◦ j ◦ ϕ2(h)|+ |τ ◦ j ◦ ϕ2(h)− γ(τ)(h)|

< σ/4 + |τ ◦ j ◦ ϕ2(h)− γ′( 1

τ(e1,1)
τ |D′)(h)|+ |γ′( 1

τ(e1,1)
τ |D′)(h)− γ(τ)(h)|

< σ/4 + |τ ◦ j ◦ ϕ2(h)− γ′( 1

τ(p)
τ |S)(h)|+ |γ′( 1

τ(p)
τ |S)(h)− γ(τ)(h)|

< σ/4 + σ/4 + σ/4 < σ,

where we identify T (D′) with T (S) in a standard way for S = D′ ⊗MK . Hence
the map ϕ satisfies the requirements of the lemma.

To see the last part of the lemma holds, we note that, when C ⊗ C(T) is
replaced by C and A is assumed to be in B1, the only difference is that we
cannot use 22.6. But then we can appeal to Theorem 18.7 of [21] to obtain ϕ1.
The semiprojectivity of C allows us actually to obtain a unital homomorphism
(see Corollary 18.9 of [21]). �

Corollary 22.8. Let C ∈ C0. Suppose that A is a unital separable simple
C∗-algebra in B0, B = A ⊗ U for some UHF-algebra of infinite type, α ∈
KKe(C,B)++, and γ : T (B)→ Tf(C)) is a continuous affine map. Suppose that
(α, λ, γ) is a compatible triple. Then there is a unital homomorphism ϕ : C → B
such that

[ϕ] = α and ϕT = γ.

In particular, ϕ is a monomorphism.

Proof. The proof is exactly the same as the argument employed in 22.5 but
using the second part of Lemma 22.7 instead of 22.4. The reason ϕ is a monomor-
phism is because γ(τ) is faithful for each τ ∈ T (A). �

Lemma 22.9. Let C be a unital C*-algebra. Let p ∈ C be a full projection.
Then, for any u ∈ U0(C), there is a unitary v ∈ pCp such that

u = v ⊕ (1− p) in U0(C)/CU(C).
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If, furthermore, C is separable and has stable rank one, then, for any u ∈ U(C),
there is a unitary v ∈ pCp such that

u = v ⊕ (1− p) in U(C)/CU(C).

Proof. It suffices to prove the first part of the statement. This is essentially
contained in the proof of 4.5 and 4.6 of [22]. As in the proof of 4.5 of [22], for
any b ∈ Cs.a., there is c ∈ pCp such that b − c ∈ C0, where C0 is the closed
subspace of As.a. consisting of elements of the form x− y, where x =

∑∞
n=1 c

∗
ncn

and y =
∑∞
n=1 cnc

∗
n (convergence in norm) for some sequence {cn} in C.

Now let u =
∏n
k=1 exp(ibk) for some bk ∈ Cs.a., k = 1, 2, ..., n. Then there are

ck ∈ pCp such that bk−ck ∈ C0, k = 1, 2, ..., n. Put v = p(
∏n
k=1 exp(ick))p. Then

v ∈ U0(pCp) and v + (1− p) =
∏n
k=1 exp(ick). By 3.1 of [52], u∗(v + (1− p)) ∈

CU(C). �

Lemma 22.10. Let D be the family of unital separable residually finite dimen-
sional C∗-algebras and let A be a unital simple separable C∗-algebra which has
the property (LD) (see 9.4 of [21]) and the property (SP). Then A satisfies the
Popa condition: Let ε > 0 and let F ⊂ A be a finite subset. There exists a finite
dimensional C∗-subalgebra F ⊂ A with P = 1F such that

‖[P, x]‖ < ε, PxP ∈ε F and ‖PxP‖ ≥ ‖x‖ − ε(e 22.16)

for all x ∈ F. In particular, if A ∈ B1 and A has the property (SP), then A
satisfies the Popa condition.

Proof. We may assume that F ⊂ A1 and 0 < ε < 1/2. Without loss of
generality, we may assume that

d = min{‖x‖ : x ∈ F} > 0.

Since A has property (LD), there are a projection p ∈ A and a C∗-subalgebra
D ⊂ A with D ∈ D and p = 1D such that

‖px− xp‖ < dε/16, pxp ∈dε/16 D, and ‖pxp‖ ≥ (1− ε/16)‖x‖(e 22.17)

for all x ∈ F (see 9.5 of [21]).
Let F′ ⊂ D be a finite subset such that, for each x ∈ F, there exists x′ ∈

F′ such that ‖pxp − x′‖ < dε/16. Since D ∈ D, there is a unital surjective
homomorphism π : D → D/kerπ such that F1 := D/kerπ is a finite dimensional
C∗-algebra and

‖π(x′)‖ ≥ (1− ε/16)‖x′‖ for all x′ ∈ F′.(e 22.18)

Let B = (kerπ)A(kerπ). B is a hereditary C∗-subalgebra of A. Let C be the
closure of D+B. Note that 1C = 1D = p. As in the proof of 5.2 of [29], B is an
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ideal of C and C/B ∼= D/kerπ = F1. The lemma then follows from Lemma 2.1
of [46]. In fact, since pAp has property (SP), by Lemma 2.1 of [46], there are a
projection P ∈ pAp and a monomorphism h : F1 → PAP such that

h(1F ) = P, ‖Px′ − x′P‖ < ε/16 and(e 22.19)

‖h ◦ π(x′)− Px′P‖ < ε · d/16(e 22.20)

for all x′ ∈ F′. Put F = h(F1). Then, one estimates that, for all x ∈ F,

‖Px− xP‖ ≤ ‖Ppx− Px′‖+ ‖Px′ + x′P‖+ ‖x′P − xpP‖

< ε/16 + ε/16 + ε/16 < ε,

PxP ≈ε/16 Px
′P ∈ε/16 F1, and

‖PxP‖ = ‖PpxpP‖ ≥ ‖Px′P‖ − dε/16 ≥ ‖h ◦ π(x′)‖ − dε/8

= ‖π(x′)‖ − dε/8 ≥ ‖x′‖ − dε/16− dε/8 ≥ ‖pxp‖ − dε/4

≥ (1− ε/16)‖x‖ − dε/4 ≥ ‖x‖ − ε.

�

Lemma 22.11. Let C ∈ C0. Let ε > 0, F ⊂ C be a finite subset, 1 > σ1 > 0,
1 > σ2 > 0, U ⊂ Jc(K1(C ⊗ C(T))) ⊂ U(C ⊗ C(T))/CU(C ⊗ C(T)) be a finite
subset (see Definition 2.16 of [21]) and H ⊂ (C ⊗ C(T))s.a. be a finite subset.
Suppose that A is a unital separable simple C∗-algebra in B0, B = A ⊗ U for
some UHF-algebra U of infinite type, α ∈ KKe(C ⊗C(T), B)++, λ : Jc(K1(C ⊗
C(T)))→ U(B)/CU(B) is a homomorphism, and γ : T (B)→ Tf(C⊗C(T)) is a
continuous affine map. Suppose that (α, λ, γ) is a compatible triple. Then there
is a unital F-ε-multiplicative completely positive linear map ϕ : C ⊗ C(T) → B
such that

(1) [ϕ] = α,
(2) dist(ϕ‡(x), λ(x)) < σ1, for any x ∈ U, and
(3) |τ ◦ ϕ(h)− γ(τ)(h)| < σ2, for any h ∈ H.

Proof. Note that K(C⊗C(T)) is finitely generated modulo Bockstein opera-
tions and K0(C ⊗C(T))+ is a finitely generated semigroup. Using the inductive
limit B = limn→∞(A ⊗ Mrn , ın,n+1), one can find, for n large enough, αn ∈
KKe(C⊗C(T), A⊗Mrn)++ such that α = αn×[ın] where [ın] ∈ KK(A⊗Mrn , B)
is induced by the inclusion ın : A⊗Mrn → B. Replacing A by A⊗Mrn , we may
assume that α = α1× [ı], where α1 ∈ KKe(C⊗C(T), A)++ and ı : A→ A⊗U =
B is the inclusion. Note that λ : Jc(K1(C⊗C(T)))→ U(A⊗U)/CU(A⊗U). By
the same argument as above, we know that if the integer n above is large enough,
then there is a map λn : Jc(K1(C ⊗ C(T)))→ U(A⊗Mrn)/CU(A⊗Mrn) such
that |ı‡n ◦ λn(u)− λ(u)| is arbitrarily small (e.g smaller than σ1/4) for all u ∈ U.
ReplacingA byA⊗Mrn , we may assume λ = ı‡◦λ1 with λ1 : Jc(K1(C⊗C(T)))→
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U(A)/CU(A) and ı‡ : U(A)/CU(A) → U(B)/CU(B) induced by the inclusion
map. Furthermore, we may assume that λ1 is compatible with α1.

Without loss of generality, we may assume that ‖h‖ ≤ 1 for all h ∈ H. Let
pi, qi ∈Mk(C) be projections such that {[p1]− [q1], ..., [pd]− [qd]} forms a set of
independent generators of K0(C) (as an abelian group) for some integer k ≥ 1.
Choosing a specific Jc, one may assume that

U = {((1k − pi) + pi ⊗ z)((1k − qi) + qi ⊗ z∗) : 1 ≤ i ≤ d},

where z ∈ C(T) is the identity function on the unit circle. Put u′i = (1k −
pi) + pi ⊗ z)((1k − qi) + qi ⊗ z∗). Hence, {[u′1], ..., [u′d]} is a set of standard
generators of K1(C ⊗ C(T)) ∼= K0(C) ∼= Zd. Then λ is a homomorphism from
Zd to U(B)/CU(B).

Let πe : C → F1 =
⊕l

i=1Mni be the standard evaluation map defined in
Definition 3.1 of [21]. By Proposition 3.5 of [21], the map (πe)∗0 induces an
embedding of K0(C) in Zl, and the map (πe ⊗ id)∗1 induces an embedding of

K1(C ⊗C(T)) ∼= Zd in K1(
⊕l

i=1Mni ⊗C(T)) ∼= Zl. Define Jc(K1(
⊕l

i=1Mni ⊗
C(T))) to be the subgroup generated by {ei ⊗ zi ⊕ (1− ei); i = 1, ..., l}, where
ei is a rank one projection of Mni and zi is the standard unitary generator of
the i-th copy of C(T). Note that the image of Jc(K1(C ⊗ C(T))) under πe is

contained in Jc(K1(
⊕l

i=1Mni⊗C(T))). Write wj = ej⊗zj⊕ (1−ej), 1 ≤ j ≤ l.
Let U be as in the lemma. We write B = B0 ⊗ U2, and B0 = A ⊗ U1, with

U = U1 ⊗ U2, and both U1 and U2 UHF algebras of infinite type. Denote by
ı1 : A → B0, ı2 : B0 → B, and ı = ı2 ◦ ı1 : A → B the inclusion maps. Recall
α = α1 × [ı] ∈ KK(C,B).

Applying Lemma 22.7, one obtains a unital F′-ε′-multiplicative completely
positive linear map ψ : C ⊗ C(T)→ B0 such that

(e 22.21) [ψ] = α1×[ı1] and

(e 22.22) |τ ◦ ψ(h)− γ(τ)(h)| < min{σ1, σ2}/3

for all h ∈ H, and for all τ ∈ T(B0), where ε/2 > ε′ > 0 and F1 ⊃ F. (Note that
T (B0) = T (A) = T (B), and the map γ : T (B)→ Tf(C ⊗C(T)) can be regarded
as a map with domain T (B0)). We may assume that ε′ is sufficiently small and F1

is sufficiently large that not only (e 22.21) and (e 22.22) make sense but also that
ψ‡ can be defined on Ū, and induces a homomorphism from Jc(K1(C ⊗ C(T)))
to U(B0)/CU(B0) (see 2.17 of [21]).

Let M be the integer of Corollary 15.3 of [21] for K0(C) ⊂ Zl (in place of
G ⊂ Zl).

For any ε′′ > 0 and any finite subset F′′ ⊂ B0, since B0 has the Popa condition
and has the property (SP) (see 22.10), there exist a non-zero projection e ∈ B0

and a unital F′′-ε′′-multiplicative completely positive linear map L0 : B0 →
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F ⊂ eB0e, where F is a finite dimensional and 1F = e, and a unital F′′-ε′′-
multiplicative completely positive linear map L1 : B0 → (1 − e)B0(1 − e) such
that

‖b− ı ◦ L0(b)⊕ L1(b)‖ < ε′′ for all b ∈ F′′,(e 22.23)

‖L0(b)‖ ≥ ‖b‖/2 for all b ∈ F′′, and(e 22.24)

τ(e) < min{σ1/2, σ2/2} for all τ ∈ T (B0),(e 22.25)

where ı : F → eB0e is the embedding and L1(b) = (1− p)b(1− p) for all b ∈ B0.
Since the positive cone of K0(C⊗C(T)) is finitely generated, with sufficiently

small ε′′ and sufficiently large F′′, one may assume that [L0 ◦ ψ]|K0(C⊗C(T)) is

positive. Moreover, one may assume that (L0 ◦ψ)‡ and (L1 ◦ψ)‡ are well defined
and induce homomorphisms from Jc(K1(C ⊗ C(T))) to U(B0)/CU(B0). One
may also assume that [L1 ◦ ψ] is well defined. Moreover, we may assume that
Li ◦ ψ is F-ε-multiplicative for i = 0, 1.

There is a projection Ec ∈ U2 such that Ec is a direct sum of M copies of
some non-zero projections Ec,0 ∈ U2. Put E = 1U2

− Ec.
Define ϕ0 : C ⊗ C(T) → F ⊗ EU2E → eB0e ⊗ EU2E by ϕ0(c) = L0 ◦

ψ(c) ⊗ E(∈ B) for all c ∈ C ⊗ C(T) and define ϕ′1 : C → F ⊗ EcU2Ec by
ϕ′1(c) = L0 ◦ψ(c)⊗Ec for all c ∈ C. Note that ϕ0 is also F-ε-multiplicative and

ϕ‡0 is also well defined as (L0 ◦ ψ)‡ is. Moreover [ϕ′1] is well defined. Define

L2 = ı2◦L1 ◦ ψ + ϕ0 : C ⊗ C(T)→(
(1− e)B0(1− e)⊗ 1U2

)
⊕
(
eB0e⊗ EU2E

)
(⊂ B).

Denote by

λ0 = λ− L‡2 = λ− ϕ‡0 − (ı2◦L1 ◦ ψ)‡ : Jc(K1(C ⊗ C(T)))→ U(B)/CU(B).

Note that L0 factors through the finite dimensional algebra F and therefore
[L0] = 0 on K1(B0). Consequently [ϕ0]|K1(C⊗C(T)) = 0 and [L1 ◦ ψ] = [ı1] ◦ [α1]
on K1(C ⊗ C(T)). Hence, [ı2 ◦L1 ◦ψ] = α on K1. Furthermore, α is compatible
with λ. We know that the image of λ0 is in U0(B)/CU(B).

Note that, by Lemma 11.5 of [21], the group U0(B)/CU(B) is divisible. It is an

injective abelian group. Therefore there is a homomorphism λ̃ : Jc(
⊕l

i=1Mni ⊗
C(T))→ U0(B)/CU(B) such that

(e 22.26) λ̃ ◦ (πe)
‡ = λ0 − L‡2.

Let β = [L0 ◦ ψ]|K0(C): K0(C)→K0(F ) = Zn. Let R0 ≥ 1 be the integer given
by Corollary 15.3 of [21] for β : K0(C)→ Zn (in place of κ : G→ Zn; note that
that [Ec] is divisible by M implies that every element in β(K0(C)) is divisible by
M). There is a unital C∗-subalgebra MMK ⊂ EcU2Ec such that K ≥ R0 and
such that EcU2Ec can be written as MMK ⊗ U3. It follows from Corollary 15.3
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of [21] that there is a positive homomorphism β1 : K0(F1) → K0(F ) such that
β1 ◦ (πe)∗0 = MKβ. Let h : F1 → F ⊗MMK be the unital homomorphism such
that h∗0 = β1. Put ϕ′′1 = h ◦ πe: C → F ⊗MMK , and then one has (ϕ′′1)∗0 =
MKβ. Let J : MMK → EcU2Ec be the embedding. One verifies that

(ıF ⊗ J)∗0 ◦ (ϕ′′1)∗0 = (ıF ⊗ J)∗0 ◦MKβ = ı̃∗0 ◦ (ϕ′1)∗0,(e 22.27)

where ıF : F → eB0e and ı̃ : F ⊗ EcU2Ec → eB0e ⊗ EcU2Ec is the unital
embedding.

Choose a unitary yi ∈ (ıF ⊗ J ◦ h)(ej)B(ıF ⊗ J ◦ h)(ej) such that

ȳj = λ̃(wj), j = 1, 2, ..., l,

where we recall that wj = ej ⊗ zj ⊕ (1− ej) ∈ F1⊗C(T) = ⊕jMnj ⊗C(T) is one
of the chosen generator of K1(Mnj ⊗ C(T)). Let 1j be the unit of Mnj ⊂ F1;
then 1j = ej ⊕ ej ⊕ · · · ⊕ ej︸ ︷︷ ︸

nj

.

Define ỹj = diag(

nj︷ ︸︸ ︷
yj , yj , ..., yj)∈ (ıF ⊗ J ◦ h)(1j)B(ıF ⊗ J ◦ h)(1j), j = 1, 2, ..., l.

Then ỹj commutes with (ıF ⊗ J)(F1).
Define ϕ̃1 : F1 ⊗ C(T)→

(
(ıF ⊗ J) ◦ ϕ′′1

)
(1C)B

(
(ıF ⊗ J) ◦ ϕ′′1

)
(1C) by

ϕ̃1(cj ⊗ f) =
(
(ıF ⊗ J) ◦ ϕ′′1

)
(cj)f(ỹj) for all cj ∈ Mnj and f ∈ C(T). Define

ϕ1 = ϕ̃1 ◦ (πe⊗ idC(T)). Then, by identifying K0(C⊗C(T)) with K0(C), one has

(e 22.28) (ϕ1)∗0 = ı̃∗0 ◦ (ϕ′1)∗0 and (ϕ1)‡ = λ̃.

Define ϕ = ϕ0 ⊕ ϕ1 ⊕ ı2◦L1 ◦ ψ. By (e 22.22) and (e 22.25),

|τ ◦ ϕ(h)− γ(τ)(h)| < σ2/3 + σ2/3 = 2σ2/3 for all h ∈ H.

It is ready to verify that ϕ∗0 = α|K0(C⊗C(T)) and ϕ‡ = λ. Thus, since λ is
compatible with α,

ϕ∗1 = α|K1(C⊗C(T )).(e 22.29)

Since K∗i(C ⊗C(T)) ∼= K0(C) is free and finitely generated, one concludes that

[ϕ] = α.

�

Corollary 22.12. Let C ∈ C0 and C1 = C ⊗ C(T). Suppose that A is a
unital separable simple C∗-algebra in B0, B = A ⊗ U for some UHF-algebra
U of infinite type, α ∈ KKe(C1, B)++, λ : Jc(K1(C)) → U(B)/CU(B) is a
homomorphism, and γ : T (B) → Tf (C1)) is a continuous affine map. Suppose
that (α, λ, γ) is a compatible triple. Then there is a unital homomorphism ϕ :
C1 → B such that

[ϕ] = α, ϕ‡|Jc(K1(C)) = λ and ϕT = γ.

In particular, ϕ is a monomorphism.
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Proof. The proof is exactly the same as the argument employed in 22.5 using
22.11. �

Corollary 22.13. Let C ∈ C0 and let C1 = C or C1 = C ⊗ C(T). Suppose
that A is a unital separable simple C∗-algebra in B0, B = A ⊗ U for some
UHF-algebra of infinite type, α ∈ KKe(C1, B)++, and γ : T (B) → Tf (C1) is a
continuous affine map. Suppose that (α, γ) is compatible. Then there is a unital
homomorphism ϕ : C1 → B such that

[ϕ] = α and ϕT = γ.

In particular, ϕ is a monomorphism.

Proof. To apply 22.12, one needs a map λ. Note that Jc(K1(C1)) is isomor-

phic to K1(C1) which is finitely generated. Let J
(1)
c : K1(B)→ U(B)/CU(B) be

the splitting map defined in Definition 2.16 of [21], Define λ = J
(1)
c ◦ α|K1(C1) ◦

π|Jc(K1(C1)), where π : U(M2(C1))/CU(M2(C1))→ K1(C1) is the quotient map
(note that C has stable rank one and C1 = C⊗C(T) has stable rank two). Then
(α, λ, γ) is compatible. The corollary then follows from the previous one. �

Lemma 22.14. Let B ∈ B1 be an amenable C∗-algebra which satisfies the UCT,
let A1 ∈ B0, let C = B ⊗ U1, and let A = A1 ⊗ U2, where U1 and U2 are UHF-
algebras of infinite type. Suppose that κ ∈ KLe(C,A)++, γ : T (A) → T (C) is
a continuous affine map and α : U(C)/CU(C)→ U(A)/CU(A) is a continuous
homomorphism for which γ, α, and κ are compatible. Then there exists a unital
monomorphism ϕ : C → A such that

(1) [ϕ] = κ in KLe(C,A)++,
(2) ϕT = γ and ϕ‡ = α.

Proof. The proof follows the same lines as that of Lemma 8.5 of [40]. By
Theorem 9.11 of [21], every C∗-algebra B ∈ B1 has weakly unperforated K0(A).
Then, by Corollary 19.3 of [21], B ⊗ U1 ∈ B0. By the classification theorem
(Theorem 21.9 and Theorem 14.10 of [21]), one can write

C = lim
−→

(Cn, ϕn,n+1)

where Cn is a direct sum of C∗-algebras in C0 or in H. Let κn = κ ◦ [ϕn,∞],
αn = α ◦ ϕ‡n,∞, and γn = (ϕn,∞)T ◦ γ. Write Cn = C1

n ⊕ C2
n with C1

n ∈ H and
C2
n ∈ C0. By Corollary 22.5 applying to C1

n and Corollary 22.12 applying to to
C2
n, there are unital monomorphisms ψn : Cn → A such that

[ψn] = κn ψ‡n = αn, and (ψn)T = γn.

(Note that K1(C2
n) = 0, Consequently, (ψn|C2

n
)T = (ıC2

n,Cn
)T ◦ γn implies

(ψn|C2
n
)‡ = αn|U(C2

n)/CU(C2
n).) In particular, the sequence of monomorphisms

ψn satisfies

[ψn+1◦ϕn,n+1] = [ψn], ψ‡n+1◦ϕn,n+1 = ψ‡n, and (ψn+1◦ϕn,n+1)T = (ψn)T .
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Let Fn ⊂ Cn be a finite subset such that ϕn,n+1(Fn) ⊂ Fn+1 and
⋃
ϕn,∞(Fn)

is dense in C. Applying Theorem 12.7 of [21] with ∆(h) = inf{γ(τ)(ϕn,∞(h)) :
τ ∈ T (A)}, h ∈ C+

n \ {0}, we have a sequence of unitaries un ∈ A such that

Adun+1 ◦ ψn+1 ◦ ϕn,n+1 ≈1/2n Adun ◦ ψn on Fn.

The maps {Adun ◦ψn : n = 1, 2, ...} then converge to a unital homomorphism
ϕ : C → A which satisfies the lemma. �

Remark 22.15. In the first few lines of the proof of Lemma 22.14, we recall
that, if B ∈ B1 is a unital separable simple C∗-algebra with the UCT. Then
C := B⊗U1 (for any infinite dimensional UHF-algebra U1) is an inductive limit
of C∗-algebras Cn, where Cn is a finite direct sum of C∗-algebras in C0 or in H.
This important fact which proved in the first part of this research ([21]) will be
used frequently in the rest of the paper.

Theorem 22.16. Let X be a finite CW complex and let C = PMn(C(X))P,
where n ≥ 1 is an integer and P ∈Mn(C(X)) is a projection. Let A1 ∈ B0 and
let A = A1⊗U for a UHF-algebra U of infinite type. Suppose α ∈ KLe(C,A)++,
λ : U∞(C)/CU∞(C) → U(A)/CU(A) is a continuous homomorphism, and γ :
T (A)→ Tf (C) is a continuous affine map such that (α, λ, γ) is compatible. Then
there exists a unital homomorphism h : C → A such that

[h] = α, h‡ = λ and hT = γ.(e 22.30)

Proof. The proof is similar to that of 6.6 of [40]. To simplify the notation,
without loss of generality, let us assume that X is connected. Furthermore,
a standard argument shows that the general case can be reduced to the case
C = C(X). We may assume that U(MN (C))/U0(MN (C)) = K1(C) for some
integer N (see [48]). Therefore, in this case,

U(MN (C))/CU(MN (C)) = U∞(C)/CU∞(C).

Write K1(C) = G1 ⊕ Tor(K1(C)), where G1 is the torsion free part of K1(C).
Fix a point ξ ∈ X and let C0 = C0(X \ {ξ}). Note that C0 is an ideal of C and
C/C0

∼= C. Write

K0(C) = Z · [1C ]⊕K0(C0).(e 22.31)

Let B ∈ B0 be a unital separable simple C∗-algebra as constructed in Corollary
14.14 of [21] such that

(K0(B),K0(B)+, [1B ], T (B), rB)(e 22.32)

= (K0(A),K0(A)+, [1A], T (A), rA)
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and K1(B) = G1⊕Tor(K1(A)). Put

∆(ĝ) = inf{γ(τ)(g) : τ ∈ T (A)}.(e 22.33)

For each g ∈ C+ \{0}, since γ(τ) ∈ Tf (C), γ is continuous and T (A) is compact,
∆(ĝ) > 0.

Let ε > 0, F ⊂ C be a finite subset, 1 > σ1, σ2 > 0, H ⊂ Cs.a. be a finite
subset, and U ⊂ U(MN (C))/CU(MN (C)) be a finite subset. Without loss of gen-
erality, we may assume that U = U0∪U1, where U0 ⊂ U0(MN (C))/CU(MN (C))
and U1 ⊂ Jc(K1(C)) ⊂ U(MN (C))/CU(MN (C)).

For each u ∈ U0, write u =
∏n(u)
j=1 exp(

√
−1ai(u)), where ai(u) ∈ MN (C)s.a..

Write

ai(u) = (a
(k,j)
i (u))N×N , i = 1, 2, ..., n(u).(e 22.34)

Write

ci,k,j(u) =
a

(k,j)
i (u) + (a

(k,j)
i )∗

2
and di,k,j =

a
(k,j)
i (u)− (a

(k,j)
i )∗

2i
.

Put

M = max{‖c‖, ‖ci,k,j(u)‖, ‖di,k,j(u)‖ : c ∈ H, u ∈ U0}.(e 22.35)

Choose a non-zero projection e ∈ B such that

τ(e) <
min{σ1, σ2}

16N2(M + 1) max{n(u) : u ∈ U0}
for all τ ∈ T (B).

