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G - group generated by a finite set S

Definition (“Easy definition”)

G has property (T) if every action of G on a Hilbert space by
affine isometries has a fixed point

⇐⇒

H1(G, π) = 0

for every π - unitary representation of G on some Hilbert space.
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Property (T)

G - group generated by a finite set S

Definition (Kazhdan 1966)

G has property (T) if there is κ = κ(G,S) > 0 such that

sup
s∈S
‖v − πsv‖ ≥ κ‖v‖

for every unitary representation without invariant vectors.

Kazhdan constant = optimal κ(G,S)

⇐⇒ the trivial rep is an isolated point in the unitary dual of G with
the Fell topology
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Property (T)

Finite groups have (T)

Examples of infinite groups with (T):

• higher rank simple Lie groups and their lattices
SLn(R), SLn(Z), n ≥ 3 (Kazhdan, 1966)

• Sp(n, 1) (Kostant 1969)

• automorphism groups of certain buildings
(Cartwright-Młotkowski-Steger 1996, Pansu, Żuk,
Ballmann-Świa̧tkowski, 1997-98)

• certain random hyperbolic groups in the triangular and
Gromov model (Żuk 2003)

Examples without (T): amenable, free, groups with infinite abelianization,
groups acting unboundedly on finite-dim. CAT(0) cube complexes
(Niblo-Reeves)
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Why is property (T) interesting?

• Margulis (1977): G with (T), Ni ⊆ G family of finite index
subgroups with trivial intersection =⇒ Cayley graphs of G/Ni

form expander graphs (e.g. SL3(Zpn ) for p-prime)

• Fisher-Margulis (2003): G has (T), acts smoothly on a
smooth manifold via an action ρ. Then any smooth action ρ′

sufficiently close to ρ on the generators is conjugate to ρ.

• rigidity for von Neumann algebras, Popa’s deformation/rigidity
techniques

• counterexamples to Baum-Connes type conjectures
(Higson-Lafforgue-Skandalis 2003): K -theory classes
represented by Kazhdan-type projections do not lie in the
image of certain versions of the Baum-Connes assembly map
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2 main directions in proving (T):

- algebraic: G has rich algebraic structure + knowledge of
representation theory

- Garland’s method (geometric or spectral):
G acts on a complex whose links are sufficiently expanding
(λ1 > 1/2)
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Question

Does Aut(Fn) or Out(Fn) have property (T)?

Neither of the earlier methods of proving (T) applies

Small values of n:

• Aut(F2) maps virtually onto Out(F2) ' GL2(Z)

• Aut(F3) maps onto Z (McCool 1989)
and virtually onto F2 (Grunewald-Lubotzky 2006)

=⇒ no (T)
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Ozawa’s characterization

Laplacian in the real group ring RG:

∆ = |S | −
∑
s∈S

s

=
1
2

∑
s∈S

(1 − s)(1 − s)∗ ∈ RG

Property (T) ⇔ 0 ∈ spectrum(∆) in C∗max(G) is isolated

⇔ (∆ − λI)∆ ≥ 0 in C∗max(G) for some λ > 0

Theorem (Ozawa, 2014)

(G,S) has property (T) iff for some λ > 0 and a finite collection
of ξi ∈ RG

∆2 − λ∆ =
n∑

i=1

ξ∗i ξi

This is a finite-dim condition
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Property (T) quantified

If the equation is satisfied:

∆2 − λ∆ =
n∑

i=1

ξ∗i ξi

then relation to Kazhdan constants:

√
2λ
|S |
≤ κ(G,S)

we can also define the following notion

Definition

Kazhdan radius of (G,S) = smallest r > 0 such that
supp ξi ⊆ B(e, r) for all ξi above.
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Implementation for SLn(Z)

Implementation of this strategy pioneered by Netzer-Thom (2015):

a new, computer-assisted proof of (T) for SL3(Z)

(generators: elementary matrices)

Improvement of Kazhdan constant:

' 1/1800 → ' 1/6

Later also improved Kazhdan constants for SLn(Z) for

n = 3, 4 (Fujiwara-Kabaya)

n = 3, 4, 5 (Kaluba-N.)
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Setup

We will work with SAut(Fn)

subgroup of Aut(Fn), generated by Nielsen transformations:

R±ij (sk ) =

 sk s±1
j if k = i

sk oth.
, L±ij (sk ) =

 s±1
j sk if k = i

sk oth.

