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HOMOLOGY AND K-THEORY OF DYNAMICAL SYSTEMS

I. TORSION-FREE AMPLE GROUPOIDS

VALERIO PROIETTI AND MAKOTO YAMASHITA

Abstract. Given an ample groupoid, we construct a spectral sequence with groupoid homology
with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid
C∗-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the
Baum–Connes conjecture. The construction is based on the triangulated category approach to the
Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to
topological dynamics and discuss the HK conjecture of Matui.
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Introduction

In this paper, we look at the K-theory of ample Hausdorff groupoids, that is, étale groupoids
on totally disconnected spaces, and its relation to groupoid homology. Such groupoids are closely
related to dynamical systems on Cantor sets, such as (sub)shifts of finite type (also called topological
Markov shifts) in symbolic dynamics. While this remains a fundamental example, the second half
of the last century saw a rapid development of the theory which resulted in several generalizations
involving various geometric, combinatorial, and functional analytic structures.

One important class of Cantor systems comes from minimal homeomorphisms of the Cantor set.
This study was initiated by Giordano, Putnam and Skau [GPS95], in which they classified minimal
homeomorphisms up to orbit equivalence. Actions of Zk on the Cantor set, which are higher rank
analogues, also naturally appear from tiling spaces. More generally, essentially free ample groupoids
appear in the study of actions of Nk by local homeomorphisms on zero-dimensional spaces, where
they are known as Deaconu–Renault groupoids [Dea95, ER07]. This is a convenient framework to
understand higher-rank graph C∗-algebras. The étale groupoids, and related invariants such as
topological full groups, of such systems proved to be a rich source of interesting examples in the
structure theory of discrete groups and operator algebras, see for example [JM13,Mat13,Phi05].

Beyond the theory of dynamical systems, these groupoids also play an important role in the theory
of operator algebras, where they provide an invaluable source of examples of C∗-algebras. These are
obtained by considering the (reduced) groupoid C∗-algebras [Ren80], generalizing the crossed product
algebras for group actions on the Cantor set. The resulting C∗-algebras capture interesting aspects
of the homoclinic and heteroclinic structure of expansive dynamics [Mat19,Put96,Tho10], extending
the correspondence between topological Markov shifts and the Cuntz–Krieger algebras.

The K-groups of groupoid C∗-algebras and groupoid cohomology with integer coefficients are
known to have close parallels, for example in various cohomological invariants of tiling spaces. In
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fact, groupoid homology [CM00] has even closer properties to K-groups, and the comparison of these
invariants (for topologically free, minimal, and ample Hausdorff groupoids) was recently popularized
by Matui [Mat12]. While his conjectural isomorphism in its original form (“HK conjecture”) has
counterexamples [Sca20], in situations where one expects low homological dimension we do have an
isomorphism, see for example [FKPS19,Ort20].

Our main result gives a correspondence between groupoid homology and K-groups for reduced
crossed products by torsion-free ample groupoids satisfying the strong Baum–Connes conjecture
[Tu99a], as follows.

Theorem A (Theorem 3.3). Let G be an ample groupoid with torsion-free stabilizers satisfying the

strong Baum–Connes conjecture, and A be a separable G-C∗-algebra. Then there is a convergent

spectral sequence

E2
pq = Hp(G, Kq(A))⇒ Kp+q(G ⋉ A).

In particular, for A = C0(X) we obtain a spectral sequence with E2
pq = E3

pq = Hp(G, Kq(C))
converging to Kp+q(C∗

r G). Similarly to discrete groups, amenable groupoids satisfy the (strong)
Baum–Connes conjecture, which cover most of our concrete examples in this paper.

Note that, for groupoids with low homological dimension, this spectral sequence degenerates for
degree reasons. Moreover the top-degree group in groupoid homology tends to be torsion-free, so that
there are no extension problems, thus leading to the positive cases where the HK conjecture holds.

Our proofs of Theorem A is based on the triangulated category approach to the Baum–Connes
conjecture by Meyer and Nest [Mey08, MN06, MN10]. Building on their theory of projective resolu-
tions and complementary subcategories from homological ideals, we show that an explicit projective
resolution can be obtained from adjoint functors and associated simplicial objects. Applying this to
the restriction functor KKG → KKX and induction functor KKX → KKG for X = G(0) gives the
standard bar complex computing the groupoid homology. Then, the spectral sequence in Theorem A
appears as a particular case of the “ABC spectral sequence” of [Mey08].

This paper is organized as follows. In Section 1 we lay out the basic notation and definitions for
all the background objects of the paper.

In Section 2, we look at a simplicial object arising from adjoint functors and relate it to the
categorical approach to the Baum–Connes conjecture. In a triangulated category, a homological
ideal with enough projectives and a pair of complementary subcategories, appear from an adjunction
of functors [Mey08]. Our observation is that the canonical comonad construction from homological
algebra gives a concrete model of projective resolution. We then use this to show that, when G is
an étale groupoid satisfying the strong Baum–Connes conjecture, any G-C∗-algebra A belongs to
the triangulated (localizing) subcategory of KKG generated by the image of the induction functor
KKX → KKG for X = G(0).

We then combine these results in Section 3 to obtain our main results mentioned above. Now,
let us summarize the ingredients which go into the correspondence between groupoid homology and
K-theory. By the adjunction of the functors IndG

X : KKX → KKG and ResG
X : KKG → KKX , for any

G-C∗-algebra A we have an exact triangle in KKG,

P → A→ N → ΣP,

with ResG
X N ≃ 0 and P being orthogonal to all such N . From results of Section 2, for any ho-

mological functor F , we have a spectral sequence from the Moore complex of the simplicial object
(F (Ln+1A))∞

n=0 with L = IndG
X ResG

X , converging to F (P ).
In addition, if G has torsion-free stabilizers and satisfies the strong Baum–Connes conjecture, we

actually have P ≃ A in KKG, hence obtaining a homological computation of F (A). For an ample
groupoid G, with the functor F = K•(G⋉-), this complex is isomorphic to the bar complex computing
the groupoid homology of G with coefficient in K•(A).

Finally, in Section 4 we discuss some examples. We also compare our construction with the
counterexample to the HK conjecture from [Sca20].
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1. Preliminaries

In this section we recall the most important objects and notions at the basis of this paper. We
will deal with C∗-algebras endowed with a groupoid action, and will consider these as objects of the
equivariant Kasparov category.

1.1. Groupoids and Morita equivalence. Let G be a groupoid with base space X = G(0). We
let s, r : G → X denote respectively the source and range maps. In addition, we let Gx = s−1(x),
Gx = r−1(x), and for a subset A ⊂ X , we write GA =

⋃
x∈A Gx, GA =

⋃
x∈A Gx, and G|A = GA∩GA.

Definition 1.1. A topological groupoid G is étale if s and r are local homeomorphisms, and ample

if it is étale and G(0) is totally disconnected.

If G is étale and g ∈ G, then by definition, for small enough neighborhoods U of s(g) there is a
neighborhood U ′ of g such that s(U ′) = U , and the restriction of s and r to U ′ are homeomorphisms
onto the images. When this is the case, we write g(U) = r(U ′) and use g as a label for the map
U → g(U) induced by the identification of U ∼ U ′ ∼ g(U).

Throughout the paper we assume that a topological groupoid is second countable, locally compact
Hausdorff, and admits a continuous Haar system λ = (λx)x∈X , an invariant continuous distribution
of Radon measures on the spaces (Gx)x∈X . In particular, G and X are σ-compact and paracompact.
Under this setting we have full and reduced groupoid C∗-algebras C∗(G, λ), C∗

r (G, λ) make sense (we
mostly focus on the latter). In general these might depend on the choice of λ, but different choices
lead to strongly Morita equivalent C∗-algebras respectively [MW08,SW12]. Recall that the condition
on Haar system is automatic for étale groupoids, as we can take the counting measure on Gx. In this
case we suppress the notation λ, and simply write C∗

r (G) instead of C∗
r (G, λ).

A locally compact groupoid is amenable if there is a net of probability measures on Gx for x ∈ G(0)

which is approximately invariant, see [ADR00]. In this case, the full and reduced C∗-norms are equal,
and the completion of the compactly supported functions in the regular representation is ∗-isomorphic
to the full groupoid C∗-algebra.

1.2. Groupoid equivariant C∗-algebras. Let us fix our conventions for G-C∗-algebras.

Definition 1.2. A C0(X)-algebra is a C∗-algebra A endowed with a nondegenerate ∗-homomorphism
from C0(X) to the center of the multiplier algebraM(A).

Thus, if a ∈ A, we have a = fb = bf for some f ∈ C0(X) and b ∈ A, and the second equality
holds for all f and b. For an open set U ⊂ X , we put AU = AC0(U). For a locally closed subset
Y ⊂ X , that is, if Y = U r V for some open sets U, V ⊂ X , we put AY = AU /AU∩V , and we put
Ax = A{x} = A/AC0(X r {x}) for x ∈ X .

A C0(X)-algebra is C0(X)-nuclear if it is a continuous field of C∗-algebras over X such that every
fiber Ax is nuclear. There is another way to define this in terms of completely positive maps factoring
through Mn(C0(X)), see [Bau98].

Definition 1.3. Let A and B be C0(X)-algebras which admit faithful C0(X)-equivariant nondegen-
erate representations on Hilbert C∗-C0(X)-modules E and E ′. Then their C∗-algebraic relative tensor
product A⊗C0(X) B is defined as the closure of the image of A⊗alg

C0(X) B in the adjointable operators
L(E ⊗C0(X) E

′).