Let B2 = (1− e)B(1− e).
In what follows we will use the identification (e 22.32). Define

κ0 ∈ Hom(K0(C),K0(B2)) as follows. Define κ0(m[1C ]) = m[1 − e] for m ∈ Z
and κ0|K0(C0) = α|K0(C0). Note that K1(B) = G1 ⊕ Tor(K1(A)) and that α
induces a map α|Tor(K1(C)) : Tor(K1(C)) → Tor(K1(A)). Using the given de-
composition K1(C) = G1 ⊕ Tor(K1(C), we can define κ1 : K1(C) → K1(B) by
κ1|G1

= id and κ1|Tor(K1(C)) = [α]|Tor(K1(C)).
By the Universal Coefficient Theorem, there is κ ∈ KL(C,B2) which gives

rise to the two homomorphisms κ0, κ1 above. Note that κ ∈ KLe(C,B2)++,
since K0(C0) = kerρC(K0(C)). Choose

H1 = H ∪ {ci,k,j(u), di,k,j(u) : u ∈ U0}.

Every tracial state τ ′ of B2 has the form τ ′(b) = τ(b)/τ(1−e) for all b ∈ B2 for
some τ ∈ T (B). Let γ′ : T (B2) → T (C) be defined as follows. For τ ′ ∈ T (B2)
as above, define γ′(τ ′)(f) = γ(τ)(f) for f ∈ C.
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It follows from 22.3 that there exists a sequence of unital completely positive
linear maps hn : C → B2 such that

lim
n→∞

‖hn(ab)− hn(a)hn(b)‖ = 0 for all a, b ∈ C,

[hn] = κ (K∗(C) is finitely generated ), and

lim
n→∞

max{|τ ◦ hn(c)− γ′(τ)(c)| : τ ∈ T (B2)} = 0 for all c ∈ C.

Here we may assume that [hn] is well defined for all n and

|τ ◦ hn(c)− γ(τ)(c)| < min{σ1, σ2}
8N2

, n = 1, 2, ...(e 22.36)

for all c ∈ H1 and for all τ ∈ T (B2). Choose θ ∈ KL(B,A) such that it gives
the identification of (e 22.32), and, θ|G1

= α|G1
and θ|Tor(K1(A)) = idTor(K1(A)).

Let e′ ∈ A be a projection such that [e′] ∈ K0(A) corresponds to [e] ∈ K0(B)
under the identification (e 22.32). Let β = α− θ ◦ κ. Then

β([1C ]) = [e′], βK0(C0) = 0, and βK1(C) = 0.(e 22.37)

Then β ∈ KLe(C, e
′Ae′). It follows from 22.3 that there exists a sequence of

unital completely positive linear maps ϕ0,n : C → e′Ae′ such that

lim
n→∞

‖ϕ0,n(ab)− ϕ0,n(a)ϕ0,n(b)‖ = 0 and [ϕ0,n] = β.(e 22.38)

Note that, for each u ∈ U(MN (C)) with ū ∈ U0,

DC(u) =

n(u)∑
i=1

âj(u),(e 22.39)

where ĉ(τ) = τ(c) for all c ∈ Cs.a. and τ ∈ T (C). Since κ and λ are compatible,
we compute, for ū ∈ U0,

dist((hn)‡(ū), λ(ū)) < σ2/8.(e 22.40)

Fix a pair of large integers n,m, and define χn,m : Jc(G1)(⊂ U(C)/CU(C)) →
Aff(T (A))/ρA(K0(A)) to be

λ|Jc(G1) − (hn)‡|Jc(G1) − ϕ‡0,m|Jc(G1).(e 22.41)

We may may also view Jc(G1) as subgroup of Jc(K1(B))= Jc(K1(B2)). Write
Jc(K1(B)) = Jc(G1)⊕Jc(Tor(K1(B2))) and define χn,m to be zero on Tor(K1(B2)),

we obtain a homomorphism χn,m : Jc(K1(B2)) → Aff(T (A))/ρA(K0(A)). It
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follows from Lemma 22.14 that there is a unital homomorphism ψ : B2 →
(1− e′)A(1− e′) such that

[ψ] = θ, ψT = idT (A) and(e 22.42)

ψ‡|Jc(K1(B2)) = χn,m|Jc(K1(B2)) + Jc ◦ θ|K1(B2),(e 22.43)

where we identify K1(B2) with K1(B). By (e 22.42),

ψ‡|
Aff(T (B2))/ρB2

(K0(B2))
= id.(e 22.44)

Define L(c) = ϕ0,m(c)⊕ψ◦hn(c) for all c ∈ C. It follows, on choosing sufficiently
large m and n, that L is ε-F-multiplicative,

[L] = α,(e 22.45)

max{|τ ◦ ψ(f)− γ(τ)(f)| : τ ∈ T (A)} < σ1 for all f ∈ H, and(e 22.46)

dist(L‡(ū), λ(ū)) < σ2.(e 22.47)

This implies that that there is a sequence of contractive completely positive
linear maps ψn : C → A such that

lim
n→∞

‖ψn(ab)− ψn(a)ψn(b)‖ = 0 for all a, b ∈ C,(e 22.48)

[ψn] = α,(e 22.49)

lim
n→∞

max{|τ ◦ ψn(c)− γ(τ)(c)| : τ ∈ T (A1)} = 0(e 22.50)

for all c ∈ Cs.a., and

lim
n→∞

dist(ψ‡n(ū), λ(ū)) = 0 for all u ∈ U(MN (C))/CU(MN (C)).(e 22.51)

Finally, applying Theorem 12.7 of [21], as in the proof of 22.5, using ∆/2 above,
we obtain a unital homomorphism h : C → A such that

[h] = α, hT = γ, and h‡ = λ,(e 22.52)

as desired. �

Theorem 22.17. Let C ∈ C0 and let G = K0(C). Write G = Zk with Zk
generated by

{x1 = [p1]− [q1], x2 = [p2]− [q2], ..., xk = [pk]− [qk]},

where pi, qi ∈Mn(C) (for some integer n ≥ 1) are projections, i = 1, ..., k.
Let A be a simple C*-algebra in B0, and let B = A⊗U for a UHF algebra U of

infinite type. Suppose that ϕ : C → B is a monomorphism. Then, for any finite
subsets F ⊂ C and P ⊂ K(C), any ε > 0 and σ > 0, and any homomorphism

Γ : Zk → U0(B)/CU(B),

there is a unitary w ∈ B such that
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(1) ‖[ϕ(f), w]‖ < ε, for any f ∈ F,
(2) Bott(ϕ,w)|P = 0, and
(3) dist(〈((1n − ϕ(pi)) + ϕ(pi)w̃)((1n − ϕ(qi)) + ϕ(qi)w̃∗)〉,Γ(xi))) < σ, for any

1 ≤ i ≤ k, where w̃ = diag(

n︷ ︸︸ ︷
w, ..., w).

Proof. Write B = limn→∞(A ⊗ Mrn , ın,n+1). Using the fact that C is
semiprojective (see [9]), one can construct a sequence of homomorphisms ϕn :
C → A⊗Mrn such that ın ◦ ϕn(c)→ ϕ(c) for all c ∈ C. Without loss of gener-
ality, we may assume ϕ = ı ◦ ϕ1 for a homomorphism ϕ1 : C → A (replacing A
by A⊗Mrn), where ı : A→ A⊗ U = B is the standard inclusion.

We may assume that ||f || ≤ 1 for any f ∈ F.
For any non-zero positive element h ∈ C with norm at most 1, define

∆(h) = inf{τ(ϕ(h)); τ ∈ T (B)}.

Since B is simple, one has that ∆(h) ∈ (0, 1).
Let H1 ⊂ C1

+ \ {0}, G ⊂ C, δ > 0, P ⊂ K(C), H2 ⊂ Cs.a., and γ1 > 0 be the
finite subsets and constants of Theorem 12.7 of [21] with respect to C, F, ε/2,
and ∆/2 (since K1(C) = {0}, one does not need U and γ2).

Note that B = A⊗ U. Pick a unitary z ∈ U with sp(u) = T and consider the
homomorphism ϕ′ : C ⊗ C(T)→ B = A⊗ U defined by

a⊗ f 7→ ϕ1(a)⊗ f(z).

(Recall that ϕ(a) = ϕ1(a)⊗ 1U .) Set

γ = (ϕ′)T : T (B)→ Tf(C ⊗ C(T)).

Also define
α := [ϕ′] ∈ KK(C ⊗ C(T), B).

Note that K1(C ⊗C(T)) = K0(C) = Zk. Identifying Jc(K1(C ⊗C(T))) with
Zk, define a map λ : Jc(K1(U(C ⊗C(T))))→ U0(B)/CU(B) by λ(a) = Γ(a) for
any a ∈ Zk.

Set

U = {(1n − pi + piz̃′)(1n − qi + qiz̃′
∗
) : i = 1, ..., k} ⊂ Jc(U(C ⊗ C(T))),

where z′ is the standard generator of C(T), and set

δ = min{∆(h)/4 : h ∈ H1}.

Applying Lemma 22.11, one obtains a F-ε/4-multiplicative map Φ : C⊗C(T)→
B such that

[Φ] = α, dist(Φ‡(x), λ(x)) < σ for all x ∈ U, and(e 22.53)

|τ ◦ Φ(h⊗ 1)− γ(τ)(h⊗ 1)| < min{γ1, δ} for all h ∈ H1 ∪H2.(e 22.54)
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Let ψ denote the restriction of Φ to C ⊗ 1. Then one has

[ψ]|P = [ϕ]|P.

By (e 22.54), one has that, for any h ∈ H1,

τ(ψ(h)) > γ(τ)(h)− δ = τ(ϕ′(h⊗ 1))− δ = τ(ϕ(h))− δ > ∆(h)/2,

and it is also clear that

τ(ϕ(h)) > ∆(h)/2 for all h ∈ H1.

Moreover, for any h ∈ H2, one has

|τ ◦ ψ(h)− τ ◦ ϕ(h)| = |τ ◦ Φ(h⊗ 1)− τ ◦ ϕ′(h⊗ 1)|

= |τ ◦ Φ(h⊗ 1)− γ(τ)(h⊗ 1)| < γ1.

Therefore, by Theorem 12.7 of [21], there is a unitary W ∈ B such that

||W ∗ψ(f)W − ϕ(f)|| < ε/2 for all f ∈ F.

Then the element
w = W ∗Φ(1⊗ z′)W

is the desired unitary. �

Theorem 22.18. Let C be a unital C∗-algebra which is a finite direct sum of
C∗-algebras in C0 and C∗-algebras of the form PMn(C(X))P, where X is a finite
CW complex and P is a projection, and let G = K0(C). Write G = Zk

⊕
Tor(G)

with a basis for Zk the set

{x1 = [p1]− [q1], x2 = [p2]− [q2], ..., xk = [pk]− [qk]},

where pi, qi ∈Mn(C) (for some integer n ≥ 1) are projections, i = 1, ..., k.
Let A be a simple C*-algebra in the class B0, and let B = A⊗ U for a UHF

algebra U of infinite type. Suppose that ϕ : C → B is a monomorphism. Then,
for any finite subsets F ⊂ C and P ⊂ K(C), any ε > 0 and σ > 0, and any
homomorphism

Γ : Zk → U0(Mn(B))/CU(Mn(B)),

there is a unitary w ∈ B such that

(1) ‖[ϕ(f), w]‖ < ε, for any f ∈ F,
(2) Bott(ϕ,w)|P = 0, and
(3) dist(〈((1n − ϕ(pi)) + ϕ(pi)w̃)((1n − ϕ(qi)) + ϕ(qi)w̃∗)〉,Γ(xi))) < σ, for any

1 ≤ i ≤ k, where w̃ = diag(

n︷ ︸︸ ︷
w, ..., w).

Proof. By Theorem 22.17, it suffices to prove the case that C = PMn(C(X))P,
where X is a finite CW complex, n ≥ 1 is an integer, and P ∈ Mn(C(X)) is a
projection. The proof follows the same lines as that of Theorem 22.17 but using
Lemma 22.16 instead of Lemma 22.11. �
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23. A Pair of Almost Commuting Unitaries

Lemma 23.1. Let C ∈ C. There exists a constant MC > 0 satisfying the follow-
ing condition: For any ε > 0, any x ∈ K0(C), and any n ≥MC/ε, if

|ρC(x)(τ)| < ε for all τ ∈ T (C ⊗Mn),(e 23.1)

then there are mutually inequivalent and mutually orthogonal minimal projec-
tions p1, p2, ..., pk1 and q1, q2, ..., qk2 in C⊗Mn and positive integers l1, l2, ..., lk1 ,
m1,m2, ...,mk2 such that

x = [

k1∑
i=1

lipi]− [

k2∑
j=1

mjqj ] and(e 23.2)

τ(

k1∑
i=1

lipi) < 4ε and τ(

k2∑
j=1

mjqj) < 4ε(e 23.3)

for all τ ∈ T (C ⊗Mn).

Proof. Let C = C(F1, F2, ϕ1, ϕ2) and F1 =
⊕l

i=1Mr(i). By Theorem 3.15 of
[21], there are only finitely many mutually inequivalent minimal projections in
C ⊗ K. We can choose N(C) > 0 such that this set of mutually inequivalent
projections is sitting in MN(C)(C), orthogonally. Then every projection in C⊗K
is equivalent to a finite direct sum of projections from this set of finitely many
mutually inequivalent minimal projections (some of them may repeat in the
direct sum). We also assume that, as in Definition 3.1 of [21], C is minimal. Let

MC = N(C) + 2(r(1) · r(2) · · · r(l))

Suppose that n ≥MC/ε. With the canonical embedding of K0(C) into K0(F1) ∼=
Zl, write

x =


x1

x2

...
xl

 ∈ Zl.(e 23.4)

By (e 23.1), for any irreducible representation π of C and any tracial state t on
Mn(π(C)),

|t ◦ π(x)| < ε.(e 23.5)

It follows that

|xs|/r(s)n < ε, s = 1, 2, ..., l.(e 23.6)
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Let

T = max{|xs|/r(s) : 1 ≤ s ≤ l}.(e 23.7)

Define

y = x+ T


r(1)
r(2)

...
r(l)

 and z = T


r(1)
r(2)

...
r(l)

 .(e 23.8)

It is clear that z ∈ K0(C)+ (see Proposition 3.5 of [21]). It follows that y ∈
K0(C). One also computes that y ∈ K0(C)+. It follows that there are projections
p, q ∈ ML(C) for some integer L ≥ 1 such that [p] = y and [q] = z. Moreover,
x = [p]− [q]. One also computes that

τ(q) < T/n < ε for all τ ∈ T (C ⊗Mn).(e 23.9)

One also has

τ(p) < 2ε for all τ ∈ T (C ⊗Mn).(e 23.10)

There are two sets of mutually inequivalent and mutually orthogonal minimal
projections {p1, p2, ..., pk1} and {q1, q2, ..., qk2} in C⊗Mn (since n > N(C)) such
that

[p] =

k1∑
i=1

li[pi] and [q] =

k2∑
j=1

mj [qj ].(e 23.11)

Therefore

x =

k1∑
i=1

li[pi]−
k2∑
j=1

mj [qj ].(e 23.12)

�

Lemma 23.2. Let C ∈ C. There is an integer MC > 0 satisfying the following
condition: For any ε > 0 and for any x ∈ K0(C) with

|τ(ρC(x))| < ε/24π

for all τ ∈ T (C ⊗Mn), where n ≥ 2MCπ/ε, there exists a pair of unitaries u
and v ∈ C ⊗Mn such that

‖uv − vu‖ < ε and τ(bott1(u, v)) = τ(x).(e 23.13)
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Proof. We may assume that C is minimal. Applying Lemma 23.1, we obtain
mutually orthogonal and mutually inequivalent minimal projections p1, p2, ..., pk1 ,
q1, q2, ..., qk2 ∈ C ⊗Mn such that

k1∑
i=1

li[pi]−
k2∑
j=1

mj [qj ] = x,

where l1, l2, ..., lk1 , m1,m2, ...,mk2 are positive integers. Moreover,

k1∑
i=1

liτ(pi) < ε/6π and

k2∑
j=1

mjτ(qj) < ε/6π(e 23.14)

for all τ ∈ T (C ⊗Mn). Choose N ≤ n such that N = [2π/ε] + 1. By (e 23.14),

k1∑
i=1

Nliτ(pi) +

k2∑
j=1

Nmjτ(qj) < 1/2 for all τ ∈ T (C ⊗Mn).(e 23.15)

It follows that there are mutually orthogonal projections di,k, d
′
j,k∈ C ⊗Mn, k =

1, 2, ..., N, i = 1, 2, ..., k1, and j = 1, 2, ..., k2 such that

[di,k] = li[pi] and [d′j,k] = mj [qj ],(e 23.16)

i = 1, 2, ..., k1, j = 1, 2, ..., k2 and k = 1, 2, ..., N. Let Di =
∑N
k=1 di,k and D′j =∑N

k=1 d
′
j,k, i = 1, 2, ..., k1 and j = 1, 2, ..., k2. There are partial isometries si,k, s

′
j,k ∈

C ⊗Mn such that

s∗i,kdi,ksi,k = di,k+1, (s′j,k)∗d′j,ks
′
j,k = d′j,k+1, k = 1, 2, ..., N − 1,(e 23.17)

s∗i,Ndi,Nsi,N = di,1, and (s′j,N )∗d′j,Ns
′
j,N = d′j,1,(e 23.18)

i = 1, 2, ..., k1 and j = 1, 2, ..., k2. Thus, we obtain unitaries ui ∈ Di(C ⊗Mn)Di

and u′j = D′j(C ⊗Mn)D′j such that

u∗i di,kui = di,k+1, u
∗
i di,Nui = di,1,(e 23.19)

(u′j)
∗d′j,ku

′
j = d′j,k+1, and (u′j)

∗d′j,Nu
′
j = d′j,1,

i = 1, 2, ..., k1, j = 1, 2, ..., k2. Define

vi =

N∑
k=1

e
√
−1(2kπ/N)di,k and v′j =

N∑
k=1

e
√
−1(2kπ/N)d′j,k.
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We compute that

‖uivi − viui‖ < ε and ‖u′jv′j − v′ju′j‖ < ε,(e 23.20)

1

2π
√
−1

τ(log viuiv
∗
i u
∗
i ) = liτ(pi), and(e 23.21)

1

2π
√
−1

τ(log v′ju
′
j(v
′
j)
∗(u′j)

∗) = mjτ(qj),(e 23.22)

for τ ∈ T (C ⊗Mn), i = 1, 2, ..., k1 and j = 1, 2, ..., k2. Now define

u =

k1∑
i=1

ui +

k2∑
j=1

u′j + (1C⊗Mn
−

k1∑
i=1

Di −
k2∑
j=1

D′j) and(e 23.23)

v =

k1∑
i=1

vi +

k2∑
j=1

(v′j)
∗ + (1C⊗Mn

−
k1∑
i=1

Di −
k2∑
j=1

D′j).(e 23.24)

We then compute that

τ(bott1(u, v)) =

k1∑
i=1

1

2π
√
−1

τ(log(viuiv
∗
i u
∗
i ))

−
k2∑
j=1

1

2π
√
−1

τ(log v′ju
′
j(v
′
j)
∗(u′j)

∗)

=

k1∑
i=1

liτ(pi)−
k2∑
j=1

mjτ(qj) = τ(x)

for all τ ∈ T (C ⊗Mn). �

Lemma 23.3. Let ε > 0. There exists σ > 0 satisfying the following condition:
Let A = A1 ⊗ U, where U is a UHF-algebra of infinite type and A1 ∈ B0, let
u ∈ U(A) be a unitary with sp(u) = T, and let x ∈ K0(A) with |τ(ρA(x))| < σ
for all τ ∈ T (A) and y ∈ K1(A). Then there exists a unitary v ∈ U(A) such that

‖uv − vu‖ < ε, bott1(u, v) = x, and [v] = y.(e 23.25)

Proof. Let ϕ0 : C(T)→ A be the unital monomorphism defined by ϕ0(f) =

f(u) for all f ∈ C(T). Let ∆0 : C(T)q,1+ \ {0} → (0, 1) be defined by ∆0(f̂) =
inf{τ(ϕ0(f)) : τ ∈ T (A)}. Let ε > 0 be given. Choose 0 < ε1 < ε such that

bott1(z1, z2) = bott1(z′1, z
′
2)

for any two pairs of unitaries z1, z2 and z′1, z
′
2 satisfying the conditions ‖z1−z′1‖ <

ε1, ‖z2 − z′2‖ < ε1, ‖z1z2 − z2z1‖ < ε1 and ‖z′1z′2 − z′2z′1‖ < ε1.



480 Guihua Gong, Huaxin Lin and Zhuang Niu

Let H1 ⊂ C(T)1+ \ {0} be a finite subset, γ1 > 0, γ2 > 0, and H2 ⊂ C(T)s.a.
be a finite subset as provided by Corollary 12.9 of [21] (for ε1/4 and ∆0/2). We
may assume that H2 ⊂ C(T)1.

Let
δ1 = min{γ1/16, γ2/16,min{∆0(f̂) : f ∈ H1}/4}.

Let σ = min{δ1/16, (δ1/16)(ε1/32π)}.
Let e ∈ 1 ⊗ U ⊂ A be a non-zero projection such that τ(e) < σ for all

τ ∈ T (A). Let B = eAe (then B ∼= A ⊗ U ′ for some UHF-algebra U ′). It
follows from Corollary 18.10 of [21] that there is a unital simple C∗-algebra
C ′ = limn→∞(Cn, ψn), where Cn ∈ C0 and C = C ′ ⊗ U such that

(K0(C),K0(C)+, [1C ], T (C), rC) = (ρA(K0(A)), (ρA(K0(A)))+, ρA([e]), T (eAe), rA).

Moreover, we may assume that all ψn are unital.
Now suppose that x ∈ K0(A) with |τ(ρA(x))| < σ for all τ ∈ T (A) and

suppose that y ∈ K1(A). Let z = ρA(x)∈ K0(C). We identify z with the el-
ement in K0(C) in the identification above. We claim that, there is n0 ≥ 1
such that there is x′ ∈ K0(Cn0

⊗ U) such that z = (ψn0,∞)∗0(x′)∈ K0(C) and
|t(ρCn0⊗U )(x′)| < σ for all t ∈ T (Cn0

⊗ U).
Otherwise, there is an increasing sequence nk, xk ∈ K0(Cnk ⊗ U) such that

(ψnk,∞)∗0(xk) = z ∈ K0(C) and |tk(ρCnk⊗U )(xk)| ≥ σ(e 23.26)

for some tk ∈ T (Cnk ⊗ U), k = 1, 2, .... Let Lk : C → Cnk ⊗ U be such that

lim
n→∞

‖ψn,∞ ◦ Ln(c)− c‖ = 0

for all c ∈ ψk,∞(Cnk ⊗ U), k = 1, 2, .... It follows that any limit point of tk ◦ Lk
is a tracial state of C. Let t0 be one such limit. Then, by (e 23.26),

t0(ρC(z)) ≥ σ.

This proves the claim.
Write U = limn→∞(Mr(m), ım), where ım : Mr(m) → Mr(m+1) is a unital

embedding. Repeating the argument above, we obtainm0 ≥ 1 and y′ ∈ K0(Cn0⊗
Mr(m0)) = K0(Cn0

) such that (ım0,∞)∗0(y′) = x′ and |t(ρCn0
(y′))| < σ for all

t ∈ T (Cn0
⊗Mr(m0)). Let MCN0

be the constant given by Lemma 23.2. Choose
r(m1) ≥ max{48MCn0

/σ, r(m0)} and let y′′ = (ım0,m1
)∗0(y′). Then, we compute

that
|t(ρCn0

(y′′))| < σ for all t ∈ T (Cn0 ⊗Mr(m1)).

It follows from 23.2 that there exists a pair of unitaries u′1, v
′
1 ∈ Cn0

⊗Mr(m1)

such that

‖u′1v′1 − v′1u′1‖ < ε1/4 and bott1(u′1, v
′
1) = y′′.(e 23.27)
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Put u1 = ım1,∞(u′1) and v1 = ım1,∞(v′1). Then (e 23.27) implies that

‖u1v1 − v1u1‖ < ε1/4 and bott1(u1, v1) = x′.(e 23.28)

Let h0 : Cn0
⊗U →M2(eAe) be a homomorphism as given by Corollary 18.10

of [21] such that

ρA ◦ (h0)∗0 = (ψn0,∞)∗0.(e 23.29)

Then the projection e′ = h0(1Cn0⊗U ) satisfies ρA(e′) = ρA(e). Replacing e by
e′, we can assume h0 is a unital homomorphism from Cn0

⊗U to eAe. It follows
that

ρA((h0)∗0(x′)− x) = 0.(e 23.30)

Let u2 = h0(u1) and v2 = h0(v1). We have

ρA(bott1(u2, v2)− x) = 0.(e 23.31)

Choose another non-zero projection e1 ∈ A such that e1e = ee1 = 0 and τ(e1) <
δ1/16 for all τ ∈ T (A). It follows from 22.1 that there is a unital homomorphism
H : C(T2)→ e1Ae1 such that

H∗0(b) = x− bott1(u2, v2),(e 23.32)

where b is the Bott element in K0(C(T2)). (In fact, we can also apply 22.16
here.) Thus we obtain a pair of unitaries u3, v3 ∈ e1Ae1 such that

u3v3 = v3u3 and bott1(u3, v3) = x− bott1(u2, v2).(e 23.33)

Let e2, e3 ∈ (1− e− e1)A(1− e− e1) be a pair of non-zero mutually orthogonal
projections such that τ(e2) < δ1/32 and τ(e3) < δ1/32 for all τ ∈ T (A). Thus
τ(e+ e1 + e2 + e3) < 3δ1/16 for all τ ∈ T (A). Then, together with Theorem 17.3
of [21], (applied to X = T), we obtain a unitary u4 ∈ (1− e− e1− e2− e3)A(1−
e− e1 − e2 − e3) such that

|τ(f(u4))− τ(f(u))‖ < δ1/4(e 23.34)

for all f ∈ H2∪H1 and for all τ ∈ T (A). Let w = u2+u3+u4+(1−e−e1−e2−e3).
It follows from Theorem 3.10 of [22] that there exists u5 ∈ U(e2Ae2) such that

u5 = ūw̄∗ ∈ U(A)/CU(A).(e 23.35)

Since A is simple and has stable rank one, there exists a unitary v4 ∈ e3Ae3 such
that [v4] = y − [v2 + v3 + (e2+e3)] ∈ K1(A). Now define

u6 = u2 + u3 + u4 + u5 + e3 and v6 = v2 + v3 + (1− e− e1 − e2−e3) + e2+v4.
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Then

‖u6v6 − v6u6‖ < ε1/2, bott1(u6, v6) = x, and [v6] = y.(e 23.36)

Moreover,

τ(f(u6)) ≥ ∆(f̂)/2 for all f ∈ H1,(e 23.37)

|τ(f(u))− τ(f(u6))| < γ1 and ū6 = ū.(e 23.38)

By Corollary 12.7 of [21] and by (e 23.35) (e 23.37) and (e 23.38) that there exists
a unitary W ∈ A such that

‖W ∗u6W − u‖ < ε1/2.(e 23.39)

Now let v = W ∗v6W. We compute that

‖uv − vu‖ < ε, bott1(u, v) = bott1(u6, v6) = x, and [v] = y.(e 23.40)

�

Corollary 23.4. Let ε > 0, C =
⊕k

i=1 C
i =

⊕k
i=1Mm(i)(C(T)). Let P0 ⊂

K0(C) and P1 ⊂ K1(C) be finite sets generating K0(C) and K1(C). There exists
σ > 0 satisfying the following condition: Let A = A1 ⊗ U be as in Lemma 23.3,
let ι : C → A be an embedding, and let α ∈ KL(A⊗ C(T), A) be such that

|τ(ρA(α(β(w))))| < σmin{τ ′(ι(1Ci))/m(i), 1 ≤ i ≤ k, τ ′ ∈ T (A)},

for all w ∈ P1 and τ ∈ T (A). Then there exists a unitary v ∈ ι(1C)Aι(1C) such
that

Bott(ι, v)|P0∪P1
= α ◦ β|P0∪P1

.

