Special Week on Operator Algebras in June 2013
Monday, 17 June | |
---|---|
9:00 AM--9:05 AM | Opening |
9:05 AM--10:00 AM | Mikael Rordam: Central sequences and tensorial absorption of the Jiang-Su algebra. |
10:00 AM--10:30 AM | Tea Break |
10:30 AM--11:25 AM | HervĀ“e Oyono-Oyono: Persistent Approximation Property for C*-algebras with propagation. |
11:20 AM--1:30 PM | Lunch Break |
1:30 PM--2:25 PM | Zhong-jin Ruan: Multipliers of locally compact groups and quantum groups. |
2:25 PM-- 2:30 PM | Rest |
2:30 PM--3:25 PM | Qin Wang: Some progress on the coarse Novikov conjecture. |
3:20 PM--3:55 PM | Tea Break |
3:55 PM--4:50 PM | Zhuang Niu: C*-algebras of certain non-minimal homeomorphisms on a Cantor set. |
8:30 AM--9:25 AM | Liming Ge: Uncertainty principle for abelian groups. |
9:25 AM--9:30 AM | Rest |
9:30 AM--10:25 AM | Hiroyuki Osaka: LP property for C*-algebras. |
10:25 AM--10:55 AM | Tea Break |
10:55 AM--11:50 AM | Yasuhiko Sato: Decomposition rank of UHF-absorbing C*-algebras. |
11:50 AM--2:00 PM | Lunch Break |
2:00 PM--2:55 PM | Guoliang Yu: Finite part of K-theory for group C*-algebras and its applications. |
2:55 PM--3:25 PM | Tea Break |
3:25 PM--4:20 PM | Yijun Yao: On K-theory of some noncommutative orbifolds. |
9:00 AM--9:55 AM | Guihua Gong: Classification of simple C*-algebras of generalized tracial rank one. |
9:55 AM--10:25 AM | Tea Break |
10:25 AM--11:20 AM | Ja A Jeong: Cuntz-Krieger Algebras associated with Labeled Graphs. |
11:20 AM--2:00 PM | Lunch Break |
2:00 PM--2:55 PM | Magdalena Musat: Factorizable completely positive maps and the Connes embedding problem. |
2:55 PM--3:30 PM | Tea Break |
3:30 PM--4:25 PM | Feng Xu: On questions about intermediate subfactors. |
Day Break |
9:00 AM--9:55 AM | Uffe Haagerup: Approximation properties for groups and von Neumann algebras. |
9:55 AM--10:25 AM | Tea Break |
10:25 AM--11:00 AM | Dan Li: Harper operators: their geometry and physics. |
11:00 AM--11:05 AM | Rest |
11:05 AM--11:40 AM | Wei Sun: The relationship between approximate conjugacies and K-theory for certain dynamical systems. |