Although we do not need it, the above definition can be extended to arbitrary C0(X)-algebras
[Kas88, Definition 1.6].
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Remark 1.4. If A or B is C0(X)-nuclear, we have

A⊗C0(X) B ≃ (A⊗max B)∆(X) ≃ (A⊗min B)∆(X),

where ∆(X) = {(x, x) | x ∈ X} ⊂ X ×X , see [Bla96, Section 3.2].

If f : Y → X is a continuous map, C0(Y ) is a C0(X)-algebra. It is a continuous field (hence
C0(X)-nuclear) if and only if f is open [BK04]. The map f induces a functor f∗A = C0(Y )⊗C0(X) A
from the category of C0(X)-algebras to that of C0(Y )-algebras. For Y = G and f = s, we write
s∗A = C0(G) ⊗s C0(X) A, and similarly for f = r.

Definition 1.5. Let G be a second countable locally compact Hausdorff groupoid, and put G(0) = X .
A continuous action of G on a C0(X)-algebra A is given by an isomorphism of C0(G)-algebras

α : C0(G) ⊗s C0(X) A→ C0(G) ⊗r C0(X) A

such that the induced homomorphisms αg : As(g) → Ar(g) for g ∈ G satisfy αgh = αgαh. In this case,
we say that A is a G-C∗-algebra.

For an étale groupoid G, the above amounts to giving αg as isomorphisms AU → Ag(U) for small
enough neighborhoods U of s(g), compatible with the natural actions of C0(U) ≃ C0(g(U)) and
multiplicative in g.

In [LG99], Le Gall constructed the equivariant KK-category of separable and trivially graded G-
C∗-algebras with morphism sets KKG(A, B), generalizing Kasparov’s construction for transformation
groupoids. This will be our main framework to work in.

Remark 1.6. Le Gall uses a different convention for A ⊗C0(X) B, namely (A ⊗max B)∆(X), which
is different from ours in general. However these definitions agree in all the relevant cases, such as
B = C0(Y ) for a locally compact space Y endowed with an open map Y → X , then B would be
C0(X)-nuclear, see Remark 1.4. For example, the range map G→ X is open because there exists a
Haar system [Ren80, Proposition 2.4].

Suppose moreover that G admits a Haar system λ. The algebraic balanced tensor product
Cc(G) ⊗s C0(X) A admits an A-valued inner product induced by the measures on the sets Gx from λ,

and we denote its closure as a right Hilbert A-module by EG
A = L2(G, A). (This can be interpreted

as L2(G) ⊗C0(X) A, where the canonical right C0(X)-Hilbert module L2(G) = L2(G, C0(X)).) The
reduced crossed product G ⋉α A = C∗

r (A, G, α, λ) is the C∗-algebra generated by the “convolution
product” representation of Cc(G) ⊗s C0(X) A on EG

A , see [KS04,MW08] for the details. In this paper
we always take reduced crossed products, although they will be isomorphic to the full ones in most
of our concrete examples as we mostly consider amenable groupoids.

Remark 1.7. Different choices of λ give Morita equivalent reduced crossed products. More generally,
let H be another topological groupoid, and let (A, G, α) and (B, H, β) be equivalent actions of G and
H in the sense of [MW08]. As part of the data there is a bibundle Z over G and H as above, and
we get a linking groupoid L = G

∐
Z
∐

Zop
∐

H with base G(0)
∐

H(0). On one hand, we have a
continuous action γ of L on A⊕B induced by the equivalence data. On the other, a choice of Haar
systems λ on G and µ on H gives a Haar system κ on L [SW12]. Then the reduced crossed product
C∗

r (A⊕B, L, γ, κ) is a linking algebra between C∗
r (A, G, α, λ) and C∗

r (B, H, β, µ).

1.3. Equivariant sheaves over ample groupoids. Let G be an étale groupoid. The nerve
(G(n))∞

n=0 of G form a simplicial space, with the face maps are given by

dn
i : G(n) → G(n−1), (g1, ..., gn) 7→





(g2, ..., gn) if i = 0

(g1, ..., gigi+1, ..., gn) if 1 ≤ i ≤ n− 1

(g1, ..., gn−1) if i = n,

with d1
1 = r and d1

0 = s as maps G→ X , while the degeneracy maps are given by insertion of units.
These structure maps are étale maps.

Suppose further that G be an ample groupoid, and C be a commutative group. For a topological
space Y , we denote the group of compactly supported continuous functions from Y to C by Cc(Y, C).
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The groupoid homology of G with coefficients in C, denoted H•(G, C), is the homology of the chain
complex (Cc(G(n), C))∞

n=0 with differential

∂n =
n∑

i=0

(−1)i(dn
i )∗ : Cc(G(n), C)→ Cc(G(n−1), C), (dn

i )∗(f)(x) =
∑

dn

i
(y)=x

f(y).

(This is well defined as dn
i is étale.)

This is a special case of groupoid homology with coefficients in equivariant sheaves [CM00]. Let
us quickly review this more general setting. When G is a topological groupoid with base space X , a
G-equivariant sheaf (of commutative groups) over X is a sheaf (of commutative groups) F over X ,
together with a morphism s∗F → r∗F of sheaves over G, with analogous multiplicativity conditions
to the case of G-C∗-algebras.

In fact, when G is ample, such G-sheaves are represented by unitary Cc(G,Z)-modules [Ste14].
Here, we consider the convolution product on Cc(G,Z), and a module M over Cc(G,Z) is said to
be unitary if it has the factorization property Cc(G,Z)M = M . The correspondence is given by
Γc(U, F ) = Cc(U,Z)M for compact open sets U ⊂ X if F is the sheaf corresponding to such a
module M .

A sheaf F on a topological space Y is called soft if, for any closed subspace K ⊂ Y and s ∈ Γ(K, F ),
there is a global section s′ ∈ Γ(Y, F ) such that s′|K = s. When Y is second countable locally compact
and Hausdorff, this is equivalent to c-softness, where in the above K is moreover assumed to be
compact.

Proposition 1.8. Let Y be a totally disconnected, second countable, locally compact Hausdorff space.

Then any sheaf of commutative groups on Y is soft.

This seems to be folklore, but can be obtained as follows. As Y is locally compact Hausdorff
and totally disconnected, each point has a base of neighborhood consisting of compact open sets.
Thus, fixing a point y and its compact open neighborhood U , any closed subset of U , being compact,
also has a base of neighborhoods consisting of compact open subsets of Y . This, combined with the
paracompactness of Y , implies the (c-)softness of sheaves [God73, Sections II.3.3 and II.3.4].

Back to equivariant sheaves over (second countable) ample groupoids, with G, F , and M as
above, the homology of G with coefficient in F , denoted H•(G, F ), is the homology of the chain
complex (Cc(G(n),Z)⊗Cc(X,Z) M)∞

n=0 with differentials coming from the simplicial structure as above.
Concretely, the differential is given by

∂n : Cc(G(n),Z)⊗Cc(X,Z) M → Cc(G(n−1),Z)⊗Cc(X,Z) M

∂n(f ⊗m) =
n−1∑

i=0

(−1)i(dn
i )∗f ⊗m + (−1)nαn(f ⊗m),

where αn is the concatenation of the last leg of Cc(G(n),Z) with M induced by the module structure
map Cc(G,Z)⊗M →M . This definition agrees with the one given in [CM00] as there is no need to
take c-soft resolutions of equivariant sheaves by Proposition 1.8.

More generally, if F• is a chain complex of G-sheaves modeled by a chain complex of unitary
Cc(G,Z)-modules M•, we define H•(G, F•), the hyperhomology with coefficient F•, as the homology
of the double complex (Cc(G(p),Z)⊗Cc(X,Z) Mq)p,q.

As usual, a chain map of complexes of G-sheaves f : F• → F ′
• is a quasi-isomorphism if it induces

quasi-isomorphisms on the stalks. When F• and F ′
• are bounded from below, such maps induce an

isomorphism of the hyperhomology [CM00, Lemma 3.2].

1.4. Triangulated categorical structures. The framework of triangulated categories is ideal for
extending basic constructions from homotopy theory to categories of C∗-algebras. Much work in this
direction has been carried out by Meyer and Nest in [Mey08,MN06,MN10].

We follow their convention which we quickly recall here. The fundamental axiom requires that
there is an autoequivalence Σ, and any morphism f : A→ B should be part of an exact triangle:

A→ B → C → ΣA.

An additive functor F between triangulated categories is said to be exact when it intertwines suspen-
sions and preserves exact triangles.
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We say that T has countable direct sums if, given a sequence of objects (An)∞
n=1 in T , there is an

object
⊕∞

n=1 An such that

T

(
∞⊕

n=1

An, B

)
≃

∞∏

n=1

T (An, B)

naturally in the An and B. An exact functor F is compatible with direct sums if it commutes with
countable direct sums (see [Mey08, Proposition 3.14]).

As before let G be a second countable locally compact Hausdorff groupoid with a Haar system.
Note that triangulated categories involving KK-theory have no more than countable direct sums,
because separability assumptions are needed for certain analytical results in the background.

Proposition 1.9 ([Pro18, Section A.3]). The equivariant Kasparov category KKG is triangulated.

Here, the suspension functor Σ is given by ΣA = C0(R, A). Note that Bott periodicity implies
Σ2 ≃ id, so that Σ is also a model of Σ−1. The exact triangles are defined as the triangles isomorphic
to mapping cone triangles for equivariant ∗-homomorphisms. See Section A.4 for some details.

We also note that functors such as A 7→ G⋉A and A 7→ D⊗A preserve mapping cones, hence define
triangulated functors into appropriated (equivariant) KK-categories. These are also compatible with
countable direct sums.