Proof. Let ei11 ∈ Ci = Mm(i)(C(T)) be the rank one projection of the upper
left corner of Ci and ui ∈ K1(Ci) be the standard generator given by zei11+(1Ci−
ei11), where z ∈ C(T) is the identity function from T to T ⊂ C. Without loss of
generality, we may assume that P0 = {[ei11], 1 ≤ i ≤ k} and P1 = {ui, 1 ≤ i ≤ k}.
Let σ be as in Lemma 23.3. For each i ∈ {1, 2, · · · , k}, applying Lemma 23.3
to ι(ei11)Aι(ei11) (in place of A), ι(zei11) ∈ ι(ei11)Aι(ei11) (in place of u) with
x = α(β(ui)), y = α(β([ei11])), one obtains a unitary vi11 ∈ ι(ei11)Aι(ei11) in
place of v. Identifying ι(1Ci)Aι(1Ci) ∼=

(
ι(ei11)Aι(ei11)

)
⊗Mm(i)(C), we define

vi = vi11 ⊗ 1m(i). Finally, choose v = v1 ⊕ v2 ⊕ · · · ⊕ vk ∈ ι(1C)Aι(1C) to finish
the proof. �
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24. More Existence Theorems for Bott Elements Using Lemma 23.3,
22.1, Corollary 21.11 of [21], Lemma 18.11 of [21], and Theorem 12.11 of [21],
we can show the following result:

Lemma 24.1. Let A = A1 ⊗ U1, where A1 is as in Theorem 14.10 of [21] and
B = B1 ⊗ U2, where B1 ∈ B0 and U1, U2 are two UHF-algebras of infinite type.
For any ε > 0, any finite subset F ⊂ A, and any finite subset P ⊂ K(A), there
exist δ > 0 and a finite subset Q ⊂ K1(A) satisfying the following condition: Let
a unital homomorphism ϕ : A→ B and α ∈ KL(A⊗ C(T), B) be such that

|τ ◦ ρB(α(β(x)))| < δ for all x ∈ Q and for all τ ∈ T (B).(e 24.1)

Then there exists a unitary u ∈ B such that

‖[ϕ(x), u]‖ < ε for all x ∈ F and(e 24.2)

Bott(ϕ, u)|P = α(β)|P.(e 24.3)

Proof. Let ε1 > 0 and let F1 ⊂ A be a finite subset satisfying the following
condition: If

L,L′ : A⊗ C(T)→ B

are two unital F′1-ε1-multiplicative completely positive linear maps such that

‖L(f)− L′(f)‖ < ε1 for all f ∈ F′1,(e 24.4)

where
F′1 = {a⊗ g : a ∈ F1 and g ∈ {z, z∗, 1C(T)}},

then

(e 24.5) [L]|β(P) = [L′]|β(P).

Let B1,n = Mm(1,n)(C(T))⊕Mm(2,n)(C(T))⊕· · ·⊕Mm(k1(1),n)(C(T)), B2,n =
PMr1(n)(C(Xn))P, where Xn is a finite disjoint union of copies of S2, T2,k, and
T3,k (for various k ≥ 1). Let B3,n be a finite direct sum of C∗-algebras in C0

(with trivial K1 and kerρB3,n
= {0}—see Proposition 3.5 of [21]), n = 1, 2, ....

Put Cn = B1,n⊕B2,n⊕B3,n, n = 1, 2, .... We may write that A = limn→∞(Cn, ın)
as in Theorem 14.10 of [21]. with the maps ın injective (applying Theorem 14.10
of [21] to A1),

kerρA ⊂ (ın,∞)∗0(kerρCn), and(e 24.6)

lim
n→∞

sup{τ(1B1,n ⊕ 1B2,n) : τ ∈ T (B)} = 0.(e 24.7)

Let ε2 = min{ε1/4, ε/4} and let F2 = F1 ∪ F.
Let P1,1 ⊂ K(B1,n1), P2,1 ⊂ K(B2,n1) and P3,1 ⊂ K(B3,n1) be finite subsets

such that
P ⊂ [ın1,∞](P1,1)⊕[ın1,∞](P2,1)⊕[ın1,∞])(P3,1)
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for some n1 ≥ 1. To simplify the notation, without lose of generality, we may
assume P ⊂ [ın1,∞](P1,1) ∪ [ın1,∞](P2,1) ∪ [ın1,∞])(P3,1). Let Q′ be a finite set
of generators of K1(Cn1

) and let Q = [ın1,∞](Q′). Since Ki(B1,n1
), i = 0, 1, are

finitely generated free abelian groups, without loss of generality, we may assume
that P1,1 ⊂ K0(B1,n1) ∪K1(B1,n1) and generates K0(B1,n1)⊕K1(B1,n1).

Without loss of generality, we may assume that F1 ∪ F ⊂ ın1,∞(Cn1
). Let

F1,1 ⊂ B1,n1
, F2,1 ⊂ B2,n2

, and F3,1 ⊂ B3,n1
be finite subsets such that

F1 ∪ F ⊂ ın1,∞(F1,1 ∪ F2,1 ∪ F3,1).(e 24.8)

Let e1 = ın1,∞(1B1,n1
), e2 = ın1,∞(1B2,n1

), and e3 = 1 − e1 − e2. Note that

B1,n1 = ⊕s(n1)
i=1 Bi1,n1

, where s(n1) is an integer depending on n1 and Bi1,n1
=

Mm(i,n1)(C(T)). We may write e1 = ⊕s(n1)
i=1 ei1 with ei1 = ın1,∞(1iB1,n1

). Let

∆1 : (B2,n1)q,1+ \ {0} → (0, 1) be defined by

∆1(ĥ) = (1/2) inf{τ(ϕ(ın1,∞(h)) : τ ∈ T (B)} for all h ∈ (B2,n1
)1+ \ {0}.

Let ∆2 : Bq,13,n1
\ {0} → (0, 1) be defined by

∆2(ĥ) = (1/2) inf{τ(ϕ(ın1,∞(h)) : τ ∈ T (B)} for all h ∈ (B3,n1
)1+ \ {0}.

Note that B2,n1
has the form C of Theorem 12.7 of [21]. So we will apply

Theorem 12.7 of [21]. Let H2,1 ⊂ (B1
2,n1

)+ \ {0} (in place of H1), γ2,1 > 0 (in
place of γ1), δ2,1 > 0 (in place of δ), G2,1 ⊂ B2,n1 (in place of G), P2,2 ⊂ K(B2,n1

)
(in place of P), and H2,2 ⊂ (B2,n1)s.a. (in place of H2) be the constants and finite
subsets provided by Theorem 12.7 of [21] for ε2/16, F2,1, and ∆1 (we do not need
the set U in Theorem 12.7 of [21] since K1(B2,n1

) is torsion or zero; see Corollary
12.8 of [21]).

Recall that B1,n1 =
⊕s(n1)

i=1 Bi1,n1
with Bi1,n1

= Mm(i,n1)(C(T)), and e1 =⊕s(n1)
i=1 ei1 with ei1 = ın1,∞(1iB1,n1

). Now let σ > 0 be as provided by Corollary

23.4 (see 23.3 also) for P1,1 and ε2/4 (in place of ε). Let δ = σ·inf{τ(ei1)/m(i, n1) :
1 ≤ i ≤ s(n1), τ ∈ T (A)}. It follows from 23.4 that if |τ ◦ ρB(α(β(x)))| < δ for
all x ∈ [ın1,∞])(P1,1) then there is a unitary v1 ∈ e1Be1 such that

Bott(ϕ ◦ ın1,∞, v1)|P1,1
= α ◦ β ◦ [ın1,∞]|(P1,1).(e 24.9)

Note that K1(B2,n1
) is a finite group. Therefore,

α(β([ın1,∞])(K1(B2,n1
)) ⊂ kerρB .(e 24.10)

Define κ1 ∈ KK(B2,n1 ⊗ C(T), A) by κ1|K(B2,n1
) = [ϕ ◦ ın1,∞|B2,n1

] and
κ1|β(K(B2,n1

)) = α|β(K(B2,n1
)). Since ın1,∞ is injective, by (e 24.10),

κ1 ∈ KKe(B2,n1
⊗ C(T), e2Be2)++.
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Let

σ0 = min{γ2,1/2,min{∆1(ĥ) : h ∈ H2,1} · inf{τ(e2) : τ ∈ T (A)}.

Define γ0 : T (e2Ae2)→ Tf (B2,n1⊗C(T)) by γ0(τ)(f ⊗ 1C(T)) = τ ◦ ϕ ◦ ın1,∞(f)
for all f ∈ B2,n1 and γ0(1⊗g) =

∫
T g(t)dt for all g ∈ C(T). It follows from 22.16,

applied to the space Xn1
× T, that there is a unital monomorphism Φ : B2,n1

⊗
C(T) → e2Ae2 such that [Φ] = κ1 and ΦT = γ0. Put L2 = Φ|B2,n1

(identifying
B2,n1

with B2,n1
⊗ 1C(T)) and v′2 = Φ(1 ⊗ z), where z ∈ C(T) is the identity

function on the unit circle. Then L2 is a unital monomorphism from B2,n1 to
e2Ae2. We also have the following facts:

[L2] = [ϕ ◦ ın1,∞], ‖[L2(f), v′2]‖ = 0,(e 24.11)

Bott(L2, v
′
2)|P2,2

= α(β([ın1,∞]))|P2,2
, and(e 24.12)

|τ ◦ L2(f)− τ ◦ ϕ ◦ ın1,∞(f)| = 0 for all f ∈ H2,1 ∪H2,2(e 24.13)

and for all τ ∈ T (e2Ae2). It follows from (e 24.13) that

τ(L2(f)) ≥ ∆1(f̂) · τ(e2) for all f ∈ H2,1 and τ ∈ T (A).(e 24.14)

By Theorem 12.7 of [21] (see also Corollary 12.8 of [21]), there exists a unitary
w ∈ e2Ae2 such that

‖Adw ◦ L2(f)− ϕ ◦ ın1,∞(f)‖ < ε2/16 for all f ∈ F2,1.(e 24.15)

Define v2 = w∗v′2w. Then, for all f ∈ F2,1,

‖[ϕ ◦ ın1,∞(f), v2]‖ < ε2/8 and(e 24.16)

Bott(ϕ ◦ ın1,∞, v2)|P2,1
= α(β([ın2,∞]))|P2,1

.

Note that B3,n1 has the form C of Theorem 12.7 of [21]. Let H3,1 ⊂ (B3,n1)1+\
{0} (in place of H1), γ3,1 > 0 (in place of γ1), δ3,1 > 0 (in place of δ), G3,1 ⊂ B3,N1

(in place of G), P3,2 ⊂ K(B3,n1) (in place of P), and H3,2 ⊂ (B3,n1)s.a. (note
that K1(B3,n1

) = {0}) be constants and finite subsets as provided by Theorem
12.7 of [21] for ε2/16, F3,1, and ∆2 (see also Corollary 12.8 of [21]).

Let

σ1 = (γ3,1/2) min{τ(e3) : τ ∈ T (A)} ·min{∆1(f̂) : f ∈ H3,1}.

Note that kerρB3,n1
= {0} and K1(B3,n1) = {0} (see Proposition 3.5 of [21])

Therefore, kerρB3,n1⊗C(T) = kerρB3,n1
= {0}. Define κ2 ∈ KK(B3,n1

⊗ C(T), A)
as follows:

κ2|K(B3,n1 ) = [ϕ ◦ ın1,∞]|B3,n1
and κ2|β(K(B3,n1 ) = α(β(ın1,∞)|K(B3,n1 ).
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Thus κ2 ∈ KKe(B3,n1
⊗ C(T), e3Ae3)++. It follows from 22.7 that there is

a unital G3,1-min{ε2/16, δ3,1/2}-multiplicative completely positive linear map
L3 : B3,n1

→ e3Ae3 and a unitary v′3 ∈ e3Ae3 such that

[L3] = [ϕ], ‖[L3(f), v′3]‖ < ε2/16 for all f ∈ G3,1,(e 24.17)

Bott(L3, v
′
3)|P3,1

= κ2|β(P3,2), and(e 24.18)

|τ ◦ L3(f)− τ ◦ ϕ ◦ ın1,∞(f)| < σ1 for all f ∈ H3,1 ∪H3,2(e 24.19)

and for all τ ∈ T (e3Ae3). It follows from (e 24.19) that

τ(L3(f)) ≥ ∆1(f̂)τ(e3)(e 24.20)

for all f ∈ H3,1 and for all τ ∈ T (A). It follows from Theorem 12.7 of [21], and
its corollary (see part (2) of Corollary 12.8 of [21]), that there exists a unitary
w1 ∈ e3Ae3 such that

‖Adw1 ◦ L2(f)− ϕ ◦ ın1,∞(f)‖ < ε2/16 for all f ∈ F3,1.(e 24.21)

Define v3 = w∗1v
′
3w1. Then

‖[ϕ ◦ ın1,∞(f), v3]‖ < ε2/8 and(e 24.22)

Bott(ϕ ◦ ın1,∞, v3)|P3,1 = Bott(L3, v
′
3)|P3,1 .

Let v = v1 + v2 + v3. Then

‖[ϕ(f), v]‖ < ε for all f ∈ F.(e 24.23)

Moreover, we compute that

Bott(ϕ, v)|P = α|β(P).(e 24.24)

�

We have actually proved the following result:

Lemma 24.2. Let A = A1 ⊗ U1, where A1 is as in Theorem 14.10 of [21] and
B = B1 ⊗ U2, where B1 ∈ B0 is a unital simple C∗-algebra and where U1, U2

are two UHF-algebras of infinite type. Write A = limn→∞(Cn, ın) as described
in Theorem 14.10 of [21]. For any ε > 0, any finite subset F ⊂ A, and any finite
subset P ⊂ K(A), there exists an integer n ≥ 1 such that P ⊂ [ın,∞](K(Cn))
and there is a finite subset Q ⊂ K1(Cn) which generates K1(Cn) and there
exists δ > 0 satisfying the following condition: Let ϕ : A → B be a unital
homomorphism and let α ∈ KK(Cn ⊗ C(T), B) such that

|τ ◦ ρB(α(β(x)))| < δ for all x ∈ Q and for all τ ∈ T (B).

Then there exists a unitary u ∈ B such that

‖[ϕ(x), u]‖ < ε for all x ∈ F and Bott(ϕ ◦ [ın,∞], u) = α(β).
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Proof. Note that, in the proof of Lemma 24.1, Ki(Bj,1) is finitely generated,
i = 0, 1, and j = 1, 2, 3. Then KK(Bj,1, A) = KL(Bj,1, B) (for any unital C∗-
algebra B), j = 1, 2. Moreover (see [6]), there exists an integer N0 > 1 such
that elements in HomΛ(K(Bj,1),K(B)) are determined by their restrictions to
Ki(Bj,1) and Ki(Bj,1,Z/mZ), m = 2, 3, ..., N0. In particular, we may assume,

in the proof of 24.1, that Pj,1 generates Ki(Bj,1)⊕
⊕N0

m=2Ki(Bj,1,Z/mZ), j =
1, 2, 3. �

Remark 24.3. Note that, in the statement above, if an integer n works, any
integer m ≥ n also works. In the terminology of Definition 3.6 of [44], the
statement above also implies that B has properties (B1) and (B2) associated
with C.

Corollary 24.4. Let B ∈ B0, let A1 ∈ B0, let C = B ⊗ U1, and let A =
A1 ⊗ U2, where U1 and U2 are UHF-algebras of infinite type. Suppose that B
satisfies the UCT and suppose that κ ∈ KKe(C,A)++, γ : T (A) → T (C) is a
continuous affine map, and α : U(C)/CU(C) → U(A)/CU(A) is a continuous
homomorphism for which γ, α, and κ are compatible. Then, there exists a unital
monomorphism h : C → A such that

(1) [h] = κ in KKe(C,A)++,
(2) hT = γ and h‡ = α.

Proof. The proof follows the same lines as that of Theorem 8.6 of [40], fol-
lowing the proof of Theorem 3.17 of [44]. Denote by κ ∈ KL(C,A) the image of
κ. It follows from Lemma 22.14 that there is a unital monomorphism ϕ : C → A
such that

[ϕ] = κ, ϕ‡ = α, and (ϕ)T = γ.

Note that it follows from the UCT that (as an element of KK(C,A))

κ− [ϕ] ∈ Pext(K∗(C),K∗+1(A)).

By Lemmas 24.2 (see also Remark 22.15) and 23.3, the C∗-algebra A has Prop-
erty (B1) and Property (B2) associated with C in the sense of [44]. Since A
contains a unital copy of U2, it is infinite dimensional, simple and antiliminal.
It follows from a result in [1] that A contains an element b with sp(b) = [0, 1].
Moreover, A is approximately divisible. It follows from Theorem 3.17 of [44]
that there is a unital monomorphism ψ0 : A → A which is approximately inner
and such that

[ψ0 ◦ ϕ]− [ϕ] = κ− [ϕ] in KK(C,A).

Then the map

h := ψ0 ◦ ϕ

satisfies the requirements of the corollary. �
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Lemma 24.5. Let A = A1 ⊗ U1, where A1 is as in Theorem 14.10 of [21] and
B = B1 ⊗ U2, where B1 ∈ B0 is a unital simple C∗-algebra and where U1, U2

are two UHF-algebras of infinite type. Let A = limn→∞(Cn, ın) be as described
in Theorem 14.10 of [21], For any ε > 0, any σ > 0, any finite subset F ⊂ A,
any finite subset P ⊂ K(A), and any projections p1, p2, ..., pk, q1, q2, ..., qk ∈ A
such that {x1, x2, ..., xk} generates a free abelian subgroup G of K0(A), where
xi = [pi] − [qi], i = 1, 2, ..., k, there exists an integer n ≥ 1 such that xj ∈ P ⊂
[ın,∞](K(Cn)) and there is a finite subset Q ⊂ K1(Cn) which generates K1(Cn)
and there exists δ > 0 satisfying the following condition: Let ϕ : A → B be a
unital homomorphism, let Γ : G → U(B)/CU(B) be a homomorphism and let
α ∈ KK(Cn ⊗ C(T), B) such that

α(β(g))) = κB1 (Γ(g)) for all g ∈ ın,∞−1
∗0 (G) and

|τ ◦ ρB(α(β(x)))| < δ for all x ∈ Q and for all τ ∈ T (B).

Then there exists a unitary u ∈ B such that

‖[ϕ(x), u]‖ < ε for all x ∈ F, Bott(ϕ ◦ [ın,∞], u) = α(β),

and

dist(〈((1− ϕ(pi)) + ϕ(pi)u)((1− ϕ(qi)) + ϕ(qi)u∗)〉,Γ(xi)) < σ, i = 1, 2, ..., k.

Proof. This follows from Lemma 24.2 and Theorem 22.18. In fact, for any
0 < ε1 < ε/2 and finite subset F1 ⊃ F, by 24.2, there exists an integer n ≥ 1,
a finite subset Q ⊂ K1(Cn), and δ > 0 as described above, and a unitary u1 ∈
U0(B), such that

‖[ϕ(x), u1]‖ < ε1 for all x ∈ F1

and

Bott(ϕ ◦ ın,∞, u1) = α(β)|P.

Choosing a smaller ε1 and a larger F1, if necessary, we may assume that the
class

〈((1− ϕ(pi)) + ϕ(pi)u1)((1− ϕ(qi)) + ϕ(qi)u∗1)〉 ∈ U(B)/CU(B)

is well defined for all 1 ≤ i ≤ k. Define a map Γ1 : G→ U(B)/CU(B) by

Γ1(xi) = 〈((1− ϕ(pi)) + ϕ(pi)u1)(1− ϕ(qi)) + ϕ(qi)u∗1)〉, i = 1, 2, ..., k.

Choosing a large enough n, without loss of generality, we may assume that
there are projections p′1, p

′
2, ..., p

′
k, q
′
1, q2,

′ ..., q′k ∈ Cn such that ın,∞(p′i) = pi and
ın,∞(q′i) = qi, i = 1, 2, ..., k. Moreover, we may assume that F1 ⊂ ın,∞(Cn).
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Let Γ2 : G → U0(B)/CU(B) be defined by Γ2(xi) = Γ1(xi)
∗Γ(xi), i =

1, 2, ..., k. It follows by Theorem 22.18 that is a unitary v ∈ U0(B) such that

‖[ϕ(x), v]‖ < ε/2 for all x ∈ F,(e 24.25)

Bott(ϕ ◦ ın,∞, v) = 0, and(e 24.26)

dist(〈((1− ϕ(pi)) + ϕ(pi)v)((1− ϕ(qi)) + ϕ(qi)v∗)〉,Γ2(xi)) < σ,

i = 1, 2, ..., k. Define u = u1v,

Xi = 〈((1− ϕ(pi)) + ϕ(pi)u1)((1− ϕ(qi)) + ϕ(qi)u∗1)〉, and(e 24.27)

Yi = 〈((1− ϕ(pi)) + ϕ(pi)v)((1− ϕ(qi)) + ϕ(qi)v∗)〉,(e 24.28)

i = 1, 2, ..., k. We then compute that

‖[ϕ(x), u]‖ < ε1 + ε/2 < ε for all x ∈ F,(e 24.29)

Bott(ϕ ◦ ın,∞, u) = Bott(ϕ ◦ ın,∞, u1) = α(β), and

dist(〈((1− ϕ(pi)) + ϕ(pi)u)((1− ϕ(qi)) + ϕ(qi)u∗)〉,Γ(xi))

≤ dist(XiYi,Γ1(xi)Yi) + dist(Γ1(xi)Yi,Γ(xi))

= dist(Xi,Γ1(xi)) + dist(Yi,Γ2(xi)) < σ,

for i = 1, 2, ..., k. �

25. Another Basic Homotopy Lemma

Lemma 25.1. Let A be a unital C*-algebra and let U be an infinite dimensional
UHF-algebra. Then there is a unitary w ∈ U such that for any unitary u ∈ A,
one has

(e 25.1) τ(f(u⊗ w)) = τ(f(1A ⊗ w)) =

∫
T
fdm, f ∈ C(T), τ ∈ T (A⊗ U),

where m is normalized Lebesgue measure on T. Furthermore, for any a ∈ A and
τ ∈ T (A⊗ U), τ(a⊗ wj) = 0 if j 6= 0.

Proof. Denote by τU the unique trace of U . Then any trace τ ∈ T (A⊗U) is
a product trace, i.e.,

τ(a⊗ b) = τ(a⊗ 1)⊗ τU (b), a ∈ A, b ∈ U.

Pick a unitary w ∈ U such that the spectral measure of w is Lebesgue measure
(a Haar unitary). Such a unitary always exists. (It can be constructed directly;
or, one can consider a strictly ergodic Cantor system (Ω, σ) such thatK0(C(Ω)oσ
Z) ∼= K0(U). One then notes that the canonical unitary in C(Ω) oσ Z is a Haar
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unitary. Embedding C(Ω) oσ Z into U , one obtains a Haar unitary in U.) Then
one has, for each n ∈ Z,

τU (wn) =

{
1, if n = 0,
0, otherwise.

Hence, for any τ ∈ T (A⊗ U), one has, for each n ∈ Z,

τ((u⊗ w)n) = τ(un ⊗ wn) = τ(un ⊗ 1)τU (wn) =

{
1, if n = 0,
0, otherwise;

and therefore,

τ(P (u⊗ w)) = τ(P (1⊗ w)) =

∫
T
P (z)dm

for any polynomial P . Similarly, τ(P (u⊗w)∗) =
∫
T
P (z̄)dm for any polynomial

P. Since polynomials in z and z−1 are dense in C(T), one has

τ(f(u⊗ w)) = τ(f(1⊗ w)) =

∫
T
fdm, f ∈ C(T),

as desired. �

Lemma 25.2. Let A be a unital separable amenable C∗-algebra and let L :
A ⊗ C(T) → B be a unital completely positive linear map, where B is another
unital amenable C∗-algebra. Suppose that C is a unital C∗-algebra and u ∈ C is
a unitary. Then, there is a unique pair of unital completely positive linear maps
Φ1,Φ2 : A⊗ C(T)→ B ⊗ C such that

Φi|A⊗1C(T) = ı ◦ L|A⊗1C(T) (i = 0, 1) and Φ1(a⊗ zj) = L(a⊗ zj)⊗ uj and

Φ2(a⊗ zj) = L(a⊗ 1C(T))⊗ uj

for any a ∈ A and any integer j, where ı : B → B⊗C is the standard inclusion.
Furthermore, if δ > 0 and G ⊂ A ⊗ C(T) is a finite subset, there are δ1 > 0

and finite set G1 ⊂ A ⊗ C(T) (which do not depend on L) such that if L is
G1-δ1-multiplicative, then Φi is G-δ-multiplicative.

Proof. Considering the map L′ : A⊗ C(T)→ B by L′(a⊗ f) = L(a⊗ f(1))
for all a ∈ A and f ∈ C(T), where f(1) is the evaluation of f at 1 (a point on
the unit circle), we see that it suffices to prove the statement for Φ1 only.

Denote by C0 the unital C*-subalgebra of C generated by u. Then the tensor
product map

L⊗ idC0
: A⊗ C(T)⊗ C0 → B ⊗ C0

is unital and completely positive (see, for example, Theorem 3.5.3 of [4]). Define
the homomorphism ψ : C(T)→ C(T)⊗ C0 by

ψ(z) = z ⊗ u.
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By Theorem 3.5.3 of [4] again, the tensor product map

idA⊗ψ : A⊗ C(T)→ A⊗ C(T)⊗ C0

is unital and completely positive. Then, the map

Φ := (L⊗ idC0) ◦ (idA⊗ψ)

satisfies the requirement of the first part of the lemma.
Let us consider the second part of the lemma. Let δ > 0 and G ⊂ A ⊗ C(T)

be a finite subset. Without loss of generality, we may assume that elements in
G have the form

∑
−n≤i≤n ai ⊗ zi. Let N = max{n :

∑
−n≤i≤n ai ⊗ zi ∈ G}, let

δ1 = δ/2N2, and let G1 ⊃ {ai ⊗ zi : −n ≤ i ≤ n :
∑
−n≤i≤n ai ⊗ zi ∈ G}.