Equivalently,
SAut(Fn) = ab−1(SLn(Z))

under the map Aut(Fn)→ GLn(Z) induced by the abelianization
Fn → Z

n.

SAut(Fn) has index 2 in Aut(Fn)
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Main results

Theorem (Kaluba - N. - Ozawa)

SAut(F5) has property (T) with Kazhdan constant

0.18 ≤ κ(SAut(F5))

Theorem (Kaluba - Kielak - N.)

SAut(Fn) has property (T) for n ≥ 6 with Kazhdan radius 2 and
Kazhdan constant√

0.138(n − 2)

6(n2 − n)
≤ κ(SAut(Fn)).
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Certifying positivity via
semidefinite programming



η ∈ RG positive if η is a sum of squares:

η =
k∑

i=1

ξ∗i ξi

where supp ξi ⊆ E - finite subset of G. (here always E = B(e, 2))

⇐⇒

there is a positive definite E ×E matrix P such that for b = [g1, . . . , gn]gi∈E

η = bPbT = bQQT bT = (bQ)(bQ)T

i-th column of Q = coefficients of ξi

13



Using the solver

To check if η is positve we can use a semidefinite solver to perform
convex optimization over positive definite matrices:

find P ∈ ME×E such that:

η = bPbT

positive semi-definite
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Assume now that a computer has found a solution P - we obtain

η '
∑

ξ∗i ξi

this is not a precise solution

However this can be improved if the error is small in a certain
sense and η belongs to the augmentation ideal IG

Lemma (Ozawa, Netzer-Thom)
∆ is an order unit in IG: if η = η∗ ∈ IG then

η + R∆ =
∑

ξ∗i ξi

for all sufficiently large R ≥ 0.

Moreover, R = 22r−2‖η‖1 is sufficient, where supp η ⊆ B(e, 2r).
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With this in mind we can try to improve our search of P to show
that η is “strictly positive”:

maximize λ ≥ 0 under the conditions

η − λ∆ = bPbT

P ∈ ME×E positive semi-definite
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Assume now that numerically on B(e, 2r)

η − λ∆ ' bPbT

and P = QQT .

Correct Q to Q , where columns of Q sum up to 0.∥∥∥∥∥η − λ∆ − bQ Q
T

bT
∥∥∥∥∥

1
≤ ε

Then for R = ε22r−2 or larger:

η − λ∆ + R∆︸      ︷︷      ︸
(λ−R)∆

= bQ Q
T

bT︸      ︷︷      ︸∑
η∗i ηi

+ (η − λ∆ − bQ Q
T

bT + R∆)︸                                ︷︷                                ︸
≥0 by lemma

If λ − R > 0 then η − (λ − R)∆ ≥ 0 and in particular, ξ ≥ 0.
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Important:
The `1-norm is computed in interval artihmetic.

This gives a mathematically rigorous proof of positivity of η.
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We want to use this strategy in SAut(F5).

Problem #1:
|B(e, 2)| = 4 641

P has 10 771 761 variables - too large for a solver to handle

19



Symmetrization

We reduce the number of variables via symmetries

Γ = Z2 o Symn acts on generators of Fn by inversions and
permutations

Γ also acts on Aut(F5) by conjugation

preserves SAut(Fn) and ∆2 − λ∆

There is an induced action onME - E × E matrices

Lemma
If there is a solution P then there is also a Γ-invariant solution P.
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Symmetrization

Problem #2: solvers do not work with Γ-invariant matrices...