We call a subcategory thick when it is closed under direct summands.

Definition 1.10. We call a pair (L,N ) of thick triangulated subcategories of T complementary if
T (P, N) = 0 for all P ∈ L, N ∈ N , and for any A ∈ T , there is an exact triangle

PA → A→ NA → ΣPA

where PA ∈ L and NA ∈ N .

Let us list some of the basic properties of a pair of complementary subcategories (see [MN06,
Proposition 2.9]).

• We have N ∈ N if and only if T (P, N) = 0 for all P ∈ L. Analogously, we have P ∈ L if and
only if T (P, N) = 0 for all N ∈ N .
• The exact triangle as above, with PA ∈ L and NA ∈ N , is uniquely determined up to

isomorphism and depends functorially on A. In particular, its entries define functors

P : T → L, A 7→ PA, N : T → N , A 7→ NA.

The functors P and N are respectively left adjoint to the embedding functor P → T and
right adjoint to the embedding functor N → T .
• The localizations T /N and T /L exist and the compositions

L −→ T −→ T /N , N −→ T −→ T /L

are equivalences of triangulated categories.

Most concrete examples come from homological ideals with enough projectives, as we quickly recall
here. Let T and S be triangulated categories with countable direct sums, and F : T → S be an exact
functor compatible with direct sums. The system of morphisms

I(A, B) = ker(F : T (A, B)→ S(FA, FB))

is an example of homological ideal compatible with countable direct sums.

Remark 1.11. We do not lose generality by assuming that S is a stable abelian category, and that
F is a stable functor, see [MN10, Remark 19]. More concretely, we can always replace the target
triangulated category S by the category of representable contravariant functors S → Ab, which are
cokernels of the natural transforms S(-, A)→ S(-, B) induced by some f : A→ B.

An object P ∈ T is called I-projective if I(P, A) = 0 for all objects A ∈ T . An object N ∈ T is
called I-contractible if idN belongs to I(N, N). Let PI ,NI ⊆ T be the full subcategories of projective
and contractible objects, respectively. We say that I has enough projectives if for any A ∈ T , there
is an I-projective object P and a morphism P → A such that, in the associated exact triangle

P → A→ C → ΣP,
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the morphism A → C belongs to I. With I = ker F as above, the latter condition is equivalent to
FP → FA being a split surjection for all A.

We denote by 〈PI〉 the (ℵ0-)localizing subcategory generated by the projective objects, i.e., the
smallest triangulated subcategory that is closed under countable direct sums and contains PI . In
particular, 〈PI〉 is closed under isomorphisms, suspensions, and if

A→ B → C → ΣA

is an exact triangle in T where any two of the objects A, B, C are in 〈PI〉, so is the third. Note that
NI is localizing, and any localizing subcategory is thick.

Theorem 1.12 ([Mey08, Theorem 3.16]). Let T be a triangulated category with countable direct sums,

and let I be a homological ideal with enough projective objects. Suppose that I is compatible with

countable direct sums. Then the pair of localizing subcategories (〈PI〉,NI) in T is complementary.

Remark 1.13. Note that if (L,N ) is a complementary pair, then ker P has enough projectives and we
have L = Pker P , N = Nker P . Thus the above construction is universal, although I is not uniquely
determined from (〈PI〉,NI).

Definition 1.14. Let F : T → S be an exact functor compatible with countable direct sums. Given
an object A ∈ T and a chain complex

· · · Pn · · · P0 A,
δn+1 δn δ1 δ0 (1)

we say that (1) is an (even) I-projective resolution of A if each Pn is I-projective and the chain
complex

· · · F (P1) F (P0) F (A) 0
F (δ2) F (δ1) F (δ0)

is split exact, i.e., is contractible by chain homotopy in S.

There is also an intrinsic formulation of I-exactness for chain complexes corresponding to the
second condition above, and the above definition does not depend on the choice of F with I = ker F .
Moreover, if I has enough projectives, any A has an I-projective resolution. In particular, two
I-projective resolutions of A are chain homotopy equivalent, and we obtain functor T → Ho(T ).
Moreover, if P• is an I-projective resolution of A, the object PA in Definition 1.10 (an I-simplicial

approximation of A) belongs to the localizing subcategory generated by the objects Pk.

Definition 1.15. An odd I-projective resolution is an I-projective resolution where the boundary
maps of positive index have degree one, i.e., the morphism δn : Pn → Pn−1 gets replaced, for n ≥ 1,
by a morphism δn : Pn → ΣPn−1.

Evidently, if (Pn, δn) is an odd projective resolution, then (P ′
n, δ′

n) is an even resolution, where
P ′

n = Σ−nPn and δ′
n = Σ−nδn.

Let K : T → C be a covariant homological functor into a stable abelian category. We put Kn(A) =
K(Σ−nA). Let us recall a few extra constructions on K motivated by homological algebra.

Definition 1.16. Let (L,N ) be a complementary pair, with P : T → L. The localization of K with
respect to N is defined by LN K = K ◦ P .

The defining morphisms P (A)→ A induce a natural transformation LN K ⇒ K.

Definition 1.17. Let I be a homological ideal with countable direct sums and enough projectives.
The p-th derived functor of K with respect to I is defined as

L
I
p K(A) = Hp(K(P•)),

where P• is any I-projective resolution of A.

This is well-defined because projective resolutions are unique up to chain homotopy. Note that
unless K is compatible with I-exact sequences, one cannot expect LI

0 K ≃ K. When (L,N ) is
a complementary pair, we can think of the localization LN K as the derived functor Lker P

0 K for
P : T → L up to the embedding of Remark 1.11.

Building on the idea of Christensen [Chr98] to understand the Adams spectral sequence, Meyer
constructed the following spectral sequence.
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Theorem 1.18 ([Mey08, Theorems 4.3 and 5.1]). Let I be a homological ideal with countable di-

rect sums and enough projectives, and let K : T → Ab be a homological functor to the category of

commutative groups. Then there is a convergent spectral sequence

Er
pq ⇒ L

NI Kp+q(A),

with the E2-sheet E2
pq = LI

p Kq(A).

The Er-differentials dr : Er
pq → Er

p−r,q+r−1 come from a choice of phantom tower for A and the
associated exact couple, but their precise form will not be important for us.

1.5. The Baum–Connes conjecture for groupoids. Because we are particularly interested in
spectral sequences which approximate the K-groups of groupoid C∗-algebras, the Baum–Connes
conjecture naturally plays a fundamental role. The notion of pair of complementary subcategories
introduced earlier allows for a general formulation of this conjecture in terms of localization at the
subcategory contractible objects.

However, as our main focus is on torsion-free amenable groupoids, we will not need the full ma-
chinery for our applications, hence we limit ourselves to simply recalling the main positive result
concerning the conjecture for groupoids with the Haagerup property. Namely, G is said to have the
Haagerup property if it acts properly and isometrically by affine maps on a continuous field of (real)
Hilbert spaces, or equivalently, if there is a proper conditionally negative type function on G [BCV95].
Analogously to the case of groups, amenable groupoids have this property.

Suppose G is a second countable, locally compact, Hausdorff groupoid with Haar system. In the
following, the crossed product is understood to be reduced.

Definition 1.19. A G-algebra A is said to be proper if there is a locally compact Hausdorff proper
G-space Z such that A is a G ⋉ Z-algebra.

Evidently, a commutative G-C∗-algebra is proper if and only if its spectrum is a proper G-space.

Remark 1.20. If G is locally compact, σ-compact, and Hausdorff, then there is a locally compact,
σ-compact, and Hausdorff model of EG, the classifying space for proper actions of G; in our case
G is second countable hence EG is too [Tu99b, Proposition 6.15]. In Definition 1.19 for a proper
G-algebra we can always assume Z to be a model of EG. Indeed if φ : Z → EG is a G-equivariant
continuous map, then φ∗ : C0(EG) → M(C0(Z)) = Cb(Z) can be precomposed with the structure
map Φ: C0(Z)→ Z(M(A)), making A into an G ⋉ EG-algebra.

We will need the following result proved by J.-L. Tu.

Theorem 1.21 ([Tu99a]). Suppose that G has the Haagerup property. Then there exists a proper

G-space Z with an open surjective structure morphism Z → X, and a G ⋉ Z-C∗-algebra P which is

a continuous field of nuclear C∗-algebras over Z, and such that P ≃ C0(X) in KKG.

As a consequence, if A is a separable G-C∗-algebra, then we have that A ⊗C0(X) P is a proper
G-C∗-algebra that is KKG-equivalent to A.

In this paper, for a general topological groupoid G we say that it satisfies the strong Baum–Connes
conjecture if the conclusions of the previous theorem hold. This definition implies the standard version
of the conjecture. More precisely, if D : P → C0(X) is the isomorphism from Theorem 1.21, there is
a commutative diagram

lim
−→Y ⊆EG

KKG(C0(Y ), A) K•(G ⋉ A)

K•(G ⋉ (A⊗C0(X) P ))

µG

A

jG(D ⊗̂ idA)

where all arrows are isomorphisms and Y runs over G-compact invariant subsets of EG ([EM10,
Theorem 6.12], see also [MN06]). The functor jG above is the descent morphism of Kasparov [Kas88]
which has been generalized to this context in [LG99,Laf07].
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2. Approximation in the equivariant KK-category

2.1. Simplicial approximation from adjoint functors. One powerful way to check that a homo-
logical ideal has enough projectives is to relate it to adjoint functors between triangulated categories.
More precisely, let S and T be triangulated categories with countable direct sums, and E : S → T
and F : T → S be exact functors compatible with countable direct sums, with natural isomorphisms

S(A, FB) ≃ T (EA, B) (A ∈ S, B ∈ T ). (2)

Then I = ker F has enough projectives and the I-projective objects are retracts of EA for some
A ∈ S [MN10, Section 3.6].