Then

Φ((
∑

−n≤i≤n

ai ⊗ zi)(
∑

−n≤i≤n

bi ⊗ zi))

=
∑
i,j

Φ(aibj ⊗ zi+j)

=
∑
i,j

L(aibj ⊗ zi+j)⊗ ui+j

≈δ (
∑

−n≤i≤n

L(ai ⊗ zi)⊗ ui)(
∑

−n≤i≤n

L(bi ⊗ zi)⊗ ui)

= Φ(
∑

−n≤i≤n

ai ⊗ zi)Φ(
∑

−n≤i≤n

bi ⊗ zi),

if
∑
−n≤i≤n ai ⊗ zi,

∑
−n≤i≤n bi ⊗ zi ∈ G. It follows that Φ is G-δ-multiplicative.

Let P (T) = {
∑n
i=−n ciz

i, ci ∈ C} denote the algebra of Laurent polynomials.
Uniqueness of Φ follows from the fact that A⊗C(T) is the closure of the algebraic
tensor product A⊗alg P (T). �

The following corollary follows immediately from 25.2 and 25.1.

Corollary 25.3. Let C be a unital C∗-algebra and let U be an infinite di-
mensional UHF-algebra. For any δ > 0 and any finite subset G ⊂ C ⊗ C(T),
there exist δ1 > 0 and a finite subset G1 ⊂ C ⊗ C(T) satisfying the following
condition: For any 1 > σ1, σ2 > 0, any finite subset H1 ⊂ C(T)+ \ {0}, any
finite subset H2 ⊂ (C⊗C(T))s.a., and any unital G1-δ1-multiplicative completely
positive linear map L : C ⊗ C(T) → A, where A is another unital C∗-algebra,
there exists a unitary w ∈ U satisfying the following conditions:

|τ(L1(f))− τ(L2(f))| < σ1 for all f ∈ H2, τ ∈ T (B), and(e 25.2)

τ(g(1A ⊗ w)) ≥ σ2(

∫
gdm) for all g ∈ H1, τ ∈ T (B),(e 25.3)
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where B = A⊗U and m is normalized Lebesgue measure on T, and L1, L2 : C⊗
C(T)→ A⊗U are G-δ-multiplicative contractive completely positive linear maps
as given by Lemma 25.2 (as Φ1,Φ2) such that Li(c⊗ 1C(T)) = L(c⊗ 1C(T))⊗ 1U
(i = 1, 2), L1(c⊗ zj) = L(c⊗ zj)⊗ wj , and L2(c⊗ zj) = L(c⊗ 1C(T))⊗ wj for
all c ∈ C and all integers j.

Proof. Fix a δ > 0 and a finite subset G. Let δ1 > 0 and G1 ⊂ C ⊗ C(T) be
as given by Lemma 25.2 for A (in place of B).

Let 0 < σ1, σ2 < 1, H1, and H2 be as given in the statement. There are a
finite subset FC ⊂ C and an integer N > 0 such that, for any h ∈ H2,

‖h−
N∑

j=−N
ah,i ⊗ zi‖ < σ1/2,(e 25.4)

where ah,i ∈ FC ∪ {0}. Set H′2 = {
∑N
i=−N ah,i ⊗ zj : h ∈ H2}.

Now assume that L is as stated for G1 and δ1 mentioned above.
Choose w ∈ U as in Lemma 25.1. Let L1, L2 : C ⊗ C(T) → A ⊗ U be as

described in the corollary. In other words, let L1 : C ⊗ C(T) → A ⊗ U be the
map as Φ1 given by Lemma 25.2 (with C in place of A, A in place of B, U in
place of C, and w ∈ U in place u ∈ U), and let L2 : C ⊗ C(T) → A ⊗ U be
defined by L2(c⊗ f) = L(c⊗ 1C(T))⊗ f(w) for all c ∈ C and f ∈ C(T) (as Φ2 in
Lemma 25.2). By the choice of G1 and δ1, L1 and L2 are G-δ-multiplicative (as
in 25.2).

By Lemma 25.1 (and by Lemma 25.2), for h ∈ H′2,

τ(L1(h)) = τ(

N∑
i=−N

L1(ah,i ⊗ zi)) =

N∑
i=−N

τ(L(ah,i ⊗ zi)⊗ wi)

= τ(L(ah,0 ⊗ 1C(T))) = τ(L2(ah,0 ⊗ 1C(T)))

= τ(

N∑
i=−N

L(ah,i ⊗ 1C(T))⊗ wi) = τ(L2(h)).

Thus, combining (e 25.4), inequality (e 25.2) holds. By (e 25.1), (e 25.3) also
holds.

�

Lemma 25.4. Let A = A1 ⊗ U1, where A1 ∈ B0 and satisfies the UCT and
U1 is a UHF-algebra of infinite type. For any 1 > ε > 0 and any finite sub-
set F ⊂ A, there exist δ > 0, σ > 0, a finite subset G ⊂ A, a finite sub-
set {p1, p2, ..., pk, q1, q2, ..., qk} of projections of A such that {[p1] − [q1], [p2] −
[q2], ..., [pk] − [qk]} generates a free abelian subgroup Gu of K0(A), and a finite
subset P ⊂ K(A), satisfying the following condition:

Let B = B1⊗U2, where B1 is in B0 and satisfies the UCT and U2 is a UHF-
algebra of infinite type. Suppose that ϕ : A→ B is a unital homomorphism.
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If u ∈ U(B) is a unitary such that

‖[ϕ(x), u]‖ < δ for all x ∈ G,(e 25.5)

Bott(ϕ, u)|P = 0,(e 25.6)

dist(〈((1− ϕ(pi)) + ϕ(pi)u)(1− ϕ(qi)) + ϕ(qi)u∗)〉, 1̄) < σ, and(e 25.7)

dist(ū, 1̄) < σ,(e 25.8)

then there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ U(B) such
that

u(0) = u, u(1) = 1B ,(e 25.9)

dist(u(t), CU(B)) < ε for all t ∈ [0, 1],(e 25.10)

‖[ϕ(a), u(t)]‖ < ε for all a ∈ F and for all t ∈ [0, 1], and(e 25.11)

length({u(t)}) ≤ 2π + ε.(e 25.12)

Proof. It is enough to prove the statement under the assumption that u ∈
CU(B).

Recall that every C*-algebra in B0 has stable rank one (see Theorem 9.7 of
[21]). Define

∆(f) = (1/2)

∫
fdm for all f ∈ C(T)1+ \ {0},

where m is normalized Lebesgue measure on the unit circle T. Let A2 = A⊗C(T).
Let F1 = {x ⊗ f : x ∈ F, f = 1, z, z∗}. We may assume that F is a subset of
the unit ball of A. Let 1 > δ1 > 0 (in place of δ), G1 ⊂ A2 (in place of G),

1/4 > σ1 > 0, 1/4 > σ2 > 0, P̃ ⊂ K(A2), H1 ⊂ C(T)1+ \ {0}, H2 ⊂ (A2)s.a.,
and U ⊂ U(M2(A2))/CU(M2(A)) be the constants and finite subsets provided
by Theorem 12.11 part (b) of [21] for ε/4 (in place of ε), F1 (in place of F), ∆,
and A2 (in place of A).

We may assume H2 ⊂ A1
s.a.. that

G1 = {a⊗ f : a ∈ G2 and f = 1, z, z∗},

where G2 ⊂ A is a finite subset, and P̃ = P1 ∪ β(P2), where P1,P2 ⊂ K(A) are
finite subsets. Define P = P1 ∪ P2.

We may assume that (2δ1, P̃,G1) is a KL-triple for A2, (2δ1,P1,G2) is a KL-
triple for A, and 1A1 ⊗H1 ⊂ H2.

We may choose σ1 and σ2 such that

max{σ1, σ2} < (1/4) inf{∆(f) : f ∈ H1}.(e 25.13)

Let δ2 (in place of δ1) and a finite subset G3 (in place of G1) be as provided by
25.3 for A (in place of C), δ1/4 (in place of δ), and G1 (in place of G). Choosing
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smaller δ2, without loss of generality, we may assume that G3 = {a ⊗ f : g ∈
G′2 and f = 1, z, z∗} for a large finite subset G′2 ⊃ G2. We may assume that
δ2 < δ1.

We may further assume that

U = U1 ∪ {1⊗ z} ∪ U2,(e 25.14)

where U1 = {a⊗ 1 : a ∈ U′1 ⊂ U(A)}, U′1 is a finite subset, and U2 ⊂
U(A2)/CU(A2) is a finite subset whose elements represent a finite subset of
β(K0(A)). So we may assume that U2 ∈ Jc(β(K0(A))). As in Remark 12.12 of
[21], we may assume that the subgroup of Jc(β(K0(A))) generated by U2 is free
abelian. Let U′2 be a finite subset of unitaries such that {x̄ : x ∈ U′2} = U2. We
may also assume that the unitaries in U′2 have the form

((1− pi) + pi ⊗ z)((1− qi) + qi ⊗ z∗), i = 1, 2, ..., k.(e 25.15)

We may further assume that pi ⊗ z, qi ⊗ z ∈ G1, i = 1, 2, ..., k. Choose δ3 > 0
and a finite subset G′4 ⊂ A (and write G4 := {g ⊗ f : g ∈ G′4, f = 1, z, z∗}) such
that, for any two unital G4-δ3-multiplicative completely positive linear maps
Ψ1,Ψ2 : A ⊗ C(T) → C (any unital C∗-algebra C), any G′4-δ3-multiplicative
contractive completely positive linear map Ψ0 : A → C and unitary V ∈ C
(1 ≤ i ≤ k), if

‖Ψ0(g)−Ψ1(g ⊗ 1)‖ < δ3 for all g ∈ G′4,(e 25.16)

‖Ψ1(z)− V ‖ < δ3, and ‖Ψ1(g)−Ψ2(g)‖ < δ3 for all g ∈ G4,(e 25.17)

then

〈(1−Ψ0(pi) + Ψ0(pi)V )(1−Ψ0(qi) + Ψ0(qi)V
∗)〉(e 25.18)

≈σ2/210 〈Ψ1(((1− pi) + pi ⊗ z)((1− qi) + qi ⊗ z∗))〉,(e 25.19)

‖〈Ψ1(x)〉 − 〈Ψ2(x)〉‖ < σ2/2
10 for all x ∈ U′2, and(e 25.20)

Ψ1(((1− pi) + pi ⊗ z)((1− qi) + qi ⊗ z∗))(e 25.21)

≈σ2/210 Ψ1((1− pi) + pi ⊗ z)Ψ1((1− qi) + qi ⊗ z∗),(e 25.22)

and, furthermore, for d
(1)
i = pi, d

(2)
i = qi, there are projections d̄

(j)
i ∈ C and

unitaries z̄
(j)
i ∈ d̄

(j)
i Cd̄

(j)
i such that

Ψ1(((1− d(j)
i ) + d

(j)
i ⊗ z)) ≈ σ2

212
(1− d̄(j)

i ) + z̄
(j)
i ,(e 25.23)

d̄
(j)
i ≈ σ2

212
Ψ1(d

(j)
i ), z̄

(1)
i ≈ σ2

212
Ψ1(pi ⊗ z), and z̄

(2)
i ≈ σ2

212
Ψ1(qi ⊗ z∗),(e 25.24)

where 1 ≤ i ≤ k, j = 1, 2. Choose σ > 0 so it is smaller than
min{σ1/16, ε/16, σ2/16, δ2/16, δ3/16}.
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Choose δ5 > 0 and a finite subset G5 ⊂ A satisfying the following condition:
there is a unital G4-σ/8-multiplicative completely positive linear map L : A ⊗
C(T)→ B′ such that

‖L(a⊗ 1)− ϕ′(a)‖ < σ/8 for all a ∈ G′4 and ‖L(1⊗ z)− u′‖ < σ/8(e 25.25)

for any unital homomorphism ϕ′ : A→ B′ and any unitary u′ ∈ B′ such that

‖ϕ′(g)u′ − u′ϕ′(g)‖ < δ5 for all g ∈ G5.

Let δ = min{δ5/4, σ} and G = G5 ∪ G′4 ∪ G′2.
Now suppose that ϕ : A → B is a unital homomorphism and u ∈ CU(B)

satisfies the assumptions (e 25.5) to (e 25.7) for the above mentioned δ, σ, G, P,
pi, and qi. Choose an isomorphism s : U2 ⊗ U2 → U2. Note that s ◦ ı (since it is
unital) is approximately unitarily equivalent to the identity map on U2, where
ı : U2 → U2⊗U2 is defined by ı(a) = a⊗1 (for all a ∈ U2). To simplify notation,
let us assume that ϕ(A) ⊂ B ⊗ 1 ⊂ B ⊗ U2. Suppose that u ∈ U(B) ⊗ 1U2

is
a unitary which satisfies the assumption of the lemma. As mentioned at the
beginning, we may assume that u ∈ CU(B) ⊗ 1U2 . Without loss of generality,
we may further assume that u =

∏m1

j=1 cjdjc
∗
jd
∗
j , where cj , dj ∈ U(B) ⊗ 1U2 ,

1 ≤ j ≤ m1. Let F2 = {cj , dj : 1 ≤ j ≤ m1}.
Let L : A⊗ C(T)→ B be a unital G4-δ2/8-multiplicative completely positive

linear map such that

‖L(1⊗ z)− u‖ < σ/8 and ‖L(a⊗ 1)− ϕ(a)‖ < σ/8(e 25.26)

for all a ∈ G′4. Since Bott(ϕ, u)|P = 0, we may also assume that

[L]|P1 = [ϕ]|P1 and [L]|β(P2) = 0.(e 25.27)

Since B is in B0, there is a projection p ∈ B and a unital C∗-subalgebra
C ∈ C0 with 1C = p satisfying the following condition:

‖L(g)− [(1− p)L(g)(1− p) + L1(g)]‖ < σ2/32(m1 + 1) for all g ∈ G4(e 25.28)

and ‖(1− p)x− x(1− p)‖ < σ2/32(m1 + 1) for all x ∈ F2,(e 25.29)

where L1 : A⊗C(T)→ C is a unital G4-min{δ2/8, ε/8}-multiplicative completely
positive linear map,

τ(1− p) < min{σ1/16, σ2/16} for all τ ∈ T (B),(e 25.30)

and, using (e 25.7), (e 25.8), (e 25.26), and (e 25.18) to (e 25.22) we have that

dist(L‡2(x), 1̄) < σ2/4 for all x ∈ {1⊗ z̄} ∪ U2 and(e 25.31)

dist(L‡2(x), ϕ(x′)⊗ 1C(T)) < σ2/4 for all x ∈ U1,(e 25.32)
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where x′ ⊗ 1C(T) = x and L2(a) = (1−p)L(a)(1−p)+L1(a) for all a ∈ A⊗C(T).
Note that we also have

[L2|A]|P1
= [ϕ]|P1

and ‖ϕ(g)− L2(g ⊗ 1)‖ < σ/2(e 25.33)

for all g ∈ G′4. By (e 25.29) and the choice of F2, there are a unitary v0 ∈ CU(C)
and a unitary
v00 ∈ CU((1− p)B(1− p)) such that

‖L1(1⊗ z)− v0‖ < min{δ2/2, ε/8} and(e 25.34)

‖(1− p)L(1⊗ z)(1− p)− v00‖ < min{δ2/2, ε/8}.(e 25.35)

By the choice of δ2 and G3, applying Corollary 25.3, we obtain a unitary
w ∈ U(U2) for example) such that

|t(L′3(g)))− t(L′1(g))| < σ1/128, g ∈ H2, and(e 25.36)

t(g(p⊗ w)) ≥ 1

2(1− σ1/2)

∫
T
gdm for all g ∈ H1(e 25.37)

for all t ∈ T (pBp ⊗ U2), where L′1, L
′
3 : A ⊗ C(T) → pBp ⊗ U2 is the unital

G1-δ1/4-multiplicative completely positive linear map defined by

L′1(a⊗ 1) = L1(a⊗ 1)⊗ 1U2 , L
′
1(a⊗ zj) = L1(a⊗ 1)⊗ wj ,(e 25.38)

L′3(a⊗ 1) = L1(a⊗ 1)⊗ 1U2 and L′3(a⊗ zj) = L1(a⊗ zj)⊗ (w)j(e 25.39)

for all a ∈ A and all integers j as given by Lemma 25.2.
Let L′′3 : A⊗C(T)→ B⊗U2 be defined by L′′3(a⊗ zj) = (1− p)L(a⊗ zj)(1−

p) ⊗ wj for all a ∈ A and for all j ∈ Z as described in Lemma 25.2 which is
G1-δ1/4-multiplicative completely positive linear map.

Define L3 : A⊗C(T)→ B⊗U2 by L3(c) = L′3(c)+L′′3(c) for all c ∈ A⊗C(T).
Thus L3(a ⊗ zj) = L2(a ⊗ zj) ⊗ wj for all a ∈ A and integer j ∈ Z. Define
Φ : A ⊗ C(T) → B ⊗ U2 by Φ(a ⊗ 1) = ϕ(a) ⊂ B ⊗ 1U2

for all a ∈ A and
Φ(1⊗ f) = 1A ⊗ f(w) for all f ∈ C(T) and for some λ ∈ T.

One then checks that, for all t ∈ T (B ⊗ U2),

|t(L3(g)))− t(Φ(g))| < σ1, g ∈ H2, and(e 25.40)

t(g(1⊗ w)) ≥ 1

2

∫
T
gdm for all g ∈ H1.(e 25.41)

Note that CU(U2) = U(U2) (see Theorem 4.1 of [22]). It is also known (by
working in matrices, for example) that there is a continuous path of unitaries
in CU(U2) connecting 1U2

to w with length no more than π + ε/256. Therefore
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one obtains a continuous path of unitaries {v(t) : t ∈ [1/4, 1/2]} ⊂ CU(U2) such
that

v(1/4) = 1U2
, v(1/2) = w, and

length({v(t) : t ∈ [1/4, 1/2]}) ≤ π + ε/256.(e 25.42)

Note that ϕ(a)Φ(1 ⊗ z) = Φ(1 ⊗ z)ϕ(a) for all a ∈ A. So, in particular, Φ is a
unital homomorphism and

[Φ]|β(K(A)) = 0.(e 25.43)

Define a unital completely positive linear map Lt : A2 → C([2, 3], B ⊗ U2) by

Lt(f ⊗ 1) = L2(f ⊗ 1) and Lt(a⊗ zj) = L2(a⊗ zj)⊗ (v((t− 2)/4 + 1/4))j

for all a ∈ A and integers j and t ∈ [2, 3]. Note that Lt(1 ⊗ z) ≈min(δ2/2,ε/8)

(v0⊕v00)⊗v((t−2)/4+1/4)), and, since v(s) ∈ CU(U2), Lt(1⊗z) ∈min(δ2/2,ε/8)

CU(B ⊗ U2) for all t ∈ [2, 3]. Note also that, Lt is G1-δ1/4-multiplicative. Note
that at t = 2, Lt = L2 and at t = 3, Lt = L3. It follows that

[L3]|P1
= [L2]|P1

= [ϕ]|P1
, [L3]|β(P2) = 0, and(e 25.44)

L‡3(x) = L‡2(x) for all x ∈ U1.(e 25.45)

If v = (e⊗ z) + (1− e) for some projection e ∈ A, then

L3(v) = L2(e⊗ z)⊗ w + L2((1− e)).(e 25.46)

Since w ∈ CU(U2), one computes from (e 25.22) that that, with x = ((1− pi) +
pi ⊗ z)((1− qi) + qi ⊗ z∗),

〈L3(x)〉 ≈σ2/210 (z̄
(1)
i ⊗ w + (1− p̄i))(z̄(2)

i ⊗ w + (1− q̄i))

= (z̄
(1)
i + (1− p̄i))(p̄i ⊗ w + (1− p̄i)⊗ 1U2)(z̄

(2)
i + (1− q̄i))(q̄i ⊗ w + (1− q̄i))

= (z̄
(1)
i + (1− p̄i))(z̄(2)

i + (1− q̄i)) = 〈L2(x)〉,

where p̄i, q̄i, z̄
(1)
i , z̄

(2)
i are as above (see the lines following (e 25.22)), with Ψ1

replaced by L2. It follows that

dist(L‡3(x), 1̄) < σ2/2 for all x ∈ {1⊗ z} ∪ U2.(e 25.47)

Note that, since w ∈ CU(U2) and ϕ(q) ∈ B ⊗ 1U2 ,

Φ(q ⊗ z + (1− q)⊗ 1) = ϕ(q)⊗ w + ϕ(1− q) ∈ CU(B ⊗ U2)



498 Guihua Gong, Huaxin Lin and Zhuang Niu

for any projection q ∈ A. It follows that

Φ‡(x) ∈ CU(B ⊗ U2) for all x ∈ {1⊗ z} ∪ U2.(e 25.48)

Therefore (see also (e 25.43))

[L3]|P = [Φ]|P and dist(Φ‡(x), L‡3(x)) < σ2 for all x ∈ U.(e 25.49)

It follows from (e 25.41) that

(e 25.50) τ(Φ(f)) ≥ ∆(f), f ∈ H1, τ ∈ T (B ⊗ U2),

and it follows from (e 25.40) that

(e 25.51) |τ(Φ(f))− τ(L3(f))| < σ1, f ∈ H2, τ ∈ T (B ⊗ U2).

Applying Theorem 12.11 of [21], we obtain a unitary w1 ∈ B ⊗ U2 such that

‖w∗1Φ(f)w1 − L3(f)‖ < ε/4 for all f ∈ F1.(e 25.52)

Since w ∈ U2, there is a continuous path of unitaries {w(t) : t ∈ [3/4, 1]} ⊂
CU(U2) (recall that CU(U2) = U0(U2)) such that

w(3/4) = w, w(1) = 1U2 and

length({w(t) : t ∈ [3/4, 1]}) ≤ π + ε/256.(e 25.53)

Note that

(e 25.54) Φ(a⊗ 1)w(t) = w(t)Φ(a⊗ 1) for all a ∈ A and t ∈ [3/4, 1].

It follows from (e 25.52) that there exists a continuous path of unitaries {u(t) :
t ∈ [1/2, 3/4]} ⊂ B ⊗ U2 such that (see (e 25.34), (e 25.35), and (e 25.38))

u(1/2) = (v00 + (v0))⊗ w, u(3/4) = w∗1Φ(1⊗ z)w1, and(e 25.55)

‖u(t)− u(1/2)‖ < ε/4 for all t ∈ [1/2, 3/4].(e 25.56)

It follows from (e 25.26), (e 25.34), and (e 25.35) that there exists a continuous
path of unitaries {u(t) : t ∈ [0, 1/4]} ⊂ B such that

u(0) = u, u(1/4) = v00 + v0, and(e 25.57)

‖u(t)− u‖ < ε/4 for all t ∈ [0, 1/4].(e 25.58)

Also, define u(t) = (v00 ⊕ v0)⊗ v(t) for all t ∈ [1/4, 1/2]. It follows that

‖ϕ(g)u(t)− u(t)ϕ(g)‖ < ε/4 + δ < 5ε/16 for all g ∈ G.(e 25.59)
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Then define

u(t) = w∗1(p⊗ w(t) + (1− p)⊗ 1U2
)w1 for all t ∈ [3/4, 1].(e 25.60)

Then {u(t) : t ∈ [0, 1]} ⊂ B ⊗ U2 is a continuous path of unitaries such that
u(0) = u and u(1) = 1. Moreover, by (e 25.58), (e 25.59), (e 25.55), (e 25.56),
(e 25.52), (e 25.60), (e 25.26), (e 25.42), and (e 25.53),

‖ϕ(f)u(t)− u(t)ϕ(f)‖ < ε for all f ∈ F and length({u(t)}) ≤ 2π + ε.

�

Remark 25.5. Note, in the statement of Theorem 25.4, if [1A] ∈ P (as an
element of K0(A)), by 2.14 of [21], condition (e 25.6) implies [u] = 0 in K0(B).
In other words, by making [1A] ∈ P, (e 25.6) implies [u] = 0.

One also notices that if, for some i, pi = 1A and qi = 0, then (e 25.7) implies
(e 25.8). In fact, (e 25.8) is redundant. To see this, let A be a unital simple
separable amenable C∗-algebra with stable rank one. Let G0 ⊂ K0(A) be a
finitely generated subgroup containing [1A]. LetGr = ρA(G0). Then ρA([1A]) 6= 0
and Gr is a finitely generated free abelian group. Then we may write G0 =
G0 ∩ kerρA ⊕ G′r, where ρA(G′r) = Gr and G′r

∼= Gr. Note that G0 ∩ kerρA is
a finitely generated group. We may therefore write G0 ∩ kerρA = G00 ⊕ G01,
where G00 is a torsion group and G01 is free abelian. Note that G01 ⊕ G′r is
free abelian. Therefore G0 = Tor(G0) ⊕ F, where F is a finitely generated free
abelian subgroup. Note that there is an integer m ≥ 1 such that m[1A] ∈ F.
Let z ∈ C(T) be the standard unitary generator. Consider A ⊗ C(T). Then
β(G0) ⊂ β(K0(A)) is a subgroup of K1(A ⊗ C(T)). Moreover, β([1A]) may be
identified with [1⊗ z].

If we choose U2 in the proof of 25.4 to generate β(F ), then m[1A] is in the
subgroup generated by {[pi] − [qi] : 1 ≤ i ≤ k} (see the last paragraph). Thus,
for any σ1 > 0, we may assume that

dist(um, 1̄) < σ1(e 25.61)

provided that (e 25.7) holds for a sufficiently small σ. Recall that B has stable
rank one (see Theorem 9.7 of [21]) and u ∈ U0(B) (see the beginning of this
remark). We may write u = exp(ih)v for some h ∈ Bs.a. and v ∈ CU(B).
Recall, in this case, U0(B)/CU(B) = Aff(T (B))/ρB(K0(B)), where ρB(K0(B))
is a closed vector subspace of Aff(T (B)) (see the proof of Lemma 11.5 of [21]).
The image of um in Aff(T (B))/ρB(K0(B)) is the same as m times the image of
u in Aff(T (B))/ρB(K0(B)). It follows from (e 25.61) that

dist(ū, 1̄) < σ1.(e 25.62)

This implies that (with sufficiently small σ) the condition (e 25.8) is redundant
and therefore can be omitted.
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26. Stable Results

Lemma 26.1. Let C be a unital amenable separable C∗-algebra which is resid-
ually finite dimensional and satisfies the UCT. For any ε > 0, any finite subset
F ⊂ C, any finite subset P ⊂ K(C), any unital homomorphism h : C → A,
where A is any unital C∗-algebra, and any κ ∈ HomΛ(K(SC),K(A)), there ex-
ists an integer N ≥ 1, a unital homomorphism h0 : C →MN (C) ⊂MN (A), and
a unitary u ∈ U(MN+1(A)) such that

‖H(c), u]‖ < ε for all c ∈ F and Bott(H, u)|P = κ ◦ β|P,(e 26.1)

where H(c) = diag(h(c), h0(c)) for all c ∈ C.