ρE = permutation representation of Γ on `2(E)

ρE =
⊕
π∈Γ̂

mππ

where mπ=multiplicity of π

Theorem (Wedderburn decomposition)

C∗(ρE) '
⊕
π∈Γ̂

Mdim π ⊗ 1mπ

Thus: MΓ
E ' (C∗(ρE))′ '

⊕
π∈Γ̂ 1dim π ⊗Mmπ

We need this isomorphism to be explicit - this can be done using a
system of minimal projections provided by representation theory
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The reduction for SAut(F5):

from 10 771 761 variables→ 13 232 variables in 36 blocks
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Theorem (Kaluba-N.-Ozawa)

SAut(F5) has (T) with Kazhdan constant ≥ 0.18027.

Proof.

Find sum of squares decomposition for ∆2 − λ∆

on the ball of radius 2
Data from solver: P and λ = 1.3

8.30 · 10−6 ≤

∥∥∥∥∆2 − λ∆ −
∑

ξ∗i ξi

∥∥∥∥
1
≤ 8.41 · 10−6

=⇒ R = 8.41 · 10−6 · 24−2 suffices

λ − R = 1.2999 > 0

� 23



In the case of SLn(Z):

(T) for SL3(Z) =⇒ (T) for SLn(Z) for all higher n

Is a similar strategy possible here?

24



Property (T) for Aut(Fn), n ≥ 6



Gn with generating set Sn will denote either one of the families

• SAut(Fn) generatred by Nielsen transformations R±i,j , L±i,j

• SLn(Z) generated by elementary matrices E±i,j

25



Gn form a tower via the inclusions of

Fn ⊆ Fn+1 and Zn ⊆ Zn+1

obtained by adding the next generator

Cn - (n − 1)-simplex on {1, . . . , n}

En set of edges of Cn = unoriented pairs e = {i, j}

Altn acts on edges: σ(e) = σ({i, j}) = {σ(i), σ(j)}

Map
ln : Sn → Cn,

R±ij , L
±
ij 7→ {i, j}, E±ij 7→ {i, j}
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In other words, a copy of G2 is attached at each edge.

Given 2 edges they can

1. coincide
2. be adjacent (share a vertex)
3. be opposite (share no vertices) - corresponding copies of G2

commute

∆n ∈ RGn - Laplacian of Gn

For an edge e = {i, j} let Se = {s ∈ Sn : ln(s) = e} and

∆e = |Se | −
∑
t∈Se

t

is the Laplacian of the copy of G2 attached to e

We have σ(∆e) = ∆σ(e) for any σ ∈ Altn
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0 1
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3

Altn permutes vertices

e = {1, 2}

SAut(F2) or SL2(Z)

∆e

f = {0, 3}

SAut(F2) or SL2(Z)

∆f
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∆e are building blocks of the Laplacians in Gn:

Lemma

∆n =
∑
e∈En

∆e

=
1

(n − 2)!

∑
σ∈Altn

σ(∆e).

Proposition (Stability for ∆n)
For m ≥ n ≥ 3 we have∑

σ∈Altm

σ(∆n) =
|Altn |

(n − 2)!

∑
σ∈Altn

σ(∆2) =

(
n
2

)
(m − 2)!∆m.

Main step in proving property (T) for Gn:
a “stable” decomposition of ∆2

n − λ∆n
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Define three elements of RGn:

1. Sqn =
∑

e∈En ∆2
e

2. Adjn =
∑

e∈En

∑
f∈Adjn(e) ∆e∆f

3. Opn =
∑

e∈En

∑
f∈Opn(e) ∆e∆f

Lemma

Sqn + Adjn + Opn = ∆2
n
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Lemma
The elements Sqn and Opn are sums of squares.

Proof.
Obvious for Sqn.

For Opn:

∆e =
1
2

∑
t∈Se

(1 − t)∗(1 − t)

e, f opposite edges then the generators associated to them
commute and ∆e∆f can be rewritten as a sum of squares using

(1 − t)∗(1 − t)(1 − s)∗(1 − s) =
(
(1 − t)(1 − s)

)∗(
(1 − t)(1 − s)

)
�

31



Lemma
The elements Sqn and Opn are sums of squares.

Proof.
Obvious for Sqn.