Our next goal is to give an explicit projective resolution in this setting. In fact, this situation is
quite standard in homological algebra: such adjoint functors give a comonad L = EF on T , from
which we obtain a simplicial object (Ln+1A)∞

n=0 giving a “resolution” of A [Wei94, Section 8.6].

Proposition 2.1. In the above setting, any A ∈ T admits an I-projective resolution P• consisting

of Pn = Ln+1A. The pair of subcategories (〈ES〉,NI) is complementary.

Proof. Let us denote the structure morphisms of the adjunction as

ǫB ∈ T (LB, B), ηA ∈ S(A, FEA),

so that the isomorphism (2) is given by

S(A, FB)→ T (EA, B) T (EA, B)→ S(A, FB)

f 7→ ǫBE(f) g 7→ F (g)ηA.

As already observed in [MN10], the objects of the form EA are I-projective. Indeed, if g ∈
T (EA, B) is in the kernel of F , the corresponding morphism in S(A, FB) is zero by the above
presentation.

Next, let us recall the comonad structure on L. There are natural transformations L → idT and
L→ L2 defining a coalgebra structure on L. The counit is simply given by the morphisms ǫB, while
the comultiplication is given by δB = E(ηF B) ∈ T (LB, L2B). The compatibility condition between
these reduces to consistency between ǫ and η.

Now we are ready to define a structure of simplicial object on (Pn)∞
n=0 as in the assertion. The

face morphisms dn
i : Pn → Pn−1 (0 ≤ i ≤ n) are

dn
i = Li(ǫLn−iA) : Ln+1A→ LnA,

while the degeneracy morphisms sn
i : Pn → Pn+1 (0 ≤ i ≤ n) are

sn
i = Li(δLn−iA) : Ln+1A→ Ln+2A,

see [Wei94, Paragraph 8.6.4]. The associated Moore complex on (Pn)∞
n=0 is given by

δn =
n∑

i=0

(−1)idn
i : Pn → Pn−1, (3)

together with the augmentation morphism δ0 = ǫ : P0 = LA→ A.
Let us check the I-exactness of the augmented complex, or as in Definition 1.14, the split exactness

of
· · · → FL2A→ FLA→ FA→ 0

for all A in a natural way. We claim that the the complex

· · · → FL2A→ FLA→ FA→ 0

in S is contractible. Again this is a consequence of a standard argument: the contracting homotopy
is given by hn = ηF LnA : FLnA→ FLn+1A for n ≥ 0, see [Wei94, Proposition 8.6.10].

Finally, the assertion that 〈ES〉 and NI are complementary follows from Theorem 1.12. �

We will apply the previous proposition in the setting T = KKG, S = KKX , F = ResG
X . As the

functor E, we take
EA = IndG

X A = C0(G) ⊗s C0(X) A

for C0(X)-algebras A, endowed with the left translation action of G. This is indeed left adjoint to F
by [Bön20].
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2.2. The Baum–Connes conjecture for torsion-free groupoids. Hereafter it is assumed that
G is étale and that it satisfies the conclusion of Theorem 1.21. Our next goal is the following result.

Theorem 2.2. Suppose that G is an étale groupoid with torsion-free stabilizers satisfying the con-

clusion of Theorem 1.21. Then any G-C∗-algebra A belongs to the localizing subcategory generated by

the G-C∗-algebras (IndG
X ResG

X)nA for n ≥ 1.

The following lemma clarifies the local picture of proper actions.

Lemma 2.3. Let G be an étale groupoid with torsion-free stabilizers, and G y Z a proper action

on a locally compact Hausdorff space with the anchor map ρ : Z → X. Then each z ∈ Z has an open

neighborhood U satisfying:

• U has a compact closure in Z;

• the saturation GU can be identified as G×X U as a G-space.

Proof. This is essentially contained in Proposition 2.42 of the extended version of [Tu04], but let us
give a proof. First, observe that any w ∈ Z has trivial stabilizer. Indeed, on the one hand it can
be identified with the inverse image of (w, w) for the action map φ : G ⋉ Z → Z ×X Z, hence is a
compact set by the properness of the action. On the other hand, it is a subgroup of the stabilizer of
ρ(w), which is a torsion-free group, hence it must be trivial.

Next, fix an open neighborhood V of z, and put C = (G ⋉ Z) r V , where V is identified with
an open subset of G ⋉ Z by taking the identity morphisms of v ∈ V . Since Z is locally compact
Hausdorff, φ is closed (with compact fibers) and in particular φ(C) is closed in Z ×X Z, and it does
not contain (z, z) by the above observation.

Take an open neighborhood U of z such that U ×X U does not meet φ(C). Then the restriction of
the action map to G ×X U is a bijection onto GU . Indeed, if (g, u) and (g′, u′) had the same image
in GU , we would have

(u, u′) ∈ U ×X U ∩ φ(G ⋉ Z) ⊂ φ(V ),

which implies u = u′ and then g = g′.
Finally, as G ⋉ Z is an étale groupoid, the action map G ×X U → Z is an open map. Then we

obtain that the bijective continuous map G×X U → GU is a homeomorphism. �

For the next proof we use the equivariant E-theory of C0(Y )-algebras [PT00]. The equivariant E-
groups EY (A, B) (denoted by RE(Y ; A, B) in [PT00]) define a triangulated category with countable
direct sums and a triangulated functor KKY → EY compatible with countable direct sums.

We are going to use the notion of RKK(X)-nuclearity as defined by Bauval [Bau98, Definition
5.1] (see also [Ska88]). Here, we call it KKX -nuclearity. Namely, a C0(X)-algebra A is KKX -nuclear
if idA ∈ KKX(A, A) is represented by an X-A-A-Kasparov cycle (π, E , T ) such that the left action
π : A→ L(E) is strictly C0(X)-nuclear with respect to the identification L(E) =M(K(E)).

Lemma 2.4. Let Y be a second countable locally compact space, and (Vk)∞
k=0 be a countable and

locally finite open covering of Y . If A is a KKY -nuclear C0(Y )-algebra, and if N is a C0(Y )-algebra

such that NVk
is KKVk-equivalent to 0 for all k, then we have KKY (A, N) = 0.

Proof. By assumption on A, we have KKY (A, N) ≃ EY (A, N) [PT00, Theorem 4.7]. In order to
show the latter group vanishes, it is enough to show EY (N, N) = 0.

Put Nk = NV0∪···∪Vk
. We first claim that EY (Nk, N) = 0 for all k. By induction, it is enough to

prove this for k = 1. We have an extension of C0(Y )-algebras

0→ N0 → N1 → NV1∪V0rV0
→ 0.

By assumption N0 is contractible in KKY (hence in EY ). We also have the contractibility of
NV1∪V0rV0

, as it is a reduction of the KKV1 -contractible object NV1
to V1 ∪ V0 r V0 = V1 r V0.

Now, the functor B 7→ EY (B, N) satisfies excision [PT00, Theorem 4.17], which gives an exact
sequence of the form

0 = EY (NV1∪V0rV0
, N)→ EY (N1, N)→ EY (N0, N) = 0,

and we obtain EY (N1, N) = 0.
The inclusion maps make (Nk)∞

k=0 an inductive system, and N is its inductive limit as a C0(Y )-
algebra. This inductive system is admissible in the sense of [MN06, Section 2.4] (this condition is
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automatic for inductive systems in EY , but this example is already admissible in KKY ). In particular,
there is an exact triangle of the form

ΣN →
⊕

k

Nk →
⊕

k

Nk → N.

Since we already have EY (
⊕

k Nk, N) ≃
∏

k EY (Nk, N) = 0, we obtain EY (N, N) = 0. �

Proof of Theorem 2.2. Let A be a separable G-C∗algebra. The endofunctor A ⊗C0(X) − on KKG

is triangulated, and sends C0(X) to A. More generally, we have an isomorphism of G-C∗-algebras
between

A⊗C0(X) ((IndG
X ResG

X)nC0(X)) ≃ A⊗r
C0(X) C0(G(n))

and C0(G(n)) ⊗s C0(X)A ≃ (IndG
X ResG

X)nA by inductively applying the structure map of G-C∗-algebra.
Therefore it is sufficient to prove the statement for A = C0(X).

Let us first show a slightly weaker statement, namely that C0(X) belongs to the (localizing)
triangulated subcategory of KKG generated by objects of the form IndG

X B for C0(X)-algebras B.
By Theorem 1.21, we may replace C0(X) by a C0(Z)-nuclear G⋉Z-C∗-algebra C for some proper

G-space Z. Let U ⊂ Z be an open set satisfying the conditions of Lemma 2.3, and put V = GU .
Then the G-algebra CV = C0(V )C is isomorphic to IndG

X CU . Indeed, the latter is C0(G)⊗C0(X) CU ,
and the G-equivariant isomorphism V ≃ GU induces CV ≃ C0(G)⊗C0(X) CU .

Now, take countably many open sets (Ui)i∈I satisfying the conditions of Lemma 2.3, such that the
sets Vi = GUi cover Z and (Vi/G)i is a countable and locally finite open cover of Z/G (this is possible
by second countability). We want to say that the (unreduced) “Čech complex” of objects CVi1

∩···∩Vik

give a resolution of C in KKG⋉Z . Then, combined with the “induction functor” KKG⋉Z → KKG

(which is really given by the restriction of C0(Z)-algebras to C0(X)-algebras), we get that C is indeed
in 〈IndG

X KKX〉. Suppose U and U ′ are open sets of Z satisfying the conditions of Lemma 2.3, and
put V = GU and V ′ = GU ′. Then there is an open set W satisfying the conditions of Lemma 2.3
with V ∩ V ′ = GW ; indeed, we can take W = U ∩ V ′. This implies that the G-algebras CVi1

∩···∩Vik

are all of the form IndG
X B.