Proof. Define S = {z, 1C(T)}, where z is the identity function on the unit
circle. Define x ∈ HomΛ(K(C ⊗ C(T)),K(A)) as follows:

x|K(C) = [h] and x|β(K(C)) = κ.(e 26.2)

Fix a finite subset P1 ⊂ β(K(C)). Choose ε1 > 0 and a finite subset F1 ⊂ C
satisfying the following condition:

[L′]|P1
= [L′′]|P1

(e 26.3)

for any pair of (F1 ⊗ S)-ε1-multiplicative contractive completely positive linear
maps L′, L′′ : C ⊗ C(T)→ B (for any unital C∗-algebra B), whenever

L′ ≈ε1 L′′ on F1 ⊗ S.(e 26.4)

Let a positive number ε > 0, a finite subset F and a finite subset P ⊂ K(C)
be given. We may assume, without loss of generality, that

Bott(H ′, u′)|P = Bott(H ′, u′′)|P(e 26.5)

whenever ‖u′ − u′′‖ < ε for any unital homomorphism H ′ from C. Put ε2 =
min{ε/2, ε1/2} and F2 = F ∪ F1 (choosing P1 = β(P) above).

Let δ > 0, a finite subset G ⊂ C, and a finite subset P0 ⊂ K(C) (in place
of P) be as provided by Lemma 4.17 of [21] for ε2/2 (in place of ε) and F2

(in place of F). We may assume that F2 and G are in the unit ball of C and
δ < min{1/2, ε2/16}. Fix another finite subset P2 ⊂ K(C) and define P3 =
P0 ∪ β(P2) (as a subset of K(C ⊗ C(T))). We may assume that P1 ⊂ β(P2).

It follows from Theorem 18.2 of [21] that there are integers k1, k2, ..., km and
K1, a homomorphism h′1 : C ⊗ C(T) →

⊕m
j=1Mkj (C) → MK(A), and a unital

(G ⊗ S)-δ/2-multiplicative completely positive linear map L′ : C ⊗ C(T) →
MK+1(A) such that

[L′]|P3
= (x+ [h′1])|P3

.(e 26.6)
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Write h′1 = ⊕mj=1H
′
j , where H ′j = ψj ◦ πj , πj : A ⊗ C(T) → Mkj (C) is a finite

dimensional representation and ψj : Mkj (C)→MK(A) is a homomorphism. Let
ej be a minimal projection of Mkj (C) and qj = ψj(ej) ∈ MK(A), and Qj =
ψj(1Mkj

(C)) ∈MK(A). Set pj = 1MK(A)− qj , j = 1, 2, ...,m. Then MkjK(C) can

be identified with Mkj (MK(A)) = Mkj

(
(qj⊕pj)MK(A)(qj⊕pj)

)
(since qj+pj =

1MK(A)) in such a way that Qj(MK(A))Qj is identified with Mkj (qjMK(A)qj).
Define ψ′j : Mkj (C)→ Mkj (C · 1MK(A)) ⊂ MkjK(A) by sending ej to pj . Define
H ′′j : C ⊗ C(T) → MkjK(A) by H ′′j (c) = ψj ◦ πj(c) ⊕ ψ′j ◦ πj (conjugating a
unitary). Note we require H ′′j maps into the scalar matrices of MkjK(A). Let
H ′ = ⊕mj=1ψ

′
j : C ⊗ C(T) → Mkj (pjMK(A)pj) ⊂ M(

∑
j kj)K

(A) (conjugating a

suitable unitary). Let N1 = (
∑m
j=1 kj)K. Define h1 = h′1⊕H ′ and L = L′⊕H ′.

Then h1 maps C ⊗ C(T) into MN1
(C · 1A) ⊂MN1

(A).
In other words, there are an integer N1 ≥ 1, a unital homomorphism h′1 : C⊗

C(T)→MN1(C) ⊂MN1(A), and a unital (G⊗ S)-δ/2-multiplicative completely
positive linear map L : C ⊗ C(T)→MN1+1(A) such that

[L]|P3 = (x+ [h1])|P3 .(e 26.7)

We may assume that there is a unitary v0 ∈MN1+1(A) such that

‖L(1⊗ z)− v0‖ < ε2/2.(e 26.8)

Define H1 : C →MN1+1(A) by

H1(c) = h(c)⊕ h1(c⊗ 1) for all c ∈ C.(e 26.9)

Define L1 : C →MN1+1(A) by L1(c) = L(c⊗ 1) for all c ∈ C. Note that

[L1]|P0
= [H1]|P0

.(e 26.10)

It follows from Lemma 4.17 of [21] that there exists an integer N2 ≥ 1, a unital
homomorphism h2 : C → MN2(N1+1)(C)⊂MN2(N1+1)(A), and a unitary W ∈
M(N2+1)(1+N1)(A) such that

W ∗(L1(c)⊕ h2(c))W ≈ε/4 H1(c)⊕ h2(c) for all c ∈ F2.(e 26.11)

Put N = N2(N1 +1)+N1. Now define h0 : C →MN (C) and H : C →MN+1(A)
by

h0(c) = h1(c⊗ 1)⊕ h2(c) and H(c) = h(c)⊕ h0(c)(e 26.12)

for all c ∈ C. Define u = W ∗(v0 ⊕ 1MN2(N1+1)
)W. Then, by (e 26.11), and as L1

is (G⊗ S)-δ/2- multiplicative, we have

‖[H(c), u]‖ ≤ ‖(H(c)−AdW ◦ (L1(c)⊕ h2(c)))u]‖

+‖AdW ◦ (L1(c)⊕ h2(c)), u]‖+ ‖u(H(c)−AdW ◦ (L1(c)⊕ h2(c)))‖

< ε/4 + δ/2 + ε/4 < ε for all c ∈ F2.
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Define L2 : C → MN+1(A) by L2(c) = L1(c) ⊕ h2(c) for all c ∈ C. Then, we
compute that

Bott(H, u)|P
= Bott(AdW ◦ L2, u)|P = Bott(L2, v0 ⊕ 1MN2(N1+1)

)|P
= Bott(L1, v0)|P + Bott(h2, 1MN2(N1+1)

)|P
= [L]|β(P) + 0 = (x+ [h])|β(P) = κ|P.

�

Theorem 26.2. Let C be a unital amenable separable C∗-algebra which is resid-
ually finite dimensional and satisfies the UCT. For any ε > 0 and any finite sub-
set F ⊂ C, there are δ > 0, a finite subset G ⊂ C, and a finite subset P ⊂ K(C)
satisfying the following condition:

Suppose that A is a unital C∗-algebra, suppose that h : C → A is a unital
homomorphism and suppose that u ∈ U(A) is a unitary such that

‖[h(a), u]‖ < δ for all a ∈ G and Bott(h, u)|P = 0.(e 26.13)

Then there exist an integer N ≥ 1, a unital homomorphism H0 : C ⊗ C(T) →
MN (C) (⊂ MN (A)) (with finite dimensional range), and a continuous path of
unitaries {U(t) : t ∈ [0, 1]} in MN+1(A) such that

U(0) = u′, U(1) = 1MN+1(A), and ‖[h′(a), U(t)]‖ < ε for all a ∈ F,

where
u′ = diag(u,H0(1⊗ z))

and h′(f) = h(f) ⊕H0(f ⊗ 1) for f ∈ C, and z ∈ C(T) is the identity function
on the unit circle.

Moreover,

Length({U(t)}) ≤ π + ε.(e 26.14)

Proof. Let ε > 0 and F ⊂ C be given. We may assume that F is in the unit
ball of C.

Let δ1 > 0, G1 ⊂ C ⊗ C(T), and P1 ⊂ K(C ⊗ C(T)) be as provided by
Lemma 4.17 of [21] for ε/4 and F ⊗ S. We may assume that G1 = G′1 ⊗ S,
where G′1 is in the unit ball of C and S = {1C(T), z} ⊂ C(T). Moreover, we
may assume that P1 = P2 ∪ P3, where P2 ⊂ K(C) and P3 ⊂ β(K(C)). Let
P = P2 ∪ β−1(P3) ⊂ K(C). Furthermore, we may assume that any δ1-G1-
multiplicative contractive completely positive linear map L′ from C ⊗ C(T) to
a unital C∗-algebra gives rise to a well defined map [L′]|P1 .

Let δ2 > 0 and a finite subset G2 ⊂ C be as provided by 2.8 of [38] for δ1/2
and G′1 above.



A classification of finite simple amenable Z-stable C*-algebras, II 503

Let δ = min{δ2/2, δ1/2, ε/2} and G = F ∪ G2.
Suppose that h and u satisfy the assumption with δ, G and P as above. Thus,

by 2.8 of [38], there is a δ1/2-G1-multiplicative contractive completely positive
linear map L : C ⊗ C(T)→ A such that

‖L(f ⊗ 1)− h(f)‖ < δ1/2 for all f ∈ G′1 and(e 26.15)

‖L(1⊗ z)− u‖ < δ1/2.(e 26.16)

Define y ∈ HomΛ(K(C ⊗ C(T)),K(A)) as follows:

y|K(C) = [h]|K(C) and y|β(K(C)) = 0.

It follows from Bott(h, u)|P = 0 that [L]|β(P) = 0.
Then

[L]|P1 = y|P1 .(e 26.17)

Define H : C ⊗ C(T)→ A by

H(c⊗ g) = h(c) · g(1) · 1A

for all c ∈ C and g ∈ C(T), where T refers to the unit circle (and 1 ∈ T).
It follows that

[H]|P1
= y|P1

= [L]|P1
.(e 26.18)

It follows from Lemma 4.17 of [21] that there are an integer N ≥ 1, a unital
homomorphism H0 : C ⊗ C(T) → MN (C) (⊂ MN (A)) with finite dimensional
range, and a unitary W ∈ U(M1+N (A)) such that

W ∗(H(c)⊕H0(c))W ≈ε/4 L(c)⊕H0(c) for all c ∈ F ⊗ S.(e 26.19)

Since H0 has finite dimensional range and since H0(1⊗ z) is in the center of
range(H0) ⊂MN (C), it is easy to construct a continuous path {V ′(t) : t ∈ [0, 1]}
in a finite dimensional C∗-subalgebra of MN (C) such that

V ′(0) = H0(1⊗ z), V ′(1) = 1MN (A) and(e 26.20)

H0(c⊗ 1)V ′(t) = V ′(t)H0(c⊗ 1)(e 26.21)

for all c ∈ C and t ∈ [0, 1]. Moreover, we may ensure that

Length({V ′(t)}) ≤ π.(e 26.22)

Now define U(1/4 + 3t/4) = W ∗diag(1, V ′(t))W for t ∈ [0, 1] and

u′ = u⊕H0(1A ⊗ z) and h′(c) = h(c)⊕H0(c⊗ 1)
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for c ∈ C for t ∈ [0, 1]. Then, by (e 26.19),

‖u′ − U(1/4)‖ < ε/4 and ‖[U(t), h′(a)]‖ < ε/4(e 26.23)

for all a ∈ F and t ∈ [1/4, 1]. The desired conclusion follows by connecting
U(1/4) with u′ with a short path as follows: There is a self-adjoint element
a ∈M1+N (A) with ‖a‖ ≤ επ/8 such that

exp(ia) = u′U(1/4)∗(e 26.24)

Then the path of unitaries U(t) = exp(i(1− 4t)a)U(1/4) for t ∈ [0, 1/4) satisfies
the requirements. �

Lemma 26.3. Let C be a unital separable C∗-algebra whose irreducible represen-
tations have bounded dimension and let B be a unital C∗-algebra with T (B) 6= ∅.
Suppose that ϕ1, ϕ2 : C → B are two unital monomorphisms such that

[ϕ1] = [ϕ2] in KK(C,B),

Let θ : K(C)→ K(Mϕ1,ϕ2) be the splitting map defined in Equation (e 2.46) in
Definition 2.21 of [21].

For any 1/2 > ε > 0, any finite subset F ⊂ C and any finite subset P ⊂ K(C),
there are integers N1 ≥ 1, a unital ε/2-F-multiplicative completely positive lin-
ear map L : C → M1+N1

(Mϕ1,ϕ2
), a unital homomorphism h0 : C → MN1

(C)
(later, MN1

(C) can be regarded as unital subalgebra of MN1
(B) and also of

MN1
(Mϕ1,ϕ2

)), and a continuous path of unitaries {V (t) : t ∈ [0, 1 − d]} in
M1+N1(B) for some 1/2 > d > 0, such that [L]|P is well defined, V (0) =
1M1+N1

(B),

[L]|P = (θ + [h0])|P,(e 26.25)

πt ◦ L ≈ε AdV (t) ◦ (ϕ1 ⊕ h0) on F(e 26.26)

for all t ∈ (0, 1− d],

πt ◦ L ≈ε AdV (1− d) ◦ (ϕ1 ⊕ h0) on F(e 26.27)

for all t ∈ (1− d, 1), and

π1 ◦ L ≈ε ϕ2 ⊕ h0 on F,(e 26.28)

where πt : Mϕ1,ϕ2
→ B is the point evaluation at t ∈ (0, 1).
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Proof. Let ε > 0 and let F ⊂ C be a finite subset. Let δ1 > 0, a finite subset
G1 ⊂ C, and a finite subset P ⊂ K(C) be as provided by 26.2 for ε/4 and F

above. In particular, we assume that δ1 < δP (see Definition 2.14 of [21]). By
Lemma 2.15 of [40], we may further assume that δ1 is sufficiently small that

Bott(Φ, U1U2U3)|P =

3∑
i=1

Bott(Φ, Ui)|P(e 26.29)

whenever ‖[Φ(a), Ui]‖ < δ1 for all a ∈ G1, i = 1, 2, 3.
Let ε1 = min{δ1/2, ε/16} and F1 = F ∪ G1. We may assume that F1 is in

the unit ball of C. We may also assume that [L′]|P is well defined for any ε1-
F1-multiplicative contractive completely positive linear map L′ from C to any
unital C*-algebra.

Let δ2 > 0, G ⊂ C, and P1 ⊂ K(C) be a constant and finite subsets as
provided by Lemma 4.17 of [21] for ε1/2 and F1. We may assume that δ2 < ε1/2,
G ⊃ F1, and P1 ⊃ P. We also assume that G is in the unit ball of C.

It follows from Theorem 18.2 of [21] that there exist an integer K1 ≥ 1, a
unital homomorphism h′0 : C → MK1

(C) (see also lines around (e 26.7)), and
a δ2/2-G-multiplicative contractive completely positive linear map L1 : C →
MK1+1(Mϕ1,ϕ2) such that

[L1]|P1 = (θ + [h′0])|P1 .(e 26.30)

Note that [π0] ◦ θ = [ϕ1] and [π1] ◦ θ = [ϕ2] and, for each t ∈ (0, 1),

[πt] ◦ θ = [ϕ1] = [ϕ2].(e 26.31)

By Lemma 4.17 of [21], we obtain an integerK0, a unitary V ∈ U(M1+K1+K0((C))),
and a unital homomorphism h : C →MK0(C) such that

AdV ◦ (πe ◦ L1 ⊕ h) ≈ε1/2 (id⊕h′0 ⊕ h) on F1,(e 26.32)

where πe : Mϕ1,ϕ2 → C is the canonical projection.
(Here and below, we will identify a homomorphism mapping to Mk(C) with a

homomorphism to Mk(A) for any unital C∗ algebra A, without introducing new
notation.)

Write V00 = ϕ1(V ) and V ′00 = ϕ2(V ). The assumption that [ϕ1] = [ϕ2] implies
that [V00] = [V ′00] in K1(B). By adding another homomorphism to h in (e 26.32),
replacing K0 by 2K0, and replacing V by V ⊕1MK0

, if necessary, we may assume
that V00 and V ′00 are in the same connected component of U(M1+K1+K0

(B)).
(Note that [V00] = [V ′00].)

One obtains a continuous path of unitaries {Z(t) : t ∈ [0, 1]} in M1+K1+K0
(B)

such that

Z(0) = V00 and Z(1) = V ′00.(e 26.33)
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It follows that Z ∈M1+K1+K0
(Mϕ1,ϕ2

). By replacing L1 by adZ ◦ (L1 ⊕ h) and
using a new h′0, we may assume that

π0 ◦ L1 ≈ε1/2 ϕ1 ⊕ h′0 and π1 ◦ L1 ≈ε1/2 ϕ2 ⊕ h′0 on F1.(e 26.34)

Define λ : C →M1+K1+K0
(C) by λ(c) = diag(c, h′0(c)), where we also identify

MK0+K1
(C) with the scalar matrices in MK0+K1

(C). In particular, since ϕi is
unital, ϕi ⊗ idMK1+K0

is the identity on MK0+K1
(C), i = 1, 2. Consequently,

(ϕi ⊗ idMK0+K1
) ◦ h′0 = h′0. Therefore, one may write

ϕi(c)⊕ h′0(c) = (ϕi ⊗ idMK0+K1+1
) ◦ λ(c) for all c ∈ C.

There is a partition 0 = t0 < t1 < · · · < tn = 1 such that

πti ◦ L1 ≈δ2/8 πt ◦ L1 on G(e 26.35)

for all ti ≤ t ≤ ti+1, i = 1, 2, ..., n − 1. Applying Lemma 4.17 of [21] again, we
obtain an integer K2 ≥ 1, a unital homomorphism h00 : C → MK2

(C), and a
unitary Vti ∈M1+K0+K1+K2

(B) such that

AdVti ◦ (ϕ1 ⊕ h′0 ⊕ h00) ≈ε1/2 (πti ◦ L1 ⊕ h00) on F1.(e 26.36)

Note that, by (e 26.35), (e 26.36), and (e 26.34),

‖[ϕ1 ⊕ h′0 ⊕ h00(a), VtiV
∗
ti+1

]‖ < δ2/4 + ε1 for all a ∈ F1.

Define η−1 = 0 and

ηk =

k∑
i=0

Bott(ϕ1 ⊕ h′0 ⊕ h00, VtiV
∗
ti+1

)|P, k = 0, 1, ..., n− 1.

Now we will construct, for each i, a unital homomorphism Fi : C →MJi(C) ⊂
MJi(B) and a unitary Wi ∈M1+K0+K1+K2+

∑i
k=1 Ji

(B) such that

‖[Hi(a), Wi]‖ < δ2/4 for all a ∈ F1 and Bott(Hi, Wi) = ηi−1,(e 26.37)

where Hi = ϕ1 ⊕ h′0 ⊕ h00 ⊕
⊕i

k=1 Fi, i = 1, 2, ..., n− 1.
Let W0 = 1M1+K0+K1+K2

. It follows from Lemma 26.1 that there are an
integer J1 ≥ 1, a unital homomorphism F1 : C → MJ1(C), and a unitary
W0 ∈ U(M1+K0+K1+K2+J1(B)) such that

‖[H1(a), W1]‖ < δ2/4 for all a ∈ F1 and Bott(H1,W1) = η0,(e 26.38)

where H1 = ϕ1 ⊕ h′0 ⊕ h00 ⊕ F1.
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Assume that we have constructed the required Fi and Wi for i = 0, 1, ..., k <
n − 1. It follows from Lemma 26.1 that there are an integer Jk+1 ≥ 1, a unital
homomorphism Fk+1 : C →MJk+1

(C), and a unitary

Wk+1 ∈ U(M1+K0+K1+K2+
∑k+1
i=1 Ji

(B))

such that

‖[Hk+1(a), Wk+1]‖ < δ2/4 for all a ∈ F1(e 26.39)

and Bott(Hk+1,Wk+1) = ηk

where Hk+1 = ϕ1⊕h′0⊕h00⊕
⊕k+1

i=1 Fi. This finished the construction of Fi, Wi

and Hi for i = 0, 1, ..., n− 1.
Now define F00 = h00⊕

⊕n−1
i=0 Fi and define K3 = 1+K0+K1+K2+

∑n−1
i=1 Ji.

Define
vtk = diag(Wkdiag(Vtk , id1M∑k

i=1
Ji

), 1M∑n−1
i=k+1

Ji

),

k = 1, 2, ..., n− 1 and vt0 = 1M
1+K0+K1+K2+

∑n−1
i=1

Ji

. Then

Ad vti ◦ (ϕ1 ⊕ h′0 ⊕ F00) ≈δ2+ε1 πti ◦ (L1 ⊕ F00) on F1,

‖[ϕ1 ⊕ h′0 ⊕ F00(a), vtiv
∗
ti+1

]‖ < δ2/2 + 2ε1 for all a ∈ F1, and

Bott(ϕ1 ⊕ h′0 ⊕ F00, vtiv
∗
ti+1

)

= Bott(ϕ′1,W
′
i ) + Bott(ϕ′1, V

′
ti(V

′
ti+1

)∗) + Bott(ϕ′1, (W
′
i+1)∗)

= ηi−1 + Bott(ϕ′1, VtiV
∗
ti+1

)− ηi = 0,

where ϕ′1 = ϕ1⊕h′0⊕F00, W
′
i = diag(Wi, 1M∑n−1

j=i+1
Ji

) and V ′ti = diag(Vti , 1M∑n−1
i=1

Ji

),

i = 0, 1, 2, ..., n− 2.
It follows by Lemma 26.2 that there are an integer N1 ≥ 1, a unital homo-

morphism F ′0 : C → MN1(C), and a continuous path of unitaries {wi(t) : t ∈
[ti−1, ti]} in MK3

(B) such that

wi(ti−1) = v′i−1(v′i)
∗, wi(ti) = 1, and(e 26.40)

‖[ϕ1 ⊕ h′0 ⊕ F00 ⊕ F ′0(a), wi(t)]‖ < ε/4 for all a ∈ F,(e 26.41)

where v′i = diag(vi, 1MN1
(B)), i = 1, 2, ..., n − 1. Define V (t) = wi(t)v

′
i for

t ∈ [ti−1, ti], i = 1, 2, ..., n− 1. Then V (t) ∈ C([0, tn−1],MK3+N1
(B)). Moreover,

AdV (t) ◦ (ϕ1 ⊕ h′0 ⊕ F00 ⊕ F ′0)(e 26.42)

≈ε πt ◦ L1 ⊕ F00 ⊕ F ′0 on F.

Define h0 = h′0 ⊕ F00 ⊕ F ′0, L = L1 ⊕ F00 + F ′0, and d = 1 − tn−1. Then, by
(e 26.42), (e 26.26) and (e 26.27) hold. From (e 26.34), it follows that (e 26.28)
also holds.

�
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27. Asymptotic Unitary Equivalence

Lemma 27.1. Let C1 and A1 be two unital separable simple C∗-algebras in B1,
let U1 and U2 be two UHF-algebras of infinite type and consider the C∗-algebras
C = C1 ⊗ U1 and A = A1 ⊗ U2. Suppose that ϕ1, ϕ2 : C → A are two unital
monomorphisms. Suppose also that

[ϕ1] = [ϕ2] in KL(C,A),(e 27.1)

(ϕ1)T = (ϕ2)T and ϕ‡1 = ϕ‡2.(e 27.2)

Then ϕ1 and ϕ2 are approximately unitarily equivalent.

Proof. This follows immediately from Theorem 12.11 part (a) of [21]. Note
that both A and C are in B1. �

Lemma 27.2. Let B be a unital C∗-algebra and let u1, u2, ..., un ⊂ U(B) be
unitaries. Suppose that v1, v2, ..., vm ⊂ U(B) are also unitaries such that [vj ] ⊂
G, j = 1, ...,m, where G is the subgroup of K1(B) generated by [u1], [u2], ..., [un].
There exist δ > 0 and a finite subset F ⊂ B satisfying the following condition:
For any unital C∗-algebra A and any unital monomorphisms ϕ1, ϕ2 : B → A, if
τ ◦ ϕ1 = τ ◦ ϕ2 for all τ ∈ T (A) and if there is a unitary w ∈ U(B) such that

‖w∗ϕ1(b)w − ϕ2(b)‖ < δ for all b ∈ F,(e 27.3)

then there exists a group homomorphism α : G→ Aff(T (A)) such that

1

2πi
τ(log(ϕ2(uk)w∗ϕ1(u∗k)w) = α([uk])(τ) and(e 27.4)

1

2πi
τ(log(ϕ2(vj)w

∗ϕ1(v∗j )w) = α([vj ])(τ),(e 27.5)

for any τ ∈ T (A), k = 1, 2, ..., n and j = 1, 2, ...,m.

Proof. The proof is essentially contained in the proofs of 6.1, 6.2, and 6.3 of
[36]. Note that there is a typo in Lemma 6.2 and Lemma 6.3 in [36]: “τ(α(a)) =
a” should be “τ(α(a)) = τ(a)”. Here the condition τ ◦ϕ1 = τ ◦ϕ2 plays the role
of condition τ(α(a)) = τ(a) there.

�

Lemma 27.3. Let C1 be a unital simple C∗-algebra as in Theorem 14 .10 of
[21], let A1 be a unital separable simple C∗-algebra in B0, and let U1 and U2 be
UHF-algebras of infinite type. Let C = C1 ⊗ U1 and A = A1 ⊗ U2. Suppose that
ϕ1, ϕ2 : C → A are unital monomorphisms. Suppose also that

[ϕ1] = [ϕ2] in KL(C,A),(e 27.6)

ϕ‡1 = ϕ‡2, (ϕ1)T = (ϕ2)T , and(e 27.7)

Rϕ,ψ(K1(Mϕ1,ϕ2
))⊂ρA(K0(A)).(e 27.8)
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Then, for any increasing sequence of finite subsets {Fn} of C whose union is
dense in C, any increasing sequence of finite subsets Pn of K1(C) with

⋃∞
n=1 Pn =

K1(C), and any decreasing sequence of positive numbers {δn} with
∑∞
n=1 δn <

∞, there exists a sequence of unitaries {un} in U(A) such that

Adun ◦ ϕ1 ≈δn ϕ2 on Fn and(e 27.9)

ρA(bott1(ϕ2, u
∗
nun+1)(x)) = 0 for all x ∈ Pn(⊂ K1(C))(e 27.10)

and for all sufficiently large n.

Proof. Note that A ∼= A⊗ U2. Therefore, as U2 is of infinite type, there is a
unital homomorphism s : A⊗U2 → A such that s ◦ ı is approximately unitarily
equivalent to the identity map on A, where ı : A → A ⊗ U2 is defined by a →
a⊗ 1U2

for all a ∈ A. Therefore, we may assume that ϕ1(C), ϕ2(C) ⊂ A⊗ 1U2
.

By Lemma 27.1, there exists a sequence of unitaries {vn} ⊂ A such that

lim
n→∞

Ad vn ◦ ϕ1(c) = ϕ2(c) for all c ∈ C.(e 27.11)

We may assume that the set Fn are in the unit ball of C, with dense union.
For the next four paragraphs of the proof, fix n = 1, 2, ....

Put ε′n = min{1/2n+1, δn/2}. Let Cn ⊂ C be a unital C∗-subalgebra (in place
of Cn) such that Ki(Cn) is finitely generated (i = 0, 1), and let Qn be a finite
set of generators of K1(Cn), let δ′n > 0 (in place of δ) be as in Lemma 24.2 for
C (in place of A), ε′n (in place of ε), Fn (in place of F), and [ın](Qn−1) (in place
of P), where ın : Cn → C is the embedding. Note that we assume that

[ın+1](Qn+1) ⊃ Pn+1 ∪ [ın](Qn).(e 27.12)

Write K1(Cn) = Gn,f ⊕ Tor(K1(Cn)), where Gn,f is a finitely generated free
abelian group. Let z1,n, z2,n, ..., zf(n),n be independent generators of Gn,f and
z′1,n, z

′
2,n, ..., z

′
t(n),n be generators of Tor(K1(Cn)). We may assume that

Qn = {z1,n, z2,n, ..., zf(n),n, z
′
1,n, z

′
2,n, ..., z

′
t(n),n}.