For Opn:

∆e =
1
2

∑
t∈Se

(1 − t)∗(1 − t)

e, f opposite edges then the generators associated to them
commute and ∆e∆f can be rewritten as a sum of squares using

(1 − t)∗(1 − t)(1 − s)∗(1 − s) =
(
(1 − t)(1 − s)

)∗(
(1 − t)(1 − s)

)
�

31



Stability for Adj and Op:

Proposition
For m ≥ n ≥ 3 we have∑

σ∈Altm

σ (Adjn) =

(
1
2

n(n − 1)(n − 2)(m − 3)!

)
Adjm

Proposition
For m ≥ n ≥ 4 we have∑

σ∈Altm

σ (Opn) =

(
2
(
n
2

) (
n − 2

n

)
(m − 4)!

)
Opm
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The following allows to prove (T) for SLn(Z) for n ≥ 3 and for
SAut(Fn), n ≥ 7.

Theorem
Let n ≥ 3 and

Adjn +k Opn −λ∆n =
∑

ξ∗i ξi

where supp ξi ⊂ B(e,R), for some k ≥ 0, λ ≥ 0.

Then Gm has property (T) for every m ≥ n such that

k(n − 3) ≤ m − 3.

Moreover, the Kazhdan radius is bounded above by R.
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Proof: Rewrite ∆2
m − λ∆m using stability of Op, Adj and ∆.

Eventually arrive at:

∆2
m −

λ(m − 2)

n − 2
∆m = Sqm + Adjm + Opm

= Sqm +

(
1 −

k(n − 3)

m − 3

)
Opm +

2
n(n − 1)(n − 2)(m − 3)!

∑
σ∈Altm

σ (Adjn +k Opn −λ∆n)

When 1 −
k(n − 3)

m − 3
≥ 0 we obtain the claim. �
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Results



Theorem

SAut(Fn) has (T) for n ≥ 6, with Kazhdan radius 2 and Kazhdan
constant estimate √

0.138(n − 2)

6(n2 − n)
≤ κ(SAutn).

Proof.
The case n ≥ 7:

Adj5 +2 Op5 −0.138∆5

certified positive on the ball of radius 2. �

The case n = 6 needs a different computation.
The case n = 5 so far can only be proven directly.

Remark: Currently we also can certify Adj4 +100 Op4 −0.1∆ in
SAut(F4) proving (T) for n ≥ 103.
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Theorem

SLn(Z) has (T) for n ≥ 3, with Kazhdan radius 2 and Kazhdan
constant estimate√

0.157999(n − 2)

n2 − n
≤ κ(SLn(Z)).

Proof.

Adj3 −0.157999∆3

certified positive on the ball of radius 2. �

This gives a new estimate on the Kazhdan constants of SLn(Z).
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We obtain an even better estimate by certifying positivity of

Adj5 +1.5 Op5 −1.5∆5

in R SL5(Z):

√
0.5(n − 2)

n2 − n
≤ κ(SLn(Z)) for n ≥ 6.

Previously known bounds:

(Kassabov 2005)
1

42
√

n + 860
≤ κ(SLn(Z)) ≤

√
2
n

(Żuk 1999)

Asymptotically, the new lower bound is 1/2 of the upper bound:

Żuk’s upper bound
our lower bound

= 2

√
n − 1
n − 2

−→ 2 (n ≥ 6)
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Some applications

Product Replacement Algorithm generates random elements in
finite groups

Lubotzky and Pak in 2001 showed that property (T) for Aut(Fn)

explains the fast performance of the Product Replacement
Algorithm

=⇒ now proven
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Some applications

Question (Lubotzky 1994)
Is there a sequence of finite groups such that their Cayley graphs
are expanders or not for different generating sets (uniformly
bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Gilman 1977: Aut(Fn) for n ≥ 3 residually alternating

=⇒ sequences of alternating groups with Aut(Fn) generators are
expanders

This gives an alternative answer to Lubotzky’s questions with
explicit generating sets
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For Aut(F4) property (T) was confirmed recently by M. Nitsche
(arxiv 2020)

With Uri Bader we generalized Ozawa’s chatacterization to higher
cohomology.
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