Now, set Z̃ =
∐

i Vi, and regard it as a G ⋉ Z-space by the canonical equivariant map Z̃ → Z.

The functors IndZ
Z̃ : KKG⋉Z̃ → KKG⋉Z and ResZ

Z̃ : KKG⋉Z → KKG⋉Z̃ make sense. Concretely, if B
is a G-equivariant C0(Z)-algebra, we have

ResZ
Z̃ B =

⊕

i

BVi

endowed with an obvious action of G, while for a G-equivariant C0(Z̃)-algebra B, we set IndZ
Z̃ B to

be the same C∗-algebra as B regarded as a C0(Z)-algebra. Then we have the standard adjunction

KKG⋉Z(IndZ
Z̃ B, B′) ≃

∏

i

KKG⋉Vi(BVi
, B′

Vi
) ≃ KKG⋉Z̃(B, ResZ

Z̃ B′).

From this, we see that L = IndZ
Z̃ ResZ

Z̃ satisfies

LkC =
⊕

i1,...,ik

CVi1
∩···∩Vik

.

By Proposition 2.1, we obtain an exact triangle

P → C → N → ΣP

in KKG⋉Z , such that P is in the localizing subcategory generated by objects of the form IndG⋉Z
Ui

B,
and N ∈ ker ResG⋉Z

G⋉Z̃
.

It remains to prove that N = 0 in KKG⋉Z . For this it is enough to show that the morphism
C → N in the above triangle is zero. Indeed, P will then be a direct sum of C and ΣN , but there
is no nonzero morphism from P to ΣN . Since the action of G on Z is free and proper, there is
an equivalence of categories between KKG⋉Z and KKZ/G, and similar statements hold for the G-
invariant open sets Vi. Under this correspondence, C corresponds to a KKZ/G-nuclear algebra. Now,
Lemma 2.4 implies that KKG⋉Z(C, N) = 0. We thus know that C0(X) ≃KKG C belongs to the
localizing subcategory generated by objects of the form IndG

X B.
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Now, take a distinguished triangle

P ′ → C0(X)→ N ′ → ΣP ′

in KKG corresponding to the complementary pair (〈IndG
X KKX〉,Nker ResG

X

). On the one hand, since

C0(X) belongs to 〈IndG
X KKX〉, the morphism C0(X)→ N ′ is trivial and we have P ′ ≃ C0(X). On

the other hand, since the objects (IndG
X ResG

X)n+1(C0(X)) form a (ker ResG
X)-projective resolution of

C0(X), the object P ′ belongs to the triangulated subcategory generated by them. This proves the
assertion. �

Corollary 2.5. Let G and A be as in Theorem 2.2. Let PX(A) ∈ 〈IndG
X KKX〉 be the algebra

appearing in the exact triangle

PX(A)→ A→ N → ΣPX(A)

that we get by applying Proposition 2.1. Then we have PX(A) ≃ A in KKG. Equivalently, we have

Nker ResG

X

= 0.

Corollary 2.6. Let G and A be as in Theorem 2.2. Then we have a convergent spectral sequence

E2
pq = Hp(Kq(G ⋉ L•+1A))⇒ Kp+q(G ⋉ A), (4)

where LnA = (IndG
X ResG

X)n(A).

Proof. The reduced crossed product functor

KKG → KK, A 7→ G ⋉ A

is exact and compatible with direct sums, while

KK→ Ab, B 7→ K0(B)

is a homological functor. Thus, their composition

K0(G ⋉ -) : KKG → Ab

is a homological functor, cf. [MN10, Examples 13 and 15]. Now we can apply Theorem 1.18 to get a
spectral sequence

Hp(Kq(G ⋉ P•))⇒ Kp+q(G ⋉ PX(A)),

where P• is a (ker ResG
X)-projective resolution of A. The (ker ResG

X)-projective resolution from Propo-
sition 2.1 gives the left hand side of (4). Now the claim follows from Corollary 2.5. �

3. Homology and K-theory

Let us assume that G is ample. We are going to relate the results of the previous section to
the complex of groupoid homology which was described in Section 1.3. First observe that LnA =
C0(G(n))⊗A.

As for the coefficients of homology, for the algebra C0(X) we have K0(C0(X)) ≃ Cc(X,Z), which
corresponds to the constant sheaf Z on X . More generally, any G-C∗-algebra gives a G-sheaf on X .

Proposition 3.1. Let A be a G-C∗-algebra. Then Ki(A) is a unitary Cc(G,Z)-module.

Proof. We show that Ki(A) is a unitary Cc(X,Z)-module, and the associated sheaf is a G-sheaf.
The structure map of C0(X)-algebra induces a ∗-homomorphism C0(X)⊗A→ A. Combined with

the canonical map K0(C0(X))⊗Ki(A)→ Ki(C0(X)⊗A), we obtain a map K0(C0(X))⊗Ki(A)→
Ki(A), hence a Cc(X,Z)-module structure on Ki(A).

Next let us check the unitarity of this module. By total disconnectedness and second countability
of X , we can take an increasing sequence of compact open sets (Uk)∞

k=1 in X such that φk = χUk

form an approximate unit of C0(X). Replacing A by its suspension if necessary, it is enough to check
that, for any class c ∈ K0(A), there is k such that [φk] ∈ K0(C0(X)) satisfies [φk]c = c.

By definition, c is represented by a formal difference [e] − [f ] of projections e, f ∈ Mn(A+) such
that π([e]) = π([f ]) in K0(C), where n is some integer, A+ is the unitization of A, and π : A+ → C

is the canonical quotient map. By conjugating by a unitary in Mn(C), we can arrange π(e) = π(f).
Then we can write the components of e as eij = αij + e′

ij for αij ∈ C and e′
ij ∈ A, and those of f as

fij = αij + f ′
ij .
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Now, put x
(k)
ij = (1−φk)αij , y

(k)
ij = φkeij , and z

(k)
ij = φkfij . These form projections x(k) ∈Mn(A+),

y(k), z(k) ∈Mn(A), such that x(k) + y(k) and x(k) + z(k) are still projections. If φke′
ij is close enough

to e′
ij in norm, e is close to x(k) + y(k) in norm, and we obtain [e] = [x(k) + y(k)] in K0(A+) for large

enough k. Similarly, we obtain [f ] = [x(k) + z(k)] for large enough k. Then we have c = [y(k)]− [z(k)],
and for this k we indeed have [φk]c = c.

It remains to give an action of G on the associated sheaf F . Take g ∈ G, and choose its open
compact neighborhood U such that s and r restrict to homeomorphisms on U . Then the action of G
induces an isomorphism As(U) → Ar(U). In turn this induces χs(U)Ki(A) → χr(U)Ki(A), which can
be interpreted as the action of g from Γ(s(U), F ) to Γ(r(U), F ). A routine bookkeeping shows that
these maps patch up to give an action morphism s∗F → r∗F on G. �

Proposition 3.2. When A is a G-C∗-algebra, there is an isomorphism of chain complexes

(Ki(G ⋉ L•+1A), δ•) ≃ (Cc(G(•),Z)⊗Cc(X,Z) Ki(A)), ∂•)

for L = IndG
X ResG

X .

Proof. From the equivalence of groupoids between G ⋉ G(n+1) and G(n) (where we consider G(k) as
spaces), we have Ki(G ⋉ Ln+1A) ≃ Ki(C0(G(n)) ⊗s C0(X) A).

Since G(n) is totally disconnected, we have

K0(C0(G(n))) ≃ Cc(G(n),Z), K1(C0(G(n))) = 0.

Thus, we have an isomorphism of unitary Cc(G,Z)-modules

Ki(C0(G(n)) ⊗s C0(X) A) ≃ Cc(G(n),Z)⊗Cc(X,Z) Ki(A).

The comparison of simplicial structures is a routine calculation. �

Thus, we obtain an isomorphism of homology groups

Hp(Kq(G ⋉ L•+1A), δ•) ≃ Hp(G, Kq(A)).

Theorem 3.3. Let G be a second countable Hausdorff ample groupoid with torsion-free stabilizers

satisfying the strong Baum–Connes conjecture, and A be a separable G-C∗-algebra. Then there is a

convergent spectral sequence

Er
pq ⇒ Kp+q(G ⋉ A), (5)

with E2
pq = Hp(G, Kq(A)).

Proof. We obtain the convergent spectral sequence by Corollary 2.6, and Proposition 3.2 gives the
description of the E2-sheet. �

Specializing to the case A = C0(X), we obtain our main result.

Corollary 3.4. Let G be as above. Then there is a convergent spectral sequence

Er
pq ⇒ Kp+q(C∗

r (G)),

with E2
pq = E3

pq = Hp(G, Kq(C)).