Choose 1/2 > ε′′n > 0 so that bott1(h′, u′)|K1(Cn) is a well defined group
homomorphism, bott1(h′, u′)|Qn is well defined, and (bott1(h′, u′)|K1(Cn))|Qn =
bott1(h′, u′)|Qn for any unital homomorphism h′ : C → A and any unitary
u′ ∈ A for which

‖[h′(c), u′]‖ < ε′′n for all c ∈ G′n(e 27.13)

for some finite subset G′n ⊂ C which contains Fn.
Let w1,n, w2,n, ..., wf(n),n, w

′
1,n, w

′
2,n, ..., w

′
t(n),n ∈ C be unitaries (note that,

by Theorem 9.7 of [21], C has stable rank one) such that [wi,n] = (ın)∗1(zi,n)
and [w′j,n] = (ın)∗1(z′j,n), i = 1, 2, ..., f(n), j = 1, 2, ..., t(n), and n = 1, 2, ....
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Since we may choose larger G′n, without loss of generality, we may assume that
wi,n ∈ G′n.

Let δ′′1 = 1/2 and, for n ≥ 2, let δ′′n > 0 (in place of δ) and G′′n (in place of F)
be as in Lemma 27.2 associated with w1,n, w2,n, ..., wf(n),n, w

′
1,n, w

′
2,n, ..., w

′
t(n),n

(in place of u1, u2, ..., un) and

{w1,n−1, w2,n−1, ..., wf(n−1),n−1, w
′
1,n−1, w

′
2,n−1, ..., w

′
t(n−1),n−1}

(in place of v1, v2, ..., vm).
Now consider all n = 1, 2, .... Put εn = min{ε′′n/2, ε′n/2, δ′n, δ′′n/2} and Gn =

G′n ∪ G′′n. By (e 27.11), we may assume that

Ad vn ◦ ϕ1 ≈εn ϕ2 on Gn, n = 1, 2, ....(e 27.14)

Thus, bott1(ϕ2 ◦ ın, v∗nvn+1) is well defined. Since Aff(T (A)) is torsion free,

τ
(
bott1(ϕ2 ◦ ın, v∗nvn+1)|Tor(K1(Cn))

)
= 0.(e 27.15)

From (e 27.14), we have

‖ϕ2(wj,n)Ad vn(ϕ1(wj,n)∗)− 1‖ < εn,(e 27.16)

for all n = 1, 2, .... Define

hj,n =
1

2πi
log(ϕ2(wj,n)Ad vn(ϕ1(wj,n)∗)),(e 27.17)

for j = 1, 2, ..., f(n), n = 1, 2, .... Then, for any τ ∈ T (A), |τ(hj,n)| < εn <
δ′n, j = 1, 2, ..., f(n), n = 1, 2, .... Since Aff(T (A)) is torsion free, and the classes
[w′j,n] are torsion, it follows from Lemma 27.2 that

τ(
1

2πi
log(ϕ2(w′j,n)Ad vn(ϕ1(w′∗j,n)))) = 0,(e 27.18)

j = 1, 2, ..., t(n) and n = 1, 2, .... By the assumption that Rϕ1,ϕ2
(K1(Mϕ1,ϕ2

))
⊂ρA(K0(A)), by Exel’s formula (see [24]), and by Lemma 3.5 of [37], we conclude
that

ĥj,n(τ) = τ(hj,n) ∈ Rϕ1,ϕ2(K1(Mϕ1,ϕ2))⊂ρA(K0(A)).

Now define α′n : K1(Cn)→ ρA(K0(A)) by

α′n(zj,n)(τ) = ĥj,n(τ) = τ(hj,n), j = 1, 2, ..., f(n)

and

α′n(z′j,n) = 0, j = 1, 2, ..., t(n),(e 27.19)
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n = 1, 2, .... Since α′n(K1(Cn)) is free abelian, it follows that there is a homo-

morphism α
(1)
n : K1(Cn)→ K0(A) such that

(ρA ◦ α(1)
n (zj,n))(τ) = τ(hj,n), j = 1, 2, ..., f(n), τ ∈ T (A),(e 27.20)

and

α(1)
n (z′j,n) = 0, j = 1, 2, ..., t(n).(e 27.21)

Define α
(0)
n : K0(Cn) → K1(A) by α

(0)
n = 0. By the UCT, there is κn ∈

KL(SCn, A) such that κn|Ki(Cn) = α
(i)
n , i = 0, 1, where SCn is the suspension

of Cn (here, we identify Ki(Cn) with Ki+1(SCn)).
By the UCT again, there is αn ∈ KL(Cn⊗C(T), A) such that αn ◦β|K(Cn) =

κn. In particular, αn ◦ β|K1(Cn) = α
(1)
n . It follows from Lemma 24.2 that there

exists a unitary Un ∈ U0(A) such that

‖[ϕ2(c), Un]‖ < ε′′n for all c ∈ Fn and(e 27.22)

ρA(bott1(ϕ2, Un)(zj,n)) = −ρA ◦ α(1)
n (zj,n),(e 27.23)

j = 1, 2, ..., f(n). We also have

ρA(bott1(ϕ2, Un)(z′j,n)) = 0, j = 1, 2, ..., t(n),(e 27.24)

as the elements zj,n are torsion. By the Exel trace formula (see [24]), (e 27.20),
and (e 27.23), we have

τ(hj,n) = −ρA(bott1(ϕ2, Un)(zj,n)(τ)(e 27.25)

= −τ(
1

2πi
log(Unϕ2(wj,n)U∗nϕ2(w∗j,n)))

for all τ ∈ T (A), j = 1, 2, ..., f(n). Define un = vnUn, n = 1, 2, .... By 6.1 of [36],
(e 27.25), and (e 27.23), we compute that

τ(
1

2πi
log(ϕ2(wj,n)Adun(ϕ1(w∗j,n)))))(e 27.26)

= τ(
1

2πi
log(Unϕ2(wj,n)U∗nv

∗
nϕ1(w∗j,n)vn)))

= τ(
1

2πi
log(Unϕ2(wj,n)U∗nϕ2(w∗j,n)ϕ2(wj,n)v∗nϕ1(w∗j,n)vn)))

= τ(
1

2πi
log(Unϕ2(wj,n)U∗nϕ2(w∗j,n))))

+τ(
1

2πi
log(ϕ2(wj,n)v∗nϕ1(w∗j,n)vn)))

= ρA(bott1(ϕ2, Un)(zj,n))(τ) + τ(hj,n) = 0
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for all τ ∈ T (A), j = 1, 2, ..., f(n) and n = 1, 2, .... By (e 27.18) and (e 27.24),

(e 27.27) τ(
1

2πi
log(ϕ2(w′j,n)Adun(ϕ1((w′j,n)∗)))) = 0,

j = 1, 2, ..., t(n) and n = 1, 2, .... Let

bj,n =
1

2πi
log(unϕ2(wj,n)u∗nϕ1(w∗j,n)),(e 27.28)

b′j,n =
1

2πi
log(ϕ2(wj,n)u∗nun+1ϕ2(w∗j,n)u∗n+1un), and(e 27.29)

b′′j,n+1 =
1

2πi
log(un+1ϕ2(wj,n)u∗n+1ϕ1(w∗j,n)),(e 27.30)

j = 1, 2, ..., f(n) and n = 1, 2, .... We have, by (e 27.26),

τ(bj,n) = τ(
1

2πi
log(unϕ2(wj,n)u∗nϕ1(w∗j,n)))(e 27.31)

= τ(
1

2πi
log(ϕ2(wj,n)u∗nϕ1(w∗j,n)un)) = 0

for all τ ∈ T (A), j = 1, 2, ..., f(n), and n = 1, 2, .... Note that τ(bj,n+1) = 0 for
all τ ∈ T (A), j = 1, 2, ..., f(n+1). It follows from Lemma 27.2 and (e 27.12) that

τ(b′′j,n+1) = 0 for all τ ∈ T (A), j = 1, 2, ..., f(n), n = 1, 2, ....

Note that

une
2πib′j,nu∗n = e2πibj,n · e−2πib′′j,n+1 , j = 1, 2, ..., f(n).

Hence, using 6.1 of [36], we compute that

τ(b′j,n) = τ(bj,n)− τ(b′′j,n+1) = 0 for all τ ∈ T (A).(e 27.32)

By the Exel formula (see [24]) and (e 27.32),

ρA(bott1(ϕ2, u
∗
nun+1))(w∗j,n)(τ)

= τ(
1

2πi
log(u∗nun+1ϕ2(wj,n)u∗n+1unϕ2(w∗j,n)))

= τ(
1

2πi
log(ϕ2(wj,n)u∗nun+1ϕ2(w∗j,n)u∗n+1un)) = 0

for all τ ∈ T (A) and j = 1, 2, ..., f(n). Thus,

ρA(bott1(ϕ2, u
∗
nun+1)(wj,n))(τ) = 0 for all τ ∈ T (A),(e 27.33)
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j = 1, 2, ..., f(n), and n = 1, 2, .... We also have

ρA(bott1(ϕ2, u
∗
nun+1)(w′j,n))(τ) = 0 for all τ ∈ T (A),(e 27.34)

j = 1, 2, ..., f(n), and n = 1, 2, .... By 27.2, we have that

ρA(bott1(ϕ2, u
∗
nun+1)(z)) = 0 for all z ∈ Pn,(e 27.35)

n = 1, 2, .... �

Remark 27.4. Let C be a unital separable amenable C*-algebra satisfying
the UCT with finitely generated Ki(C) (i = 0, 1), let A be a unital separable
C*-algebra and let ϕ1, ϕ2 : C → A be two unital homomorphisms. In what
follows, we will continue to use ϕ1 and ϕ2 for the induced homomorphisms from
Mk(C) to Mk(A). Suppose that v ∈ U(A) and

‖v∗ϕ1(a)v − ϕ2(a)‖ < ε < 1/8, a ∈ {z1, z2, ..., zn} ∪ F

for a finite subset F ⊆ Mk(C) and some z1, z2, ..., zn ∈ U(Mk(C)) such that
[z1], [z2], ..., [zn] generate K1(C). Define Wj(t) ∈ U(M2(C([0, 1],Mk(A)))) as
follows

Wj(t) = (TtV T
−1
t )∗diag(ϕ1(zj), 1Mk

)TtV T
−1
t ,

where

V = diag(v, 1Mk
) and Tt =

(
cos(π2 t) − sin(π2 t)
sin(π2 t) cos(π2 t)

)
.

Note that Wj(0) = diag(v∗ϕ1(zj)v, 1) and Wj(1) = diag(ϕ1(zj), 1). Con-
necting Wj(0) with diag(ϕ2(z), 1) by a continuous path, we obtain a continuous
path of unitaries Zj(t) such that Zj(0) = diag(ϕ2(zj), 1), Z(1/4) = W (0) and
Zj(1) = diag(ϕ1(zj), 1) and ‖Zj(t) − Zj(1/4)‖ < 1/8 for t ∈ [0, 1/4). Thus
Zj ∈ M2k(Mϕ1,ϕ2). With sufficiently small ε > 0, since K1(C) is finitely gener-
ated, the map

K1(C) 3 [zj ] 7→ [Zj ] ∈ K1(Mϕ1,ϕ2
), j = 1, 2, ..., n,

induces a homomorphism.
Set

(e 27.36) hj =
1

i
diag(log(ϕ2(zj)

∗V ∗ϕ1(zj)V ), 1), j = 1, 2, ..., n.

We may specifically use

Zj(t) = diag(ϕ2(zj), 1) exp(i4thj), t ∈ [0, 1/4].

Still use ϕ1 and ϕ2 for the induced homomorphisms from Mk(C ⊗ C ′) to
Mk(A ⊗ C ′), where C ′ is a commutative C*-algebra C ′ with finitely gener-
ated Ki(C

′) (i = 0, 1). Fix a finite set of unitaries z1, ..., zn ∈ M∞(C ⊗ C ′)
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which generates K1(C ⊗ C ′). We also obtain a homomorphism K1(C ⊗ C ′) →
K1(Mϕ1,ϕ2

⊗ C ′) provided that ε is small.
Let F ⊂ C be a finite subset and ε > 0. Suppose that there is a unitary

v ∈ U(A) such that

adv ◦ ϕ1 ≈ε ϕ2 on F.

Let U ′(t) = TtV T
−1
t . Define

L(c)(t) = (U ′(
4t− 1

3
))∗diag(ϕ1(c), 1)U ′(

4t− 1

3
),(e 27.37)

t ∈ [1/4, 1]

and

L(c)(t) = 4tL(c)(1/4) + (1− 4t)diag(ϕ2(c), 1), t ∈ [0, 1/4].

Note that L maps C into M2(Mϕ1,ϕ2
). Thus, since Ki(C) (i = 0, 1) is finitely

generated, by Corollary 2.11 of [6], there is N1 > 0 such that any element of
HomΛ(K(C),K(A)) is determined by its restriction to Ki(A,Z/nZ), i = 0, 1,
n = 0, 1, ..., N1. Hence, if ε is sufficiently small and F is sufficiently large, there
is

γϕ1,ϕ2,v ∈ HomΛ(K(C),K(Mϕ1,ϕ2))(e 27.38)

such that

[L]|P = γϕ1,ϕ2,v|P(e 27.39)

for any given finite subset P ⊂ K(C).
One computes that∫ 1

0

τ(
dZj(t)

dt
Zj(t))dt = τ(hj), τ ∈ T (A).

Therefore, if Rϕ1,ϕ2 ◦ γϕ1,ϕ2,v(K1(C)) = 0, then

τ(hj) = 0, τ ∈ T (A).(e 27.40)

On the other hand, for any given η > 0 and a finite set {z1, z2, ..., zn} of
generators of K1(C), by (e 27.36),

|τ(hi)| < η, τ ∈ T (A),(e 27.41)

provided that ε is sufficiently small and F is sufficiently large.
Now, assume that ϕ1 = ϕ2. Then, with sufficiently large F and sufficiently

small ε, the element Bott(ϕ1, v) : K(C)→ K(SA) is well defined.
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We have the following splitting short exact sequence:

0 // SA
ı
// Mϕ1,ϕ1

πe
// C // 0 .

Define θ : C → Mϕ1,ϕ1
by θ(b) = ϕ1(b) as a constant element in Mϕ1,ϕ1

. Then
θ may be identified with a splitting map and K(Mϕ1,ϕ1

) may be written as
K(SA)⊕K(C).

Let P : K(Mϕ1,ϕ1) ∼= K(C) ⊕K(SA) → K(SA) be the standard projection
map. One can verify that for any two elements x, y ∈ K(C) if Bott(ϕ1, v)(x) =
Bott(ϕ1, v)(y), then P ◦ γϕ1,ϕ1,v(x) = P ◦ γϕ1,ϕ1,v(y). So we will also use
Γ(Bott(ϕ1, v)) to denote the map P ◦ γϕ1,ϕ1,v ∈ HomΛ(K(C),K(SA)).

By shifting the index, we see Γ(Bott(ϕ1, v))|P maps P to K(A). One may
identify P with idMϕ1,ϕ1

− [θ] ◦ [πe]. Note that

πe ◦ θ = idC and πe ◦ L = idC .

So

Γ(Bott(ϕ1, v))|P = γϕ1,ϕ1,v|P − θ|P.(e 27.42)

Furthermore, it is shown in 10.6 of [37] that Γ(Bott(ϕ1, v)) = 0 if and only if
Bott(ϕ1, v) = 0.

Note that since the K-theory of C is finitely generated, by Corollary 2.11
of [6], one has that any element of HomΛ(K(C),K(A)) is determined by its
restriction to Ki(A,Z/nZ), i = 0, 1, n = 0, 1, ..., N1. Fix separable commutative
C*-algebras C0 = C, C1, ..., CN1

, CN1+1, ..., C2N1+1 with

K0(Cn) = Z/nZ and K1(Cn) = {0}, n = 0, 1, ..., N1,

and CN1+i = SCi−1, i = 1, 2, ..., N1 + 1. For each C ⊗C ′, where C ′ is one of the

C0, C1, ..., C2N1+1, fix a finite set of unitaries z
(n)
1 , z

(n)
2 , ..., z

(n)
k(n) ofMN2

(C̃ ⊗ C ′) ⊂
MN2

(C⊗C̃ ′) (for some N2 ≥ 1) which generates K1(C⊗Cn), n = 0, 1, ..., 2N1+1.
Let C ′i = MN2

(Ci), i = 0, 1, ..., 2N1 + 1.
Let 1/4 > ε > 0 and 1/4 > η > 0. Choose 0 < δ < ε/2 sufficiently small and

a finite set F ⊆ A sufficiently large such that if

u∗ϕ1u ≈δ ϕ2 on F

for some unitary u ∈ A, then, for each Cn,

u∗ϕ̃1u ≈ε/2 ϕ̃2 on F0,n,(e 27.43)

where F0,n is a finite subset which contains {z(n)
1 , z

(n)
2 , ..., z

(n)
k(n)}, n = 0, 1, ..., 2N1+

1. We also assume that δ is sufficiently small and F is sufficiently large so that
(e 27.38), (e 27.39), (e 27.41), (e 27.42) hold.
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Suppose that there are unitaries u1, u2 ∈ A such that

u∗iϕ1ui ≈δ/2 ϕ2 on F,

i = 1, 2. Then, as in (e 27.43), for each Cn,

u∗i ϕ̃1ui ≈ε/2 ϕ̃2 on F0,n,(e 27.44)

where F0,n is a finite subset which contains {z(n)
1 , z

(n)
2 , ..., z

(n)
k(n)}, n = 0, 1, ..., 2N1+

1. Let Li : C →Mϕ1,ϕ2
and γϕ1,ϕ2,ui ∈ HomΛ(K(C),K(Mϕ1,ϕ2

)) be the element
defined by the pair (ϕ1, ui) (i = 1, 2) as above.

On the other hand, one also has that

u2u
∗
1ϕ1u1u

∗
2 ≈δ ϕ1 on F.

Note that πe ◦ (L1 − L2) = 0.

Fix n ∈ {0, 1, ..., 2N1+1}. Consider z ∈ {z(n)
1 , z

(n)
2 , ..., z

(n)
k(n)} and ũi = ui⊗1

C̃′n
,

i = 1, 2. We also write ϕ̃i for ϕi ⊗ id
C̃′n
.

Define T̃ (t) = T2(t−1/4) for t ∈ [1/4, 3/4] and T̃t = T1 for t ∈ [3/4, 1]. Let

Wi(t) = T̃t

(
ũ∗i 0
0 1

)
T̃ ∗t , t ∈ [1/4, 1], and Wi(t) = diag(1, 1) for t ∈ [0, 1/4],

i = 0, 1. Note that

‖diag(ũ∗1ϕ̃(z)ũ1ũ
∗
2ϕ̃(z)∗ũ2, 1)− diag(1, 1)‖ < ε < 1/8.(e 27.45)

There is a continuous path d(z)(t) (for t ∈ [0, 1/4]) such that d(z)(0) = diag(1, 1)
and d(z)(1/4) = diag(ũ∗1ϕ̃(z)ũ1ũ

∗
2ϕ̃(z)∗ũ, 1) and

‖d(z)(t)− diag(1, 1)‖ < ε for all t ∈ [0, 1/4].(e 27.46)

Define, for t ∈ [1/4, 1],

d(z)(t) =
(
W1(t)diag(ϕ̃(z), 1)W1(t)∗

)(
W2(t)diag(ϕ̃(z)∗, 1)W2(t)∗

)
= T̃t

(
ũ∗1 0
0 1

)
T̃ ∗t

(
ϕ̃1(z) 0

0 1

)
T̃t

(
ũ1ũ
∗
2 0

0 1

)
T̃ ∗t

(
ϕ̃1(z)∗ 0

0 1

)
T̃t

(
ũ2 0
0 1

)
T̃ ∗t .

On [3/4, 1], define d(z)(t) = diag(1, 1). Define U(t) = diag(W2(t)∗,W2(t)) for
t ∈ (1/4, 3/4), On [0, 1/4], there is a continuous path U(t) of unitaries in M4(A⊗
C ′n) with U(0) = diag(1, 1, 1, 1) and U(1/4) = diag(W2(0)∗,W2(0)). On [3/4, 1],
there is a continuous path U(t) of unitaries in M4(A ⊗ C ′n) with U(3/4) =
diag(W2(3/4)∗,W2(3/4)) and U(1) = diag(1, 1, 1, 1).
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For n = 0 (so z is represented by unitaries in MN2
(C)), we may also assume

that (see (e 27.41)),

|τ(hz)| < η for all τ ∈ T (A),(e 27.47)

where

hz = diag(log(ϕ̃2(z)∗ũ∗1ϕ̃1(z)ũ1, 1).

Note that d(z)(0) = d(z)(1) = 1 and

[d(z)] = γϕ1,ϕ2,u1(z)− γϕ1,ϕ2,u2(z),(e 27.48)

where γϕ1,ϕ2,ui , i = 1, 2, are the maps defined above (see (e 27.37)).
One has, on [1/4, 3/4],

U(t)∗diag(d(z)(t), 1, 1)U(t)(e 27.49)

= diag

((
T̃t

(
ũ2 0
0 1

)
T̃ ∗t

)
(
T̃t

(
ũ∗1 0
0 1

)
T̃ ∗t

(
ϕ̃1(z) 0

0 1

)
T̃t

(
ũ1ũ
∗
2 0

0 1

)

T̃ ∗t

(
ϕ̃1(z)∗ 0

0 1

))
,

(
1 0
0 1

))

= diag

(
T̃t

(
ũ2ũ
∗
1 0

0 1

)
T̃ ∗t

(
ϕ̃1(z) 0

0 1

)
T̃t

(
ũ1ũ
∗
2 0

0 1

)

T̃ ∗t

(
ϕ̃1(z)∗ 0

0 1

)
,

(
1 0
0 1

))
,

on [0, 1/4], and on [3/4, 1],

‖U(t)∗diag(d(z)(t), 1, 1)U(t)− diag(1, 1, 1, 1)‖ < ε.(e 27.50)

Moreover, U(0)∗diag(d(z)(0), 1, 1)U(0) = U∗(1)diag(d(z)(1), 1, 1)U(1) = diag(1, 1, 1, 1).
Therefore

[d(z)] = [U∗d(z)U ] in K1(SA⊗ C̃n).(e 27.51)

Since the short exact sequence 0→ SA⊗ Cn → SA⊗ C̃n → SA→ 0 splits, we
conclude that

[d(z)] = [U∗d(z)U ] in K1(SA⊗ Cn).(e 27.52)
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On the other hand, the class Γ(Bott(ϕ1, u1u
∗
2))(z) is represented by the path

r(t) = T̃t

(
ũ2ũ
∗
1 0

0 1

)
T̃ ∗t

(
ϕ̃1(z) 0

0 1

)
T̃t

(
ũ1ũ
∗
2 0

0 1

)
T̃ ∗t

(
ϕ̃1(z)∗ 0

0 1

)
for all t ∈ [1/4, 3/4], and

‖r(t)− diag(1, 1)‖ < ε for all t ∈ [0, 1/4] ∪ [3/4, 1].(e 27.53)

Hence (see (e 27.49)), by (e 27.48) and (e 27.52),

Γ(Bott(ϕ1, u1u
∗
2)) = γϕ1,ϕ2,u1 − γϕ1,ϕ2,u2 .(e 27.54)

Theorem 27.5. Let C1 be a unital simple C∗-algebra as in Theorem 14.10 of
[21], let A1 be a unital separable simple C∗-algebra in B0, let C = C1 ⊗ U1 and
let A = A1 ⊗ U2, where U1 and U2 are UHF-algebras of infinite type. Suppose
that ϕ1, ϕ2 : C → A are two unital monomorphisms. Then ϕ1 and ϕ2 are
asymptotically unitarily equivalent if and only if

[ϕ1] = [ϕ2] in KK(C,A),(e 27.55)

ϕ‡ = ψ‡, (ϕ1)T = (ϕ2)T , and Rϕ1,ϕ2
= 0.(e 27.56)

Proof. We will prove the “if ” part only. The “only if” part follows from 4.3
of [40]. Note C = C1 ⊗ U1 can be also regarded as a C∗-algebra as in Theorem
14.10 of [21]. Let C = limn→∞(Cn, ın) be as in Theorem 14.10 of [21], where each
ın : Cn → Cn+1 is an injective homomorphism. Let Fn ⊂ C be an increasing
sequence of finite subsets of C such that

⋃∞
n=1 Fn is dense in C. Put

Mϕ1,ϕ2 = {(f, c) ∈ C([0, 1], A)⊕C : f(0) = ϕ1(c) and f(1) = ϕ2(c)}.

Since C satisfies the UCT, the assumption that [ϕ1] = [ϕ2] in KK(C,A) implies
that the following exact sequence splits:

0→ K(SA)→ K(Mϕ1,ϕ2)
πe
θ K(C)→ 0(e 27.57)

for some θ ∈ Hom(K(C),K(A)), where πe : Mϕ1,ϕ2
→ C is the projection to

C defined in Definition 2.20 of [21]. Furthermore, since τ ◦ ϕ1 = τ ◦ ϕ2 for all
τ ∈ T (A), and Rϕ1,ϕ2 = 0, we may also assume that

Rϕ1,ϕ2(θ(x)) = 0 for all x ∈ K1(C).(e 27.58)

By [6], we have

lim
n→∞

(K(Cn), [ın]) = K(C).(e 27.59)
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Since Ki(Cn) is finitely generated, there exists K(n) ≥ 1 such that

HomΛ(FK(n)K(Cn), FK(n)K(A)) = HomΛ(K(Cn),K(A))(e 27.60)

(see also [6] for the notation Fm there).
Let δ′n > 0 (in place of δ), σ′n > 0 (in place of σ), G′n ⊂ C (in place of G),

{p′1,n, p′2,n, ..., p′I(n),n), q
′
1,n, q

′
2,n, ..., q

′
I(n),n} (in place of {p1, p2, ..., pk, q1, q2, ..., qk}),

P′n ⊂ K(C) (in place of P) corresponding to 1/2n+2 (in place of ε), and Fn (in
place of F) be as provided by Lemma 25.4 (see also Remark 25.5). Note that,
by the choice as in 25.4, we may assume that G′u,n, the subgroup generated by
{[p′i,n]− [q′i,n] : 1 ≤ i ≤ I(n)} is free abelian.

Without loss of generality, we may assume that G′n ⊂ ın,∞(Gn) and P′n ⊂
[ın,∞](Pn) for some finite subset Gn ⊂ Cn, and for some finite subset Pn ⊂
K(Cn), and we may assume that p′i,n = ın,∞(pi,n) and q′i,n = ın,∞(qi,n) for
some projections pi,n, qi,n ∈ Cn, i = 1, 2, ..., I(n). We may also assume that the
subgroup Gn,u generated by {[pi,n] − [qi,n] : 1 ≤ i ≤ I(n)} is free abelian and
pi,n, qi,n ∈ Gn, n = 1, 2, ..., I(n).