Proof. As Kq(C) = 0 for odd q, by degree reasons the E2-differential is trivial. This implies E2
pq =

E3
pq. �

Remark 3.5. Looking at the bidegree of differentials at the E3-sheet, we see that the above spectral
sequence collapses at the E2-sheet if Hk(G,Z) vanishes for k ≥ 3. If, in addition, H2(G,Z) is
torsion-free, one has

K0(C∗
r G) ≃ H0(G,Z) ⊕H2(G,Z), K1(C∗

r G) ≃ H1(G,Z). (6)

This covers the transformation groupoids of minimal Z-actions on the Cantor space considered in
[Mat12] and the Deaconu–Renault groupoids of rank 1 and 2 (in particular k-graph groupoids for
k = 1, 2) in [FKPS19], and groupoids of 1-dimensional generalized solenoids [Yi20]. The Exel–Pardo
groupoid model [EP17] for Katsura’s realization [Kat08] of Kirchberg algebras also belong to this
class [Ort20]. For the groupoid of tiling spaces (see Section 4.2) one can do slightly better; if G is a
groupoid associated with some tiling in Rd, one has the vanishing of Hk(G,Z) for k > d and Hd(G,Z)
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is torsion-free. Comparing the rank of H•(G,Z) and K•(C∗
r G), we see that the higher differentials

are always zero on Hd(G,Z), and the spectral sequence collapses if d ≤ 3.

Remark 3.6. For the transformation groupoids Γ ⋉ X where X = EΓ is a “nice” manifold (such
as carrying an invariant Riemannian metric with nonpositive sectional curvature), [Kas88] gives a
spectral sequence analogous to (5).

Remark 3.7. In Theorem 3.3, without assuming that G has torsion-free stabilizers, or that it satisfies
the strong Baum–Connes conjecture, we still have a convergent spectral sequence

E2
pq = Hp(G, Kq(A))⇒ Kp+q(G ⋉ PA)

where PA is a (ker ResG
X)-simplicial approximation of A, see Section 4.3 for an example.

3.1. Semidirect product by torsion-free groups. Suppose that a group Γ acts on a (second
countable locally compact Hausdorff) groupoid G. Then we can form a semidirect product Γ ⋉ G:
its object set is the same as that of G, its arrow set is the direct product Γ×G, with structure maps
s(γ, g) = s(g), r(γ, g) = γr(g), and composition rule (γ, g)(γ′, g′) = (γγ′, γ′−1(g)g′). We then have a
following analogue of the permanence property of the strong Baum–Connes conjecture for extension
of torsion free discrete groups [OO01].

Proposition 3.8. Suppose that Γ is torsion-free and satisfies the strong Baum–Connes conjecture,

and that G is an ample groupoid with torsion-free stabilizers satisfying the strong Baum–Connes

conjecture. Then any separable Γ⋉G-C∗-algebra A belongs to the localizing subcategory generated by

the image of IndΓ⋉G
X : KKX → KKΓ⋉G.

Proof. Let us fix A as in the assertion. First consider the functor

F : KKΓ → KKΓ⋉G, B 7→ B ⊗A,

where Γ acts on B⊗A diagonally and G acts on the leg of A. This is a triangulated functor compatible
with countable direct sums.

By assumption on Γ, the trivial Γ-C∗-algebra C belongs to the localizing subcategory generated
by objects of the form C0(Γ) ⊗ B′ for separable C∗-algebras B′. Thus, A = F (C) belongs to the
localizing subcategory generated by the C0(Γ)⊗B′ ⊗A.

Now, we claim that the Γ ⋉ G-C∗-algebra C0(Γ) ⊗ A is isomorphic to IndΓ⋉G
G ResΓ⋉G

G A, by an
analogue of Fell’s absorption principle. Both algebras can be interpreted as the direct sum of copies
of A indexed by the elements of Γ. For C0(Γ) ⊗ A, the action of G becomes component-wise action
on this direct sum, while the action of Γ is the combination of translation on indexes and component-
wise action. For IndΓ⋉G

G ResΓ⋉G
G A, the action of G preserves direct summands, but twisted by the

effect of γ on G on the γ-th component. The action of Γ simply becomes translation of indexes. We
can move from one presentation to another by applying γ or γ−1 on the γ-th component.

We thus have A in the localizing subcategory generated by IndΓ⋉G
G ResΓ⋉G

G A ⊗ B′ for separable
C∗-algebras B′. By Theorem 2.2, ResΓ⋉G

G A ∈ KKG belongs to the localizing subcategory generated
by the image of IndG

X : KKX → KKG. Combined with natural isomorphism IndΓ⋉G
G IndG

X ≃ IndΓ⋉G
X ,

we obtain the assertion (note that the C∗-algebras B′ above receive trivial action). �

Consequently, if G is moreover ample, the conclusion of Theorem 3.3 holds for Γ ⋉ G.

Remark 3.9 (added after publication). Suppose A is a Γ⋉G-C∗-algebra. We can take an (ker ResG
X)-

projective resolution P• of A in KKG, such that Ki(G⋉P•) becomes a complex of Γ-modules mapping
to the Γ-module Ki(G⋉A). The E2-sheet of the associated spectral sequence converging to K•(G⋉A)
given by Theorem 3.3 is isomorphic to the hyperhomology groups Hp(Γ, Kq(G ⋉ P•)), see [PY21,
Section 5.1].

4. Examples

4.1. Deaconu–Renault groupoids. Let us sketch what one gets for the Deaconu–Renault groupoids
[Dea95,ER07], which reduces to the Kasparov spectral sequence for a Zn-action, see [FKPS19].
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Let X be a second countable totally disconnected locally compact Hausdorff space, and σ be an
action of the semigroup Nk on X by surjective local homeomorphisms. The associated Deaconu–

Renault groupoid G = G(X, σ) is defined by

G = {(x, a− b, y) ∈ X × Z
k ×X | a, b ∈ N

k, σa(x) = σb(y)},

with base G(0) = X , and range and source maps given by projection onto the first and third factors.
There is a natural cocycle c : G → Z

k given by c(x, n, y) = n, and the resulting skew-product
groupoid G×c Z

k, with base X × Zk, range map and source maps

r((x, m, y), n) = (x, n), s((x, m, y), n) = (y, m + n).

This groupoid has trivial stabilizers and is AF in the sense of [FKPS19], and in particular is a union
of subgroupoids which are Morita equivalent to the space X . This gives

H0(G×c Z
k,Z) = lim

−→
a∈Nk

Cc(X,Z), Hn(G×c Z
k,Z) = 0 (n > 0),

where the inductive limit is taken with respect to the iteration of induced map by σ. Moreover,
by considering the automorphisms αa : ((x, m, y), n) 7→ ((x, m, y), n + a) for a ∈ Zk, we obtain a
semidirect product groupoid G̃ = Zk ⋉α (G×c Z

k), which is Morita equivalent to G.
Then the Leray–Hochschild–Serre spectral sequence [CM00, Theorem 4.4] applied to the canonical

groupoid homomorphism G̃→ Z degenerates at the E2-sheet and gives an isomorphism

Hn(G̃,Z) ≃ Hn(Zk, H0(G×c Z
k,Z)),

with Zk acting on the inductive limit lim
−→a∈Nk

Cc(X,Z) by shifting the index a. In particular, we get
a convergent spectral sequence of the form in Corollary 3.4 with

Er
pq ⇒ Kp+q(C∗

r G), E2
p,2s = E3

p,2s = Hp(Zk, lim
−→

a∈Nk

Cc(X,Z))⊗Kq(C), E2
p,2s+1 = E3

p,2s = 0

as in [FKPS19].

4.2. Substitution tiling. We follow the convention of [KP00], and consider substitution tilings of
finite local complexity. Thus, we are given a finite set P of prototiles in R

d and a substitution rule
ω for P . Under reasonable assumptions on ω, the translation action τ of Rd on the associated hull
space Ω is free and minimal. Then, analogously to the case of solenoids, the groupoid of the unstable
equivalence relation is the transformation groupoid G = Rd ⋉τ Ω. Moreover, by [SW03], there is a
transversal X ⊂ Ω that is homeomorphic to a Cantor set, such that (Rd⋉τ Ω)|X is the transformation
groupoid Zd ⋉α X for some action α : Zd y X , see also [KP03, Section 5].

Let us quickly explain how a spectral sequence of more classical nature arises in this setting. By
Connes’s Thom isomorphism, one has

Kn(C∗G) ≃ Kn+d(Ω).

Now, Ω can be identified with a projective limit of a self-map of branched d-dimensional manifold ob-
tained by gluing (collared) prototiles [AP98]. This leads to the Atiyah–Hirzebruch spectral sequence

Ep,q
2 = Ȟp(Ω, Kq(C))⇒ Kp+q(Ω), (7)

that is, Ep,q
2 is the p-th Čech cohomology of Ω with constant sheaf Z when q is even, and Ep,q

2 = 0
otherwise (for dimension reasons we also have Ep,q

2 = 0 if p > d). Since Ω is a compact Hausdorff
space, this is also equal to the sheaf cohomology as derived functor. Since the action τ is free and R

d

is contractible, Ω is a model of the classifying space BG and the universal principal bundle EG for the
groupoid G (up to nonequivariant homotopy). In particular, we can interpret the sheaf cohomology
on Ω as groupoid cohomology of G, see [Moe98,Tu06].

Let us relate our construction to this. Using the transversal X , we have

H•(G|X ,Z) ≃ H•(Zd, C(X,Z)), H•(G|X ,Z) ≃ H•(Zd, C(X,Z)),

where we consider C(X,Z) as a module over Zd by the action induced by α. Moreover we have
Hk(Zd, M) ≃ Hd−k(Zd, M) for any Zd-module M , see for example [Bro94, Section VIII.10]. This
shows that

Hk(G|X ,Z) ≃ Hd−k(G|X ,Z) ≃ Hd−k(G,Z)

for the étale groupoid G|X , and the spectral sequence of Corollary 3.4 is comparable to (7).
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Remark 4.1. A similar spectral sequence is given in [SB09], as an analogue of the Serre spectral
sequence for the Anderson–Putnam fibration structure Ω → Γk over the k-collared prototile space.
It would be an interesting question to compare these.

4.3. A non-example. Scarparo has found a counterexample to the HK conjecture [Sca20]. In his
example G is the transformation groupoid of an action α of the infinite dihedral group Γ = Z2 ⋉Z on
the Cantor set X . Thus, it is amenable and in particular satisfies the strong Baum–Connes conjecture.
However, the simplicial approximation P (C(X)) arising from restriction to the unit space is indeed
not KKG-equivalent to C(X). Let us explain the ingredients in more detail.

Let (ni)∞
i=0 be a strictly increasing sequence of integers such that, for i ≥ 1, ni+1/ni ∈ N for all i.

We take the model X = lim
←−

Zni
. Then Z acts by the odometer action, i.e., 1 ∈ Z acts by the +1 map

on each factor Zni
. There is a consistent action of Z2, where the nontrivial element g = [1] ∈ Z2 acts

by multiplication by −1, giving rise to an action α of Γ on X . Note that α is topologically free but
not free, nor does it have torsion-free stabilizers.

Put G = Γ ⋉α X , and

M =

{
m

ni
| m ∈ Z, i ≥ 1

}
.

The C∗-algebra C∗G = Γ ⋉α C(X) is an AF algebra, with

K0(C∗G) ≃

{
M ⊕ Z if ni+1/ni is even for infinitely many i,

M ⊕ Z2 otherwise,

see [BEK93]. On the other hand, the groupoid homology is

H0(G,Z) ≃M,

H2k(G,Z) ≃ 0,

H2k−1(G,Z) ≃

{
Z2 if ni+1/ni is even for infinitely many i,

Z2
2 otherwise,

for k > 1, see [Sca20]. This shows that groupoid homology cannot form a spectral sequence converging
to K•(C∗G), much less being isomorphic to it.

Fortunately, there is a somewhat concrete description of P (C(X)) in this case. Consider the
antipodal action of Z2 on Sn, that is, g acts by the restriction of the multiplication by −1 on Rn+1.
Then the contractible space S∞ = lim−→Sn is a model of the universal bundle EZ2. We want to make
sense of an analogue of Poincaré dual for this.

Let Yn = C0(T ∗Sn) denote the function algebra of the total space of the cotangent bundle of Sn,
and Y ′

n denote the Z2-graded C∗-algebra of continuous sections of the C∗-algebra bundle ClC(T ∗Sn)
over Sn with complex Clifford algebras ClC(T ∗

x Sn) as fibers. These admit naturally induced actions
of Z2, and Yn is KKZ2-equivalent to Y ′

n [Kas16, Theorem 2.7].
Let us recall the (equivariant) Poincaré duality between C(Sn) and Y ′

n [Kas88, Section 4]. The
natural Clifford module structure on the differential forms of Sn, together with D′

n = d + d∗, give
an unbounded model of a K-homology class [D′

n] ∈ K0
Z2

(Y ′
n). Composed with the product map

m : Y ′
n ⊗ C(Sn) → Y ′

n, we obtain the class [Dn] = m ⊗Y ′
n

[D′
n] ∈ K0

Z2
(Y ′

n ⊗ C(Sn)). The dual class
[Θn] ∈ KZ2

0 (C(Sn)⊗ Y ′
n) is defined as a certain class localized around the diagonal.

Let j : Sn → Sn+1 be the embedding at the equator (which is a Z2-equivariant continuous map),
and let j′ : Y ′

n → Y ′
n+1 be the KKZ2 -morphism dual to the restriction map j∗ : C(Sn+1) → C(Sn).

Thus, we have
j′ = [Θn+1]⊗C(Sn+1)⊗Yn+1

(idY ′
n
⊗ j∗ ⊗ idY ′

n
)⊗Yn⊗ C(Sn) [Dn],

see [Kas88, Theorem 4.10].

Lemma 4.2. We have j′ ⊗Y ′

n+1
[D′

n+1] = [D′
n] in K0

Z2
(Y ′

n).

Proof. As a KKZ2-morphism, [D′
n] is the dual of the embedding ηn : C → C(Sn), hence the claim

reduces to ηn+1 = jηn. �

Take the homotopy colimit Y ′
∞ = lim

−→
Y ′

n in KKZ2 (to be precise, we are working in the enlarged
category of Z2-graded C∗-algebras). By the above lemma, the morphisms [D′

n] induce a morphism
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[D′
∞] ∈ KKZ2 (Y ′

∞,C). Transporting this by the KKZ2-equivalence, we obtain Y∞ = lim
−→

Yn and

[D∞] ∈ KKZ2 (Y∞,C).

Lemma 4.3. The image of [D∞] in KK(Y∞,C) is a KK-equivalence.

Proof. In the nonequivariant KK-category, Yn is equivalent to C2 or C⊕ΣC depending on the parity
of n, and there is a distinguished summand which is equivalent to C (at the even degree) spanned
by the K-theoretic fundamental class of T ∗Sn. Moreover, the morphism corresponding to [D′

n] is a
projection onto this summand.

The KK-morphisms corresponding to j′ preserve the fundamental class while killing the other
direct summand. Thus, the limit is equivalent to C, spanned by the image of the fundamental classes,
and [D∞] gives the equivalence. �

Since Z2 acts freely on T ∗Sn, each Yn is orthogonal to the kernel of restriction functor KKZ2 → KK.
The discussion so far can be readily adjusted to the groupoid G, as follows. Here, Yn ⊗ C(X) is a
G-C∗-algebra for which Yn only sees the action of Z2.

Proposition 4.4. The G-C∗-algebra Yn ⊗ C(X) belongs to the localizing subcategory generated by

the image of IndG
X : KKX → KKG.

Proof. First, G ⋉ (T ∗Sn × X) is a free groupoid. Indeed, it is the transformation groupoid of the
action Γ y T ∗Sn×X , but any element γ ∈ Γ that has a fixed point in X is either conjugate to (g, 0)
or (g, 1). (Here, g is the nontrivial element of Z2 and we identify Γ with Z2 × Z as a set.) By the
freeness of Z2 y T ∗Sn, these elements cannot have fixed points in T ∗Sn ×X .

We thus obtain that Yn ⊗ C(X) belongs to the localizing subcategory generated by the image of
IndG⋉(T ∗Sn×X)

T ∗Sn×X , see the proof of Theorem 2.2. Using the triangulated functor KKG⋉(T ∗Sn×X) →

KKG given by restricting the scalars of C0(T ∗Sn×X)-algebras to C(X), we obtain the assertion. �

Corollary 4.5. We have PIC(X) ≃ Y∞ ⊗ C(X) for I = ker ResG
X , with the corresponding KKG-

morphism Y∞ ⊗ C(X)→ C(X) given by [D∞]⊗ idC(X).

Consequently, the spectral sequence of groupoid homology converges to the K-theory groups of
the algebra G ⋉ (Y∞ ⊗ C(X)).

Appendix A. Structure of groupoid equivariant KK-theory

As in the other parts of paper, G denotes a locally compact Hausdorff groupoid with Haar system,
and we write X = G(0). We denote the category of separable G-C∗-algebras by C∗

G. We regard Cc(G)
as a C0(X)-module via pullback by s, and denote its completion a right Hilbert C0(X)-module with
respect to the inner product by the Haar system by L2(G).

A.1. Invariant ideals. Let us check that continuous actions of G restrict to kernels of equivariant
homomorphisms.

Proposition A.1. Let f : A→ B be an equivariant homomorphism of G-C∗-algebras. Then I = ker f
is a G-C∗-algebra.

Proof. Since I is an ideal of A, it inherits a structure of C0(X)-algebra. We need to show that there
is an isomorphism of C0(G)-algebras

s∗I = C0(G) ⊗s C0(X) I → r∗I = C0(G) ⊗r C0(X) I

defining a continuous action of G. By the nuclearity of C0(G) as a C∗-algebra,

0→ C0(G)⊗ I → C0(G)⊗A→ C0(G)⊗B → 0

is exact.
We first claim that s∗I is the kernel of s∗A → s∗B induced by f . By the C0(X)-nuclearity of

C0(G), we can write

s∗I = (C0(G)⊗ I)∆(X),
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etc. Then we have a commutative diagram

0 0 0

0 I ′ A′ B′ 0

0 C0(G) ⊗ I C0(G)⊗A C0(G)⊗B 0

0 s∗I s∗A s∗B 0

0 0 0

with I ′ = C0((G × X) r (G ×X X))(C0(G) ⊗ I), etc., and we know the exactness of the vertical
sequences and top and middle horizontal sequences. Then the bottom sequence is also exact, which
establishes the claim.

Then looking at the action map
s∗A→ r∗A,

we see that s∗I is mapped onto r∗I = ker(r∗A→ r∗B) bijectively. �

A.2. Stabilization. When E is a Hilbert A-module, we denote the Hilbert A-module direct sum of
countable copies of E by E∞. From now on let us assume that G admits a Haar system λ, so that
L2(G) makes sense as a Hilbert C0(X)-module.

Lemma A.2. Let A be a separable G-C∗-algebra, and E be a countably generated Hilbert G-A-module.

If E is full as an right Hilbert A-module, we have

L2(G)∞ ⊗C0(X) E ≃ L2(G)∞ ⊗C0(X) A

as Hilbert G-A-modules.

Proof. By fullness, we have E∞ ≃ A∞ as Hilbert A-modules [Lan95, Proposition 7.4]. Then the
assertion follows from [Pop04, Lemma 3.6]. �

Proposition A.3. Let F be a functor from C∗
G to an additive category. Then the following conditions

are equivalent:

(1) if E is a Hilbert G-A-module which is full over A, the natural maps

F (A)→ F (K(A ⊕ E)), F (K(E))→ F (K(A⊕ E))

are isomorphisms;

(2) same as above, but just for E = E ′ ⊗C0(X) A where E ′ is a Hilbert G-C0(X)-module which is

full over C0(X);
(3) same as above, but just for E ′ = L2(G)∞.