We may assume that Pn contains a set of generators of FK(n)K(Cn), Fn ⊂
G′n, and δ′n < 1/2n+3. We may also assume that Bott(h′, u′)|Pn is well defined
whenever ‖[h′(a), u′]‖ < δ′n for all a ∈ G′n and for any unital homomorphism h′

from Cn and unitary u′ in the target algebra. Note that Bott(h′, u′)|Pn defines
Bott(h′ u′). We may further assume that

Bott(h, u)|Pn = Bott(h′, u)|Pn(e 27.61)

provided that h ≈δ′n h
′ on G′n. We may also assume that δ′n is smaller than δ/16

for the δ defined in 2.15 of [40] for Cn (in place of A) and Pn (in place of P).
Let k(n) ≥ n (in place of n), η′n > 0 (in place of δ), and Qk(n) ⊂ K1(Ck(n)) be
as provided by Lemma 24.5 for δ′k(n)/4 (in place of ε), ın,∞(Gk(n)) (in place of

F), Pk(n) (in place of P), {pi,n, qi,n, : i = 1, 2, ..., k(n)} (in place of {pi, qi : i =
1, 2, ..., k}), and σ′k(n)/16 (in place of σ). We may assume that Qk(n) generates

the group K1(Ck(n)). Since P generates FK(n)K(Ck(n+1)), we may assume that
Qn ⊂ Pk(n).

Since Ki(Cn) (i = 0, 1) is finitely generated, by (e 27.60), we may further
assume that [ık(n),∞] is injective on [ın,k(n)](K(Cn)), n = 1, 2, .... Passing to a
subsequence, we may also assume that k(n) = n+1. Let δn = min{ηn, σ′n, δ′n/2}.
By Lemma 27.3, there are unitaries vn ∈ U(A) such that

Ad vn ◦ ϕ1 ≈δn+1/4 ϕ2 on ın,∞(Gn+1),(e 27.62)

ρA(bott1(ϕ2, v
∗
nvn+1))(x) = 0(e 27.63)

for all x ∈ (ın,∞)∗1(K1(Cn+1)), and

‖[ϕ2(c), v∗nvn+1]‖ < δn+1/2 for all a ∈ ın,∞(Gn+1)(e 27.64)
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(Recall that K1(Cn+1) is finitely generated). Note that, by (e 27.61), we may
also assume that

Bott(ϕ1, vn+1v
∗
n)|[ın,∞](Pn) = Bott(v∗nϕ1vn, v

∗
nvn+1)|[ın,∞](Pn)(e 27.65)

= Bott(ϕ2, v
∗
nvn+1])|[ın,∞](Pn).

In particular,

bott1(v∗nϕ1vn, v
∗
nvn+1)(x) = bott1(ϕ2, v

∗
nvn+1)(x)(e 27.66)

for all x ∈ (ın,∞)∗1(K1(Cn+1)).
Applying 10.4 and 10.5 of [37] (see also Remark 27.4), we may assume that

the pair (ϕ1, ϕ2) and vn define an element

γn := γϕ1|Cn+1
,ϕ1|Cn+1

,vn ∈ HomΛ(K(Cn+1),K(Mϕ1,ϕ2))

and [πe] ◦ γn = [idCn+1
] (see Remark 27.4 for the definition of γn). Moreover, we

may assume (see (e 27.47)) that

|τ(log(ϕ2 ◦ ın,∞(z∗j )ṽnϕ1 ◦ ın,∞(zj)ṽn))| < δn+1,(e 27.67)

j = 1, 2, ..., r(n), where {z1, z2, ..., zr(n)} ⊂ U(Mk(Cn+1)), and this set generates

K1(Cn+1), and where ṽn = diag(

k︷ ︸︸ ︷
vn, vn, ..., vn). We may assume that zj ∈ Qn ⊂

Pn, j = 1, 2, ..., r(n).
Let Hn = [ın+1](K(Cn+1)) ⊂ K(Cn+2). Since

⋃
n=1[ın+1,∞](K(Cn)) = K(C)

and [πe] ◦ γn = [idCn+1
], we conclude that

K(Mϕ1,ϕ2
) = K(SA) +

∞⋃
n=1

γn+1(Hn).(e 27.68)

Thus, passing to a subsequence, we may further assume that

γn+1(Hn) ⊂ K(SA) + γn+2(Hn+1), n = 1, 2, ....(e 27.69)

Identifying Hn with γn+1(Hn), let us write jn : K(SA)⊕Hn → K(SA)⊕Hn+1

for the inclusion in (e 27.69). By (e 27.68), the inductive limit isK(Mϕ1,ϕ2
). From

the definition of γn, we note that γn− γn+1 ◦ [ın+1] maps K(Cn+1) into K(SA).
By Remark 27.4 (see (e 27.54)), the map

Γ(Bott(ϕ1, vnv
∗
n+1))|Hn = (γn+1 − γn+2 ◦ [ın+2])|Hn

(see 27.4 for the definition of Γ(Bott(, ))) is then a homomorphism ξn : Hn →
K(SA). Put ζn = γn+1|Hn . Then

jn(x, y) = (x+ ξn(y), [ın+2](y))(e 27.70)
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for all (x, y) ∈ K(SA)⊕Hn. Thus we obtain the following diagram:

0→ K(SA) → K(SA)⊕Hn → Hn → 0
‖ ‖ ↙ξn ↓[ın+2,∞] ↓[ın+2,∞]

0→ K(SA) → K(SA)⊕Hn+1 → Hn+1 → 0
‖ ‖ ↙ξn+1

↓[ın+3,∞] ↓[ın+3,∞]

0→ K(SA) → K(SA)⊕Hn+2 → Hn+2 → 0.

By the assumption that R̄ϕ1,ϕ2 = 0, the map θ also gives the following decom-
position:

kerRϕ1,ϕ2 = kerρA ⊕K1(C).(e 27.71)

Define θn = θ ◦ [ın+2,∞] and κn = ζn − θn. Note that

θn = θn+1 ◦ [ın+2].(e 27.72)

We also have that

ζn − ζn+1 ◦ [ın+2] = ξn.(e 27.73)

Since [πe] ◦ (ζn − θn)|Hn = 0, κn maps Hn into K(SA). It follows that

κn − κn+1 ◦ [ın+2] = ζn − θn − ζn+1 ◦ [ın+2] + θn+1 ◦ [ın+2](e 27.74)

= ζn − ζn+1 ◦ [ın+2] = ξn.

It follows from Lemma 26.3 that there are an integer N1 ≥ 1, a unital δn+1

4 -
ın+1(Gn+1)-multiplicative completely positive linear map Ln : ın,∞(Cn+1) →
M1+N1

(Mϕ1,ϕ2
), a unital homomorphism h0 : ın+1,∞(Cn+1) → MN1

(C), and
a continuous path of unitaries {Vn(t) : t ∈ [0, 3/4]} in M1+N1(A) such that
[Ln]|P′n+1

is well defined, Vn(0) = 1M1+N1
(A),

[Ln ◦ ın,∞]|Pn = (θ ◦ [ın+1,∞] + [h0 ◦ ın+1,∞])|Pn ,

πt ◦ Ln ◦ ın+1,∞ ≈δn+1/4 AdVn(t) ◦ ((ϕ1 ◦ ın+1,∞)⊕ (h0 ◦ ın+1,∞))

on ın+1,∞(Gn+1) for all t ∈ (0, 3/4],

πt ◦ Ln ◦ ın+1,∞ ≈δn+1/4 AdVn(3/4) ◦ ((ϕ1 ◦ ın+1,∞)⊕ (h0 ◦ ın+1,∞))

on ın+1,∞(Gn+1) for all t ∈ (3/4, 1), and

π1 ◦ Ln ◦ ın+1,∞ ≈δn+1/4 ϕ2 ◦ ın+1,∞ ⊕ h0 ◦ ın+1,∞

on ın+1,∞(Gn+1), where πt : Mϕ1,ϕ2
→ A is the point evaluation at t ∈ (0, 1).
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Note that Rϕ1,ϕ2
(θ(x)) = 0 for all x ∈ ın+1,∞(K1(Cn+1)). As in (e 27.40) (see

also 10.4 of [37]),

τ(log((ϕ2(x)⊕ h0(x)∗Vn(3/4)∗(ϕ1(x)⊕ h0(x))Vn(3/4))) = 0(e 27.75)

for x = ın+1,∞(y), where y is in a set of generators of K1(Cn+1), and for all
τ ∈ T (A).

Define W ′n = diag(vn+1, 1) ∈M1+N1
(A). Then

κ̃n := Bott((ϕ1 ⊕ h0) ◦ ın+1,∞, W
′
n(Vn(3/4)∗)(e 27.76)

defines a homomorphism in HomΛ(K(Cn+1),K(SA)). By (e 27.67)

|τ(log((ϕ2 ⊕ h0) ◦ ın+1,∞(zj)
∗(W ′n)∗(ϕ1 ⊕ h0) ◦ ın+1,∞(zj)W

′
n))|(e 27.77)

< δn+1,

j = 1, 2, ..., r(n). One computes (see (e 27.42)) that

Γ(Bott(ϕ1 ◦ ın+1,∞ ⊕ h0, W
′
nV (3/4)∗)|Pn(e 27.78)

= (γn+1 − θ)[ın]|Pn .

Put Ṽn = Vn(3/4). Let

bj,n =
1

2πi
log(Ṽ ∗n (ϕ1 ⊕ h0)ın+1,∞(zj)Ṽn(ϕ2 ⊕ h0) ◦ ın+1,∞(zj)

∗),(e 27.79)

b′j,n =
1

2πi
log((ϕ1 ⊕ h0) ◦ ın+1,∞(zj)Ṽn(W ′n)∗(ϕ1 ⊕ h0)(e 27.80)

◦ın+1,∞(zj)
∗W ′nṼ

∗
n ),

and

b′′j,n =
1

2πi
log((ϕ2 ⊕ h0)ın+1,∞(zj)(W

′
n)∗(ϕ1 ⊕ h0)(e 27.81)

◦ın+1,∞(zj)
∗W ′n),

j = 1, 2, ..., r(n). By (e 27.75) and (e 27.77),

τ(bj,n) = 0 and |τ(b′′j,n)| < δn+1(e 27.82)

for all τ ∈ T (A). Note that

Ṽ ∗n e
2πib′j,n Ṽn = e2πibj,ne2πib′′j,n .(e 27.83)

Then, by 6.1 of [36] and by (e 27.82),

τ(b′j,n) = τ(bj,n)− τ(b′′j,n) = τ(b′′j,n) and |τ(b′j,n)| < δn+1(e 27.84)
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for all τ ∈ T (A). It follows from this, (e 27.76), and (??) that

|ρA(κ̃n(zj))(τ)| < δn+1, j = 1, 2, ...,(e 27.85)

for all τ ∈ T (A). It follows from 24.5 that there is a unitary w′n ∈ U(A) such
that

‖[ϕ1(a), w′n]‖ < δ′n+1/4 for all a ∈ ın+1,∞(Gn+1) and(e 27.86)

Bott(ϕ1 ◦ ın+1,∞, w
′
n) = −κ̃n ◦ [ın+1].(e 27.87)

By (e 27.61),

Bott(ϕ2 ◦ ın+1,∞, v
∗
nw
′
nvn)|Pn = −κ̃n ◦ [ın+1]|Pn .(e 27.88)

It follows from (e 27.42) (see also 10.6 of [37]) and (e 27.78) that

Γ(Bott(ϕ1 ◦ ın+1,∞, w
′
n)) = −κn ◦ [ın+1] and(e 27.89)

Γ(Bott(ϕ1 ◦ ın+2,∞, w
′
n+1)) = −κn+1 ◦ [ın+2].(e 27.90)

We also have

Γ(Bott(ϕ1 ◦ ın+1,∞, vnv
∗
n+1))|Hn = ζn − ζn+1 ◦ [ın+2] = ξn.(e 27.91)

But, by (e 27.74) and (e 27.75),

(−κn + ξn + κn+1 ◦ [ın+2]) = 0.(e 27.92)

By 10.6 of [37] (see also Remark 27.4), Γ(Bott(., .)) = 0 if and only if Bott(., .) =
0. Thus, by (e 27.88), (e 27.89), and (e 27.91),

−Bott(ϕ1 ◦ ın+1,∞, w
′
n) + Bott(ϕ1 ◦ ın+1,∞, vnv

∗
n+1)(e 27.93)

+Bott(ϕ1 ◦ ın+1,∞, w
′
n+1) = 0.

Put wn = v∗n(w′n)vn and un = vnw
∗
n, n = 1, 2, .... Then, by (e 27.62) and (e 27.86),

Adun ◦ ϕ1 ≈δ′n/2 ϕ2 for all a ∈ ın+1,∞(Gn+1).(e 27.94)

From (e 27.65), (e 27.61), and (e 27.93), we compute that

Bott(ϕ2 ◦ ın+1,∞, u
∗
nun+1)(e 27.95)

= Bott(ϕ2 ◦ ın+1,∞, wnv
∗
nvn+1w

∗
n+1)

= Bott(ϕ2 ◦ ın+1,∞, wn) + Bott(ϕ2 ◦ ın+1,∞, v
∗
nvn+1)

+Bott(ϕ2 ◦ ın+1,∞, w
∗
n+1)

= Bott(ϕ1 ◦ ın+1,∞, w
′
n) + Bott(ϕ1 ◦ ın+1,∞, vn+1v

∗
n)

+Bott(ϕ1 ◦ ın+1,∞, (w
′
n+1)∗)

= −[−Bott(ϕ1 ◦ ın+1,∞, w
′
n) + Bott(ϕ1 ◦ ın+1,∞, vnv

∗
n+1)

+Bott(ϕ1 ◦ ın+1,∞, w
′
n+1)] = 0.
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Let xi,n = [pi,n]− [qi,n], 1 ≤ i ≤ I(n). Note that we assume that Gu,n is a free
abelian group generated by {xi,n : 1 ≤ i ≤ I(n)}. Without loss of generality, we
may assume that these generators are independent. Put ei,n = ϕ2 ◦ ın+1,∞(pi,n),
e′i,n = ϕ2 ◦ ın+1,∞(qi,n), i = 1, 2, ..., I(n). Put s1 = 1 and ũ1 = u1s

∗
1 = u1. Define

a homomorphism Λ1 : Gu,1 → U0(A)/CU(A) (see (e 27.95)) by

Λ1(xi,1) = 〈((1− ei,1) + ei,1u∗1u2)((1− e′i,1) + e′i,1u
∗
2u1)〉.(e 27.96)

Since Λ1 factors through G′u,1, applying Theorem 24.5 (or just Theorem 22.18)
to ϕ2 ◦ ι2,∞, one obtains a unitary s2 ∈ A such that

||[ϕ2 ◦ ι2,∞(f), s2]|| < δ′2/4 for all f ∈ G2,(e 27.97)

Bott(ϕ2 ◦ ι2,∞, s2)|P2 = 0, and(e 27.98)

(e 27.99)

dist(〈((1− ei,1) + ei,1s∗2)((1− e′i,1) + e′i,1s2)〉,Λ1(−xi,1)) < σ′2/16.

Define ũ2 = u2s
∗
2. In what follows, we will construct unitaries s2, ..., sn, ... in A

such that

||[ϕ2 ◦ ιj+1,∞(f), sj+1]|| < δ′j+1/4 for all f ∈ Gj+1,(e 27.100)

Bott(ϕ2 ◦ ι+1,∞, sj+1)|Pj = 0, and(e 27.101)

(e 27.102)

dist(〈((1− ei,j) + ei,js∗n+1)((1− e′i,j) + e′i,jsj+1)〉,Λn(−xi,j)) < σ′n/16,

where Λj : Gu,j → U0(A)/CU(A) is a homomorphism defined by

Λj(xi,j) = 〈((1− ei,j) + ei,ũj
∗uj+1)((1− e′i,j) + e′i,ju

∗
j+1ũj)〉(e 27.103)

(see (e 27.95) and (e 27.101) for j), and ũj = ujs
∗
j , j = 1, 2, ....

Assume that s2, ..., sn are already constructed. Let us construct sn+1. Note
that by (e 27.95) the K1 class of the unitary u∗nun+1 is trivial. In particular,
the K1 class of snu

∗
nun+1 is trivial. Since Λn factors through G′u,n, applying

Theorem 24.5 to ϕ2 ◦ ιn+1,∞, one obtains a unitary sn+1 ∈ A such that

||[ϕ2 ◦ ιn+1,∞(f), sn+1]|| < δ′n+1/4 for all f ∈ Gn+1,(e 27.104)

Bott(ϕ2 ◦ ιn+1,∞, sn+1)|Pn = 0, and(e 27.105)

(e 27.106)

dist(〈((1− ei,n) + ei,ns∗n+1)((1− e′i,n) + e′i,nsn+1)〉,Λn(−xi,n)) < σ′n/16,
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i = 1, 2, ..., I(n+1). Then s1, s2, ..., sn+1 satisfy (e 27.100), (e 27.101), and (e 27.102).

Put ũn + 1 = un+1s
∗
n+1. Then by (e 27.94) and (e 27.100), one has

ad ũn ◦ ϕ1 ≈δ′n ϕ2 for all a ∈ ın+1,∞(Gn+1).(e 27.107)

By (e 27.95) and (e 27.101), one has

(e 27.108) Bott(ϕ2 ◦ ιn+1,∞, (ũn)∗ũn+1)|Pn = 0.

Note that

〈(1− ei,n) + ei,nũn
∗
ũn+1〉〈(1− e′i,n) + e′i,nũn+1

∗
ũn〉(e 27.109)

= c1c2c4c3 = c1c3c2c4,

where

c1 = 〈(1− ei,n) + ei,nũn
∗
un+1〉, c2 = 〈(1− ei,n) + ei,ns

∗
n+1〉.(e 27.110)

c3 = 〈(1− e′i,n) + e′i,nu
∗
n+1ũn〉, c4 = 〈(1− e′i,n) + e′i,nsn+1〉.(e 27.111)

Therefore, by (e 27.104) and (e 27.103), one has

dist(〈((1− ei,n) + ei,nũn
∗
ũn+1)((1− e′i,n) + e′i,nũn+1

∗
ũn)〉), 1̄)(e 27.112)

< σ′n/16 + dist(Λn(xi,n)Λn(−xi,n), 1̄) = σ′n/16,(e 27.113)

i = 1, 2, ..., I(n). Therefore, by Lemma 25.4 (and Remark 25.5), there exists a
continuous and piecewise smooth path of unitaries {zn(t) : t ∈ [0, 1]} of A such
that

zn(0) = 1, zn(1) = (ũn)∗ũn+1 and(e 27.114)

‖[ϕ2(a), zn(t)]‖ < 1/2n+2 for all a ∈ Fn and t ∈ [0, 1].(e 27.115)

Define
u(t+ n− 1) = ũnzn+1(t) t ∈ (0, 1].

Note that u(n) = ũn+1 for all integers n and {u(t) : t ∈ [0,∞)} is a continuous
path of unitaries in A. One estimates that, by (e 27.94) and (e 27.115),

Adu(t+ n− 1) ◦ ϕ1 ≈δ′n Ad zn+1(t) ◦ ϕ2 ≈1/2n+2 ϕ2 on Fn

for all t ∈ (0, 1). It then follows that

lim
t→∞

u∗(t)ϕ1(a)u(t) = ϕ2(a) for all a ∈ C.(e 27.116)

�
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28. Rotation Maps and Strong Asymptotic Equivalence

Lemma 28.1. Let A be a unital separable simple C∗-algebra of stable rank one.
Suppose that u ∈ CU(A). Then, for any continuous and piecewise smooth path
{u(t) : t ∈ [0, 1]} ⊂ U(A) with u(0) = u and u(1) = 1A,

DA({u(t)}) ∈ ρA(K0(A)) (recall Definition 2.16 of [21] for DA).

(e 28.1)

Proof. It follows from Corollary 11.11 of [21] that the map
j : u 7→ diag(u, 1, ..., 1) from U(A) to U(Mn(A)) induces an isomorphism from
U(A)/CU(A) to U(Mn(A))/CU(Mn(A)). Then the conclusion follows from 3.1
and 3.2 of [52]. �

Lemma 28.2. Let A be a unital separable simple C∗-algebra of stable rank one.
Suppose that B is a unital separable C∗-algebra and suppose that ϕ, ψ : B → A
are two unital monomorphisms such that

[ϕ] = [ψ] in KK(B,A),(e 28.2)

ϕT = ψT and ϕ‡ = ψ‡.(e 28.3)

Then

Rϕ,ψ ∈ Hom(K1(B), ρA(K0(A))).(e 28.4)

Proof. Let z ∈ K1(B) be represented by a unitary u ∈ U(Mm(B)) for some
integer m. Then, by (e 28.3),

(ϕ⊗ idMm)(u)(ψ ⊗ idMm)(u)∗ ∈ CU(Mm(A)).

Suppose that {u(t) : t ∈ [0, 1]} is a continuous and piecewise smooth path
in Mm(U(A)) such that u(0) = (ϕ⊗ idMm)(u) and u(1) = (ψ ⊗ idMm)(u).
Put w(t) = (ψ ⊗ idMm

)(u)∗u(t). Then w(0) = (ψ ⊗ idMm
)(u)∗(ϕ⊗ idMm

)(u) ∈
CU(A) and w(1) = 1A. Thus,

Rϕ,ψ(z)(τ) =
1

2πi

∫ 1

0

τ(
du(t)

dt
u∗(t))dt =

1

2πi

∫ 1

0

τ(ψ(u)∗
du(t)

dt
u∗(t)ψ(u))dt

=
1

2πi

∫ 1

0

τ(
dw(t)

dt
w∗(t))dt

for all τ ∈ T (A). By 28.1,

Rϕ,ψ(z) ∈ ρA(K0(A)).

It follows that

Rϕ,ψ ∈ Hom(K1(B), ρA(K0(A))).

�
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Theorem 28.3. Let C1, C2 ∈ B0 be unital separable simple C∗-algebras, and
A = C1 ⊗ U1, B = C2 ⊗ U2, where U1 and U2 are UHF-algebras of infinite type,
and B satisfies the UCT. Suppose that B is a unital C∗-subalgebra of A, and
denote by ı the embedding. For any λ ∈ Hom(K1(B), ρA(K0(A))), there exists
ϕ ∈ Inn(B,A) (see Definition 2.8 of [21]) such that there are homomorphisms
θi : Ki(B)→ Ki(Mı,ϕ) with (π0)∗i ◦ θi = idKi(B), i = 0, 1, and the rotation map
Rı,ϕ : K1(Mı,ϕ)→ Aff(T (A)) is given by

Rı,ϕ(x) = ρA(x− θ1(π0)∗1(x)) + λ ◦ (π0)∗1(x))(e 28.5)

for all x ∈ K1(Mı,ϕ). In other words,

[ϕ] = [ı] in KK(B,A)(e 28.6)

and the rotation map Rı,ϕ : K1(Mı,ϕ)→ Aff(T (A)) is given by

Rı,ϕ(a, b) = ρA(a) + λ(b)(e 28.7)

for some identification of K1(Mı,ϕ) with K0(A)⊕K1(B).

Proof. The proof is exactly the same as that of Theorem 4.2 of [44]. By
Lemma 23.3 and Lemma 24.1 (see also Lemma 24.2 and Remark 22.15), we have
the properties (B1) and (B2) associated with B (defined in 3.6 of [44]) as in
Theorem 4.2 of [44]. In 4.2 of [44], it is also assumed that ρA(K0(A)) is dense
in Aff(T (A)), which is only used to get that ψ(K1(B)) ⊂ ρA(K0(A)), which
corresponds to the assumption λ(K1(B)) ⊂ ρA(K0(A)) here. �

Definition 28.4. Let A be a unital C∗-algebra and let C be a unital sep-
arable C∗-algebra. Denote by Moneasu(C,A) the set of all asymptotic uni-
tary equivalence classes of unital monomorphisms from C into A. Denote by
K : Mone

asu(C,A) → KKe(C,A)
++ the map defined by

ϕ 7→ [ϕ] for all ϕ ∈ Moneasu(C,A).

Let κ ∈ KKe(C,A)++. Denote by 〈κ〉 the set of classes of all ϕ ∈ Moneasu(C,A)
such that K(ϕ) = κ.

Denote by KKUTe(A,B)++ the set of triples (κ, α, γ) for which
κ ∈ KKe(A,B)++, α : U(A)/CU(A) → U(B)/CU(B) is a homomorphism ,
γ : T (B) → T (A) is a continuous affine map, and both α and γ are compatible
with κ. Denote by K the map from Moneasu(C,A) into KKUT (C,A)++ defined
by

ϕ 7→ ([ϕ], ϕ‡, ϕT ) for all ϕ ∈ Moneasu(C,A).

Denote by 〈κ, α, γ〉 the subset of ϕ ∈ Moneasu(C,A) such that K(ϕ) = (κ, α, γ).
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Theorem 28.5. Let C and A be two unital separable amenable C∗-algebras.
Suppose that ϕ1, ϕ2, ϕ3 : C → A are three unital monomorphisms for which

[ϕ1] = [ϕ2] = [ϕ3] in KK(C,A)) and (ϕ1)T = (ϕ2)T = (ϕ3)T .

Then

Rϕ1,ϕ2
+Rϕ2,ϕ3

= Rϕ1,ϕ3
.

Proof. The proof is exactly the same as that of Theorem 9.6 of [40]. �

Lemma 28.6. Let A and B be two unital separable amenable C∗-algebras. Sup-
pose that ϕ1, ϕ2 : A→ B are two unital monomorphisms such that

[ϕ1] = [ϕ2] in KK(A,B) and (ϕ1)T = (ϕ2)T .

Suppose that (ϕ2)T : T (B) → T (A) is an affine homeomorphism. Suppose also
that there is α ∈ Aut(B) such that

[α] = [idB ] in KK(B,B) and αT = idT .

Then

Rϕ1,α◦ϕ2 = RidB ,α ◦ (ϕ2)∗1 +Rϕ1,ϕ2(e 28.8)

in Hom(K1(A),Aff(T (B)))/R0.

Proof. Using 28.5, we compute that

Rϕ1,α◦ϕ2 = Rϕ1,ϕ2 +Rϕ2,α◦ϕ2 = Rϕ1,ϕ2 +RidB ,α ◦ (ϕ2)∗1.

�

Theorem 28.7. Let B be a unital separable simple amenable C∗-algebra in
B0 satisfying the UCT, let C = B ⊗ U1, where U1 is a UHF-algebra of infinite
type, let A1 be a unital separable amenable simple C∗-algebra in B0, and let
A = A1 ⊗ U2, where U2 is another UHF-algebra of infinite type. Then the
map K : Moneasu(C,A) → KKUT (C,A)++ is surjective. Moreover, for each
(κ, α, γ) ∈ KKUT (C,A)++, there exists a bijection

η : 〈κ, α, γ〉 → Hom(K1(C), ρA(K0(A)))/R0.

Proof. It follows from Lemma 24.4 (also Remark 22.15) that K is surjective.
Fix a triple (κ, α, γ) ∈ KKT (C,A)++ and choose a unital monomorphism

ϕ : C → A such that [ϕ] = κ, ϕ‡ = α, and ϕT = γ. If ϕ1 : C → A is another
unital monomorphism such that K(ϕ1) = K(ϕ), then by Lemma 28.2,

Rϕ,ϕ1
∈ Hom(K1(C), ρA(K0(A)))/R0.(e 28.9)
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Let λ ∈ Hom(K1(C), ρA(K0(A))) be a homomorphism. It follows from Theo-
rem 28.3 that there is a unital monomorphism ψ ∈ Inn(ϕ(C), A) with [ψ◦ϕ] = [ϕ]
in KK(C,A) such that there exists a homomorphism θ : K1(C)→ K1(Mϕ,ψ◦ϕ)
with (π0)∗1 ◦ θ = idK1(C) for which Rϕ,ψ◦ϕ ◦ θ = λ. Let β = ψ ◦ ϕ. Then

Rϕ,β ◦ θ = λ. Note also that, since ψ ∈ Inn(ϕ(C), A), β‡ = ϕ‡ and βT = ϕT. In
particular, K(β) = K(ϕ).

Thus, for each unital monomorphism ϕ, we obtain a well-defined and surjec-
tive map

ηϕ : 〈[ϕ], ϕ‡, ϕT 〉 → Hom(K1(A), ρA(K0(A)))/R0.

To see that ηϕ is injective, consider two monomorphisms ϕ1, ϕ2 : C → A in
〈[ϕ], ϕ‡, ϕT 〉 such that

Rϕ,ϕ1
= Rϕ,ϕ2

.

Then, by Theorem 28.5,

Rϕ1,ϕ2 = Rϕ1,ϕ +Rϕ,ϕ2 = −Rϕ,ϕ1 +Rϕ,ϕ2 = 0.(e 28.10)

It follows from Theorem 27.5 that ϕ1 and ϕ2 are asymptotically unitarily equiv-
alent. The map ηϕ is the desired bijection η as 〈[ϕ], ϕ‡, ϕT 〉 = 〈κ, α, γ〉. �

Definition 28.8. Denote by KKUT−1
e (A,A)++ the subset of those elements

(κ, α, γ) ∈ KKUTe(A,A)++ for which κ|Ki(A) is an isomorphism (i = 0, 1), α
is an isomorphism, and γ is an affine homeomorphism. Recall from the proof of
Theorem 28.7 that

ηidA : 〈[idA], id‡A, (idA)T 〉 → Hom(K1(A), ρA(K0(A)))/R0

is a bijection.
Denote by 〈idA〉 the class of those automorphisms ψ which are asymptot-

ically unitarily equivalent to idA—this subset of Aut(A) gives rise to a sin-
gle element in Moneasu(A,A) which should not be confused with the subset

〈[idA], id‡A, (idA)T 〉 ⊂ Moneasu(A,A). Note that, if ψ ∈ 〈idA〉, then ψ is asymptot-
ically inner, i.e., there exists a continuous path of unitaries {u(t) : t ∈ [0,∞)} ⊂
A such that

ψ(a) = lim
t→∞

u(t)∗au(t) for all a ∈ A.

Note that 〈idA〉 is a normal subgroup of Aut(A).

Corollary 28.9. Let A1 ∈ B0 be a unital simple amenable C∗-algebra satis-
fying the UCT and let A = A1 ⊗ U for some UHF-algebra U of infinite type.
Then one has the following short exact sequence:

0 → Hom(K1(A), ρA(K0(A)))/R0

η−1
idA→ Aut(A)/〈idA〉

K→ KKUT−1
e (A,A)++ → 0.
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In particular, if ϕ,ψ ∈ Aut(A) are such that

K(ϕ) = K(ψ) = K(idA),

then
ηidA(ϕ ◦ ψ) = ηidA(ϕ) + ηidA(ψ).

Proof. It follows from Lemma 24.4 (see also Remark 22.15) that, for any
〈κ, α, γ〉, there is a unital monomorphism h : A→ A such that K(h) = 〈κ, α, γ〉.
The fact that κ ∈ KK−1

e (A,A)++ implies that there is κ1 ∈ KK−1
e (A,A)++

such that
κ× κ1 = κ1 × κ = [idA].

Using Lemma 24.4, choose h1 : A→ A such that

K(h) = 〈κ1, α
−1, γ−1〉.

It follows from Lemma 27.1 that h1 ◦h and h◦h1 are approximately unitarily
equivalent. Applying the standard approximate intertwining argument of G. A.
Elliott (Theorem 2.1 of [12]), one obtains two isomorphisms ϕ and ϕ−1 such that
there is a sequence of unitaries {un} in A such that

ϕ(a) = lim
n→∞

Adu2n+1 ◦ h(a) and ϕ−1(a) = lim
n→∞

Adu2n ◦ h1(a)

for all a ∈ A. Thus, [ϕ] = [h] in KL(A,A) and ϕ‡ = h‡ and ϕT = hT . Then, as in
the proof of 24.4, there is ψ0 ∈ Inn(A,A) such that [ψ0 ◦ϕ] = [idA] in KK(A,A)
as well as (ψ0 ◦ ϕ)‡ = h‡ and (ψ0 ◦ ϕ)T = hT . So we have ψ0 ◦ ϕ ∈ Aut(A,A)
such that K(ψ0 ◦ ϕ) = 〈κ, α, γ〉. This implies that K is surjective.

Now let λ ∈ Hom(K1(C),Aff(T (A)))/R0. The proof Theorem 28.7 says that
there is ψ00 ∈ Inn(A,A) (in place of ψ) such that K(ψ00 ◦ idA) = K(idA) and

RidA,ψ00
= λ.

Note that ψ00 is again an automorphism. The last part of the lemma then follows
from Lemma 28.6. �

Definition 28.10 (Definition 10.2 of [37] and see also [41]). Let A be a unital
C∗-algebra and B be another C∗-algebra. Recall ([41]) that

H1(K0(A),K1(B)) = {x ∈ K1(B) : ϕ([1A]) = x for some ϕ ∈ Hom(K0(A),K1(B))}.

Proposition 28.11 (Proposition 12.3 of [37])). Let A be a unital separable C∗-
algebra and let B be a unital C∗-algebra. Suppose that ϕ : A → B is a unital
homomorphism and u ∈ U(B) is a unitary. Suppose that there is a continuous
path of unitaries {u(t) : t ∈ [0,∞)} ⊂ B such that

u(0) = 1B and lim
t→∞

Adu(t) ◦ ϕ(a) = Adu ◦ ϕ(a)(e 28.11)

for all a ∈ A. Then
[u] ∈ H1(K0(A),K1(B)).
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Lemma 28.12. Let C = C ′ ⊗ U for some C ′ = lim−→(Cn, ψn) and a UHF algebra
U of infinite type, where each Cn is a direct sum of C*-algebras in C0 and H.
Assume that ψn is unital and injective. Let A ∈ B1. Let ϕ1, ϕ2 : C → A be
two monomorphisms such that there is an increasing sequence of finite subsets
Fn ⊂ C with dense union, an increasing sequence of finite subsets Pn ⊂ K1(C)
with union equal to K1(C), a sequence of positive numbers (δn) with

∑
δn < 1

and a sequence of unitaries {un} ⊂ A such that

Adun ◦ ϕ1 ≈δn ϕ2 on Fn and ρA(bott1(ϕ2, u
∗
nun+1)) = 0 for all x ∈ Pn.

Suppose that H1(K0(C),K1(A)) = K1(A). Then there exists a sequence of uni-
taries vn ∈ U0(A) such that

Advn ◦ ϕ1 ≈δn ϕ2 on Fn and(e 28.12)

ρA(bott1(ϕ2, v
∗
nvn+1)) = 0, x ∈ Pn.(e 28.13)

Proof. Let xn = [un] ∈ K1(A). Since H1(K0(C),K1(A)) = K1(A), there is
a homomorphism

κn,0 : K0(C)→ K1(A)

such that κn,0([1C ]) = −xn. Since C satisfies the Universal Coefficient Theorem,
there is κn ∈ KL(C ⊗ C(T), A) such that

(κn)|β(K0(C)) = κn,0 and (κn)|β(K1(C)) = 0.

Without loss of generality, we may assume that [1C ] ∈ Pn, n = 1, 2, ..... For each
δn, choose a positive number ηn < δn, such that

Adun ◦ ϕ1 ≈ηn ϕ2 on Fn.

By Lemma 24.1, there is a unitary wn ∈ U(A) such that

‖[ϕ2(a), wn]‖ < (δn − ηn)/2 for all a ∈ Fn and Bott(ϕ2, wn)|Pn = κn|β(Pn).

Put vn = unwn, n = 1, 2, .... Then

Advn ◦ ϕ1 ≈δn ϕ2 on Fn, ρA(bott1(ϕ2, v
∗
nvn+1))|Pn = 0

and, since [1C ] ∈ Pn,
[vn] = [un]− xn = 0,

as desired. �

Theorem 28.13. Let B ∈ B1 be a unital separable simple C∗-algebra which
satisfies the UCT, let A1 ∈ B1 be a unital separable simple C∗-algebra, and let
C = B ⊗ U1 and A = A1 ⊗ U2, where U1 and U2 are unital infinite dimen-
sional UHF-algebras. Suppose that H1(K0(C),K1(A)) = K1(A) and suppose
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that ϕ1, ϕ2 : C → A are two unital monomorphisms which are asymptotically
unitarily equivalent. Then ϕ1 and ϕ2 are strongly asymptotically unitarily equiv-
alent, that is, there exists a continuous path of unitaries {u(t) : t ∈ [0,∞)} ⊂ A
such that

u(0) = 1 and lim
t→∞

Adu(t) ◦ ϕ1(a) = ϕ2(a) for all a ∈ C.

Proof. By 4.3 of [40], one has

[ϕ1] = [ϕ2] in KK(C,A),

ϕ‡ = ψ‡, (ϕ1)T = (ϕ2)T and Rϕ1,ϕ2
= 0.

Then by Lemma 28.12 (see also Remark 22.15), one may assume that vn ∈ U0(A)
(n = 1, 2, ...) in the proof of Theorem 27.5. It follows that ξn([1C ]) = 0, n =
1, 2, ..., and therefore κn([1C ]) = 0. This implies that γn ◦ β([1C ]) = 0. Hence
wn ∈ U0(A), and also un ∈ U0(A). Therefore, the continuous path of unitaries
{u(t)} constructed in Theorem 27.5 is in U0(A), and then one may require that
u(0) = 1A by connecting u(0) to 1A. �

29. The General Classification Theorem

Lemma 29.1. Let A1 ∈ B0 be a unital separable simple C∗-algebra, let A =
A1 ⊗ U for some infinite dimensional UHF-algebra, and let p be a supernatural
number of infinite type. Then the homomorphism ı : a 7→ a ⊗ 1 induces an
isomorphism from U0(A)/CU(A) to U0(A⊗Mp)/CU(A⊗Mp).

Proof. There are sequences of positive integers {m(n)} and {k(n)} such that
A⊗Mp = limn→∞(A⊗Mm(n), ın), where

ın : Mm(n)(A)→Mm(n+1)(A)

is defined by ı(a) = diag(

k(n)︷ ︸︸ ︷
a, a, ..., a) for all a ∈ Mm(n)(A), n = 1, 2, .... Note,

Mm(n)(A) = Mm(n)(A1)⊗ U and Mm(n)(A1) ∈ B0. Let

jn : U(Mm(n)(A))/CU(Mm(n)(A)))→ U(Mm(n+1)(A))/CU(Mm(n+1)(A))

be defined by

jn(ū) = diag(u, 1, 1, ..., 1︸ ︷︷ ︸
k(n)−1

) for all u ∈ U((Mm(n)(A)).

It follows from Corollary11.11 of [21] that jn is an isomorphism. By Corollary
11.7 of [21], the abelian group U0(Mm(n)(A))/CU(Mm(n)(A)) is divisible. For
each n and i, there is a unitary Ui ∈Mm(n+1)(A) such that

U∗i E1,1Ui = Ei,i, i = 2, 3, ..., k(n),
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where Ei,i =
∑im(n)
j=(i−1)m(n)+1 ej,j and {ei,j} is a system of matrix units for

Mm(n+1). Then

ın(u) = u′(U∗2u
′U2)(U∗3u

′U3) · · · (U∗k(n)u
′Uk(n)),

where u′ = diag(u,
︷ ︸︸ ︷
1, 1, ..., 1), for all u ∈Mm(n)(A). Thus,

ı‡n(ū) = k(n)jn(ū).

It follows that ı‡n|U0(Mm(n)(A))/CU(Mm(n)(A)) is injective, since

U0(Mm(n+1)(A))/CU(Mm(n+1)(A))

is torsion free (see Lemma 11.5 of [21]) and jn is injective. For each z ∈
U0(Mm(n+1)(A)/CU(Mm(n+1)), there is a unitary v ∈Mm(n+1)(A) such that

jn(v̄) = z,

since jn is an isomorphism. By the divisibility of U0(Mm(n)(A)/CU(Mm(n)),
there is u ∈Mm(n)(A) such that

uk(n) = uk(n) = v.

As above,
ı‡n(ū) = k(n)jn(v̄) = z.

So ı‡n|U0(Mm(n)(A))/CU(Mm(n)(A)) is surjective. It follows that

ı‡n,∞|U0(Mm(n)(A))/CU(Mm(n)(A))

is an isomorphism. One then concludes that ı‡|U0(A)/CU(A) is an isomorphism.
�

Lemma 29.2. Let A1 and B1 be two unital separable simple C∗-algebras in B0,
let A = A1⊗U1 and let B = B1⊗U2, where U1 and U2 are two UHF-algebras of
infinite type. Let ϕ : A→ B be an isomorphism and let β : B ⊗Mp → B ⊗Mp

be an automorphism such that β∗1 = idK1(B⊗Mp) for some supernatural number
p of infinite type. Then

ψ‡(U(A)/CU(A)) = (ϕ0)‡(U(A)/CU(A)) = U(B)/CU(B),

where ϕ0 = ı ◦ ϕ, ψ = β ◦ ı ◦ ϕ and where ı : B → B ⊗ Mp is defined by
ı(b) = b⊗1 for all b ∈ B. Moreover, there is an isomorphism µ : U(B)/CU(B)→
U(B)/CU(B) with µ(U0(B)/CU(B)) ⊂ U0(B)/CU(B) such that

ı‡ ◦ µ ◦ ϕ‡ = ψ‡ and q1 ◦ µ = q1,

where q1 : U(B)/CU(B)→ K1(B) is the quotient map.
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Proof. The proof is exactly the same as that of Lemma 11.3 of [40]. �

Lemma 29.3. Let A1 and B1 be two unital simple amenable C∗-algebras in B0

satisfying the UCT, let A = A1 ⊗ U1, and let B = B1 ⊗ U2, where U1 and U2

are UHF-algebras of infinite type. Suppose that ϕ1, ϕ2 : A→ B are two isomor-
phisms such that [ϕ1] = [ϕ2] in KK(A,B). Then there exists an automorphism
β : B → B such that [β] = [idB ] in KK(B,B) and β ◦ ϕ2 is asymptotically uni-
tarily equivalent to ϕ1. Moreover, if H1(K0(A),K1(B)) = K1(B), then β can be
chosen so that β ◦ϕ1 and β ◦ϕ2 are strongly asymptotically unitarily equivalent.

Proof. It follows from Theorem 28.7 that there is an automorphism β1 : B →
B satisfying the following condition:

[β1] = [idB ] in KK(B,B),(e 29.1)

β‡1 = ϕ‡1 ◦ (ϕ−1
2 )‡ and (β1)T = (ϕ1)T ◦ (ϕ2)−1

T .(e 29.2)

By Corollary 28.9, there is automorphism β2 ∈ Aut(B) such that

[β2] = [idB ] in KK(B,B),(e 29.3)

β‡2 = id‡B , (β2)T = (idB)T , and(e 29.4)

RidB ,β2
= −Rϕ1,β1◦ϕ2

◦ (ϕ2)−1
∗1 .(e 29.5)

Put β = β2 ◦ β1. It follows that

[β ◦ ϕ2] = [ϕ1] in KK(A,B), (β ◦ ϕ2)‡ = ϕ‡1, and(e 29.6)

(β ◦ ϕ2)T = (ϕ1)T .

Moreover, by 28.6,

Rϕ1,β◦ϕ2 = RidB ,β2 ◦ (ϕ2)∗1 +Rϕ1,β1◦ϕ2(e 29.7)

= (−Rϕ1,β1◦ϕ2 ◦ (ϕ2)−1
∗1 ) ◦ (ϕ2)∗1 +Rϕ1,β1◦ϕ2 = 0.

It follows from 28.7 that β ◦ ϕ2 and ϕ1 are asymptotically unitarily equivalent.
In the case that H1(K0(A),K1(B)) = K1(B), it follows from Theorem 28.13

that β ◦ ϕ2 and ϕ1 are strongly asymptotically unitarily equivalent. �

Lemma 29.4. Let A1 and B1 be two unital simple amenable C∗-algebras in B0

satisfying the UCT and let A = A ⊗ U1 and B = B1 ⊗ U2 for UHF-algebras
U1 and U2 of infinite type. Let ϕ : A → B be an isomorphism. Suppose that
β ∈ Aut(B ⊗Mp) is such that

[β] = [idB⊗Mp
] in KK(B ⊗Mp, B ⊗Mp) and βT = (idB⊗Mp

)T

for some supernatural number p of infinite type.
Then there exists an automorphism α ∈ Aut(B) with [α] = [idB ] in KK(B,B)

such that ı ◦ α ◦ ϕ and β ◦ ı ◦ ϕ are asymptotically unitarily equivalent, where
ı : B → B ⊗Mp is defined by ı(b) = b⊗ 1 for all b ∈ B.



A classification of finite simple amenable Z-stable C*-algebras, II 535

Proof. It follows from Lemma 29.2 that there is an isomorphism
µ : U(B)/CU(B)→ U(B)/CU(B) such that

ı‡ ◦ µ ◦ ϕ‡ = (β ◦ ı ◦ ϕ)‡.

Note that ıT : T (B ⊗Mp)→ T (B) is an affine homeomorphism.
It follows from Theorem 28.7 that there is an automorphism α : B → B such

that

[α] = [idB ] in KK(B,B),

α‡ = µ, αT = (β ◦ ı ◦ ϕ)T ◦ ((ı ◦ ϕ)T )−1 = (idB⊗Mp
)T and

RidB ,α(x)(τ) = −Rβ◦ı◦ϕ, ı◦ϕ(ϕ−1
∗1 (x))(ıT (τ)) for all x ∈ K1(A)

and for all τ ∈ T (B).
Denote by ψ = ı ◦ α ◦ ϕ. Then we have, by Lemma 28.6,

[ψ] = [ı ◦ ϕ] = [β ◦ ı ◦ ϕ] in KK(A,B ⊗Mp)

ψ‡ = ı‡ ◦ µ ◦ ϕ‡ = (β ◦ ı ◦ ϕ)‡, and

ψT = (ı ◦ α ◦ ϕ)T = (ı ◦ ϕ)T = (β ◦ ı ◦ ϕ)T .

Moreover, for any x ∈ K1(A) and τ ∈ T (B ⊗Mp),

Rβ◦ı◦ϕ,ψ(x)(τ)

= Rβ◦ı◦ϕ,ı◦ϕ(x)(τ) +Rı,ı◦α ◦ ϕ∗1(x)(τ)

= Rβ◦ı◦ϕ,ı◦ϕ(x)(τ) +RidB ,ı◦α ◦ ϕ∗1(x)(ı−1
T (τ))

= Rβ◦ı◦ϕ,ı◦ϕ(x)(τ)−Rβ◦ı◦ϕ,ı◦ϕ(ϕ−1
∗1 )(ϕ∗1(x))(τ) = 0.

It follows from Theorem 27.5 that ı◦α◦ϕ and β◦ı◦ϕ are asymptotically unitarily
equivalent. �

Let N be the class of separable amenable C∗-algebras which satisfy the UCT.

Theorem 29.5. Let A and B be two unital separable simple C∗-algebras in N.
Suppose that there is an isomorphism

Γ : Ell(A)→ Ell(B).

Suppose also that, for some pair of relatively prime supernatural numbers p and
q of infinite type such that Mp⊗Mq

∼= Q, we have A⊗Mp ∈ B0, B⊗Mp ∈ B0,
A⊗Mq ∈ B0, and B ⊗Mq ∈ B0. Then,

A⊗ Z ∼= B ⊗ Z.
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Proof. The proof is almost identical to that of 11.7 of [40], with a few neces-
sary modifications. Note that Γ induces an isomorphism

Γp : Ell(A⊗Mp)→ Ell(B ⊗Mp).

Since A ⊗Mp ∈ B0 and B ⊗Mp ∈ B0, by Theorem 21.10 of [21], there is an
isomorphism ϕp : A⊗Mp → B ⊗Mp. Moreover (by the proof of Theorem 21.10
of [21]), ϕp carries Γp. In the same way, Γ induces an isomorphism

Γq : Ell(A⊗Mq)→ Ell(B ⊗Mq)

and there is an isomorphism ψq : A⊗Mq → B ⊗Mq which induces Γq.
Put ϕ = ϕp ⊗ idMq

: A⊗Q→ B ⊗Q and ψ = ψq ⊗ idMp
: A⊗Q→ B ⊗Q.

Note that
(ϕ)∗i = (ψ)∗i (i = 0, 1) and ϕT = ψT

(all four of these maps are induced by Γ). Note that ϕT and ψT are affine
homeomorphisms. Since K∗i(B ⊗ Q) is divisible, we in fact have [ϕ] = [ψ] (in
KK(A⊗Q,B⊗Q)). It follows from Lemma 29.3 that there is an automorphism
β : B ⊗Q→ B ⊗Q such that

[β] = [idB⊗Q] in KK(B ⊗Q,B ⊗Q)

and such that ϕ and β ◦ψ are asymptotically unitarily equivalent. Since K1(B⊗
Q) is divisible, H1(K0(A⊗Q),K1(B ⊗Q)) = K1(B ⊗Q). It follows that ϕ and
β ◦ ψ are strongly asymptotically unitarily equivalent. Note also in this case

βT = (idB⊗Q)T .

Let ı : B ⊗Mq → B ⊗Q be defined by ı(b) = b ⊗ 1 for b ∈ B. We consider the
pair β ◦ ı ◦ ψq and ı ◦ ψq. Applying Lemma 29.4, we obtain an automorphism
α : B⊗Mq → B⊗Mq such that ı◦α◦ψq and β◦ı◦ψq are asymptotically unitarily
equivalent (in B ⊗ Q). So, by Lemma 29.3, they are strongly asymptotically
unitarily equivalent in B ⊗Q. Moreover,

[α] = [idB⊗Mq
] in KK(B ⊗Mq, B ⊗Mq).

We will show that β ◦ ψ and (α ◦ ψq) ⊗ idMp
are strongly asymptotically

unitarily equivalent. Define β1 = (β ◦ ı◦ψq)⊗ idMp
: B⊗Q⊗Mp → B⊗Q⊗Mp.

Let j : Q → Q ⊗ Mp be defined by j(b) = b ⊗ 1. There is an isomorphism
s : Mp → Mp ⊗ Mp such that the homomorphism idMq

⊗ s : Mq ⊗ Mp(=
Q) → Mq ⊗ Mp ⊗ Mp(= Q ⊗ Mp) induces (idMq

⊗ s)∗0 = j∗0. In this case,
[idMq

⊗ s] = [j]. Since K1(Mp) = 0, by Theorem 27.5, idMq
⊗ s is strongly

asymptotically unitarily equivalent to j. It follows that (α ◦ ψq) ⊗ idMp
and

(β ◦ ı ◦ ψq) ⊗ idMp
are strongly asymptotically unitarily equivalent (note that

ı◦α◦ψq and β ◦ ı◦ψq are strongly asymptotically unitarily equivalent). Consider
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the C∗-subalgebra C = β ◦ ψ(1 ⊗Mp) ⊗Mp ⊂ B ⊗ Q ⊗Mp. In C, β ◦ ϕ|1⊗Mp

and j0 are strongly asymptotically unitarily equivalent, where j0 : Mp → C is
defined by j0(a) = 1⊗ a for all a ∈ Mp. In particular, there exists a continuous
path of unitaries {v(t) : t ∈ [0,∞)} ⊂ C such that

lim
t→∞

Ad v(t) ◦ β ◦ ϕ(1⊗ a) = 1⊗ a for all a ∈Mp.(e 29.8)

It follows that β ◦ ψ and β1 are strongly asymptotically unitarily equivalent.
Therefore β ◦ψ and (α◦ψq)⊗ idMp

are strongly asymptotically unitarily equiva-
lent. Finally, we conclude that (α◦ψq)⊗ idMp

and ϕ are strongly asymptotically
unitarily equivalent. Note that α ◦ ψq is an isomorphism which induces Γq.

Let {u(t) : t ∈ [0, 1)} be a continuous path of unitaries in B ⊗Q with u(0) =
1B⊗Q such that

lim
t→∞

Adu(t) ◦ ϕ(a) = α ◦ ψq ⊗ idMp
(a) for all a ∈ A⊗Q.

One then obtains a unitary suspended isomorphism which lifts Γ along Zp,q (see
[56]). It follows from Theorem 7.1 of [56] that A⊗Z and B⊗Z are isomorphic. �

Definition 29.6. Denote by N0 the class of those unital simple C∗-algebras
A in N for which A ⊗Mp ∈ N ∩ B0 for any supernatural number p of infinite
type.

Of course N0 contains all unital simple amenable C∗-algebras in B0 which
satisfy the UCT. It contains all unital simple inductive limits of C∗-algebras in
C0. It should be noted that, by Theorem 19.3 of [21], N0 = N1.

Corollary 29.7. Let A and B be two C∗-algebras in N0. Then A⊗Z ∼= B⊗Z

if and only if Ell(A⊗ Z) ∼= Ell(B ⊗ Z).

Proof. This follows from Theorem 29.5 immediately. �

Theorem 29.8. Let A and B be two unital separable simple amenable Z-stable
C∗-algebras which satisfy the UCT. Suppose that gTR(A⊗Q) ≤ 1 and gTR(B⊗
Q) ≤ 1. Then A ∼= B if and only if

Ell(A) ∼= Ell(B).

Proof. It follows from Corollary 19.3 of [21] that A⊗ U,B ⊗ U ∈ B0 for any
UHF-algebra U of infinite type. The theorem follows immediately by Corollary
29.7. �

Corollary 29.9. Let A and B be two unital separable amenable simple C∗-
algebras which satisfy the UCT. Suppose that gTR(A) ≤ 1 and gTR(B) ≤ 1.
Then A ∼= B if and only if

Ell(A) ∼= Ell(B).
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Corollary 29.10. Let A and B be two unital simple C∗-algebras in B1 ∩ N.
Then A ∼= B if and only if

Ell(A) ∼= Ell(B).

Proof. It follows from Theorem 10.7 of [21] that A⊗Z ∼= A and B ⊗Z ∼= B.
The corollary then follows from Theorem 29.8. �

Remark 29.11. Soon after this work was completed in 2015, it was shown (see
[16]) C∗-algebras A with finite decomposition rank which satisfy the UCT have
gTR(A ⊗ U) ≤ 1 for all UHF-algebras of infinite type. Therefore, by Theorem
29.8, they are classified by the Elliott invariant.
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7. M. Dădărlat and S. Eilers, On the classification of nuclear C∗-algebras, Proc. London
Math. Soc. 85 (2002), 168–210.
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