Proof. The only nontrivial implication is from (3) to (1). Since K(L2(G)∞ ⊗C0(X) A) is isomorphic
to K(L2(G)∞) ⊗C0(X) A, (3) implies that F (A) ≃ F (K(L2(G)∞)⊗C0(X) A). Suppose E is as in (1).
Then K(L2(G)∞)⊗C0(X)K(E) is isomorphic to K(L2(G)∞⊗C0(X) A) by this observation and Lemma
A.2. We thus obtain F (A) ≃ F (K(E)), and a routine bookkeeping gives that this can be indeed
induced by maps as in (1). �

If the conditions in the above proposition are satisfied, we say that F is stable.

A.3. Universal property. Again suppose F is a functor from C∗
G to an additive category. As usual,

F is homotopy invariant if the evaluation maps A⊗C([0, 1])→ A at 0 ≤ t ≤ 1 induce isomorphisms
F (A ⊗ C([0, 1])) ≃ F (A), and is split exact if an extension I → A→ B with splitting B → A by an
equivariant ∗-homomorphism induces an isomorphism F (A) ≃ F (I)⊕ F (B).

Proposition A.4. The canonical functor C∗
G → KKG is a universal functor satisfying stability,

homotopy invariance, and split exactness.
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Before getting into the proof, recall that an element in KKG(A, B) is by definition represented
by a G-A-B-Kasparov cycle (π, E , T ), where E is a Z2-graded right Hilbert B-module, π is a ∗-
homomorphism from A to L(E), and T is a certain odd endomorphism of E . Note that T is only
assumed to be G-equivariant up to compact errors. A key ingredient is the following result of Oyono-
Oyono, which allows us to replace such cycles by strictly equivariant ones. (To be precise, his result
is for odd cycles, but his construction is compatible with grading on the underlying Hilbert module,
otherwise we can work with suspensions.)

Proposition A.5 ([Laf07, Section A.4]). Under the above setting, there is an odd G-equivariant

endomorphism T ′ on Ẽ = L2(G)∞⊗C0(X) E such that (ι⊗ π, Ẽ , T ′) is a G-(K(L2(G)∞)⊗C0(X) A)-B-

Kasparov cycle, and such that (S⊗π(a))(1⊗T−T ′) is a compact endomorphism for all S ∈ K(L2(G)∞)
and a ∈ A.

Another important ingredient is the “Cuntz picture” of KKG(A, B). To simplify the notation, put
Ã = K(L2(G)∞) ⊗C0(X) A. A G-equivariant quasi-homomorphism from Ã to B̃ is given by pair of
G-equivariant ∗-homomorphisms φ+, φ− from Ã toM(B̃) such that φ+(a)−φ−(a) ∈ B̃ for all a ∈ Ã.
This induces a Kasparov G-Ã-B-cycle

(
φ+ ⊕ φ−, (L2(G)∞ ⊗C0(X) B)⊕2, T =

[
0 1
1 0

])
. (8)

Proof of Proposition A.4. Let us explain how to present KKG(A, B) in terms of equivariant quasi-
homomorphisms using Proposition A.5. Let us start with a G-A-B-Kasparov cycle (π, E , T ). Adding
a degenerate direct summand, we may assume that E is full as a Hilbert B-module. Take a G-
equivariant endomorphism T ′ on Ẽ as above. 1⊗T and T ′ define homotopic Kasparov cycles, so any
class in KKG(A, B) has a G-equivariant representative by replacing A with Ã.

Doing the same for G-A-(B⊗C([0, 1]))-Kasparov cycles, we see that, if (π0, E0, T0) and (π1, E1, T1)
are homotopic cycles, then T ′

0 are T ′
1 are homotopic through a G-equivariant path. Consequently

KKG(A, B) is the quotient set of the G-Ã-B-Kasparov cycles (π, E , T ), with G-equivariant T , up to
the equivalence relation generated by G-equivalent homotopy, G-equivariant unitary equivalence, and
ignoring the difference of direct sum with degenerate cycles.

Moreover, we can replace T by a G-equivariant endomorphism satisfying T = T ∗ = T −1 without
breaking the equivalence relation, see [Bla86, Chapter 17]. By Lemma A.2, we may assume that T is
represented on L2(G)∞⊗C0(X) B. Then we can write T in the form of (8), and the left action of Ã is
given by a G-equivariant ∗-homomorphism π : Ã → M(B̃). Finally, the commutation relation with
T implies that π is of the form φ+ ⊕ φ− for an equivariant quasi-homomorphism (φ+, φ−) from Ã

to B̃. Consequently, KKG(A, B) is isomorphic to the set of equivalence classes of equivariant quasi-
homomorphisms (φ+, φ−) : Ã→ B̃ up to equivariant homotopy, equivariant unitary equivalence, and
ignoring the difference of direct sum with degenerate ones.

Next let us relate quasi-homomorphisms to split extensions, cf. [Bla86,PT00]. Let (φ+, φ−) be an
equivariant quasi-homomorphism from Ã to B̃. Put

D = {(a, φ+(a) + b) | a ∈ Ã, b ∈ B̃} ⊂ Ã⊕M(B̃),

which is a G-C∗-algebra by Lemma A.6. Moreover, this fits into a split extension

B̃ D Ã,
j q

s

with j(b) = (0, b), q(a, φ+(a) + b)) = a, and s(a) = (a, φ−(a)).
Suppose that F : C∗

G → C is a functor into an additive category satisfying stability, homotopy invari-
ance, and split exactness. We want to show that there is a uniquely determined functor F̃ : KKG → C
factoring F up to natural isomorphisms. Given an equivariant quasi-homomorphism (φ+, φ−) from Ã
to B̃, construct D as above. Then we have an identification F (D) ≃ F (B̃)⊕F (Ã), so the projection
onto the first summand combined with stability gives a morphism φ∗ : F (D) → F (B). Moreover,
there is another equivariant ∗-homomorphism f : Ã → D defined by f(a) = (a, φ+(a)). We then
obtain F̃ (φ+, φ−) : F (A) → F (B) by combining φ∗ ◦ F (f) with stability for A. This construction
is compatible with the equivalence relation on quasi-homomorphisms, and we obtain a well-defined
functor F̃ : KKG → C extending F .
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Uniqueness follows from functoriality and the following observation: if B → D → A is a split
extension, D is a model for the direct sum B ⊕ A in KKG. More concretely, the ideal inclusion
j : B → D defines a homomorphism ̃ : D →M(B), and (̃, ̃sq) in the above notation defines a quasi-
homomorphism from D to B. This is a projection of D to B in KKG, and together with the other
maps in the extension these KKG-morphisms give the structure morphisms of the direct sum. �

Lemma A.6. The algebra D in the above proof is a G-C∗-algebra.

Proof. First let us check that D is a C0(X)-algebra. If f ∈ C0(X), a ∈ Ã and b ∈ B̃, we obviously
put f.(a, φ+(a) + b) = (fa, φ+(fa) + fb). Since fa and fb can approximate a and b, we see that this
defines a nondegenerate homomorphism C0(X)→M(D).

Next, the maps

D → Ã, (a, φ+(a) + b) 7→ a, D → B̃, (a, φ+(a) + b) 7→ b

are C0(X)-linear and completely bounded. From this we see that C0(G) ⊗s C0(X) D is a direct sum

of C0(G) ⊗s C0(X) Ã and C0(G) ⊗s C0(X) B̃ as an operator space, and similar decomposition holds for

C0(G) ⊗r C0(X) D. Then we obtain an action map on D as combination of the action maps on Ã and

B̃. �

A.4. Triangulated structure. Let f : A→ B be an equivariant ∗-homomorphism of G-C∗-algebras.
As usual, its mapping cone is given by

Con(f) = {(a, b∗) ∈ A⊕ C0((0, 1], B) | f(a) = b1},

which inherits a structure of G-C∗-algebra from A and B.
An exact triangle in KKG is a diagram of the form

A→ B → C → ΣA

such that there exists a homomorphism f : A′ → B′ of G-C∗-algebras and a commutative diagram

A B C ΣA

ΣB′ Con(f) A′ B′,

in KKG, where vertical arrows are equivalences and the rightmost downward arrow is equal to the
leftmost downward arrow up to applying Σ and Bott periodicity Σ2B′ ≃ B′ in KKG.

Thus, we are really defining a triangulated category structure on the opposite category of KKG.
Generally the opposite category of a triangulated category is again triangulated with “the same”
exact triangles with suspension and desuspension exchanged, but for KKG we have Σ2 ≃ id and we
can ignore that issue.

The crucial step is to check the axiom (TR1), in particular that any KKG-morphism is represented
by a G-equivariant ∗-homomorphism up to KKG-equivalence, see [Laf07, Lemma A.3.2]. Having
established that, the rest is quite standard; one can follow [MN06, Appendix A] to check that the
triangles of the form

ΣB → Con(f)→ A→ B

satisfy the axioms (TR2), (TR3), and (TR4) for the opposite category of KKG.
Finally, suppose that an equivariant ∗-homomorphism f : A→ B is surjective with a C0(X)-linear

completely positive section B → A. Then the G-C∗-algebra I = ker f is isomorphic to Con(f) in
KKG, by the embedding homomorphism

I → Con(f), a 7→ (a, 0).

It follows that there is an exact triangle of the form

I A B ΣI.
f
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