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In this paper we introduce a new preconditioner for linear systems of saddle point type
arising from the numerical solution of the Navier–Stokes equations. Our approach is based
on a dimensional splitting of the problem along the components of the velocity field,
resulting in a convergent fixed-point iteration. The basic iteration is accelerated by a Krylov
subspace method like restarted GMRES. The corresponding preconditioner requires at each
iteration the solution of a set of discrete scalar elliptic equations, one for each component
of the velocity field. Numerical experiments illustrating the convergence behavior for
different finite element discretizations of Stokes and Oseen problems are included.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider the solution of the incompressible Navier–Stokes equations governing the flow of viscous Newtonian fluids.
For an open bounded domain Ω ⊂ Rd (d = 2,3) with boundary ∂Ω , time interval [0, T ], and data f, g and u0, the goal is to
find a velocity field u = u(x, t) and pressure field p = p(x, t) such that

∂u

∂t
− ν�u + (u · ∇)u + ∇p = f on Ω × (0, T ], (1)

div u = 0 on Ω × [0, T ], (2)

u = g on ∂Ω × [0, T ], (3)

u(x,0) = u0(x) on Ω, (4)

where ν is the kinematic viscosity, � is the vector Laplacian, ∇ is the gradient and div the divergence. Implicit time dis-
cretization and linearization of the Navier–Stokes system by Picard fixed-point iteration result in a sequence of (generalized)
Oseen problems of the form
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σu − ν�u + (v · ∇)u + ∇p = f in Ω, (5)

div u = 0 in Ω, (6)

u = g on ∂Ω, (7)

where v is a known velocity field from a previous iteration or time step (the ‘wind’) and σ is proportional to the reciprocal
of the time step (σ = 0 for a steady problem). When v = 0 we have a (generalized) Stokes problem.

Spatial discretization of the Stokes or Oseen problem using LBB-stable finite elements (cf. [18,19]) results in large, sparse
linear systems in saddle point form:[

A BT

−B 0

][
u
p

]
=

[
f

−g

]
, or Ax = b, (8)

where now u and p represent the discrete velocity and pressure, respectively, A is the discretization of the diffusion,
convection, and time-dependent terms, B T is the discrete gradient, B the (negative) discrete divergence, and f and g contain
forcing and boundary terms.

The efficient solution of (8) calls for rapidly convergent iterative methods. Much work has been done in developing
efficient preconditioners for Krylov subspace methods applied to this problem; see, e.g., [4,5,8,14,15,17,18,22]. The ultimate
goal is to develop robust solvers with optimal complexity. In particular, the rate of convergence should be independent
of the mesh size h. For the Oseen problem, the rate of convergence should also depend only weakly on the kinematic
viscosity ν (equivalently, on the Reynolds number Re = O (ν−1)), although this goal is difficult to achieve in practice.

2. Dimensional splitting

For simplicity, in this paper we limit ourselves to the 2D case. Extension to the 3D case is possible (see Section 7), but
will not be described here. The system matrix A admits the following splitting:

A =
⎡⎣ A1 0 BT

1

0 A2 BT
2

−B1 −B2 0

⎤⎦ =
⎡⎣ A1 0 BT

1

0 0 0

−B1 0 0

⎤⎦ +
⎡⎣0 0 0

0 A2 BT
2

0 −B2 0

⎤⎦ = A1 + A2. (9)

Here each diagonal submatrix Ai is a scalar discrete convection-diffusion-reaction operator:

Ai = σ M + νL + Ni (i = 1,2), (10)

and BT
1 , BT

2 are discretizations of the partial derivatives ∂
∂x , ∂

∂ y , respectively. Note that A1 and A2 act, respectively, on u (the
x-component of the velocity field u) and on v (the y-component of u). Denoting by n1, n2 and m the number of degrees
of freedom of u, v and p, respectively, then A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , B1 ∈ Rm×n1 and B2 ∈ Rm×n2 . Thus, A ∈ R(n+m)×(n+m)

with n = n1 + n2. In (10), M denotes the velocity mass matrix, L the discrete (negative) Laplacian, and Ni the convective
terms. Note that for the discrete Stokes problem the convective terms are absent (Ni = 0) so that each Ai is symmetric and
positive definite. For the discrete Oseen problem Ai �= AT

i , but Ai + AT
i is positive definite (i = 1,2). As a consequence, A1

and A2 in (9) are nonsymmetric but positive semidefinite, in the sense that A1 + AT
1 and A2 + AT

2 are both symmetric
positive semidefinite. In particular, A1 and A2 are singular. We refer to (9) as to a dimensional splitting, since A1 contains
terms that correspond to the x-component of the solution and A2 contains terms that correspond to the y-component
of the solution. Although this splitting is somewhat reminiscent of ADI (alternating direction implicit) methods [29], it is
actually quite different since we do not split the operators Ai into their constituent components. To distinguish it from ADI
splitting, we refer to (9) as to dimensional splitting (or DS for short). We further mention that our approach is also different
from previous ADI schemes for saddle point problems, such as those described in [11] and [13].

Let now α > 0 be a parameter, and denote by I the identity matrix of order n1 + n2 + m. Then A1 + αI and A2 + αI
are both nonsingular, nonsymmetric, and positive definite. Consider the two splittings of A,

A = (A1 + αI) − (αI − A2) and A = (A2 + αI) − (αI − A1).

Associated to these splittings is the alternating iteration

(A1 + αI)xk+ 1
2 = (αI − A2)xk + b, (11)

(A2 + αI)xk+1 = (αI − A1)xk+ 1
2 + b (12)

(k = 0,1, . . .). Eliminating xk+ 1
2 from these, we can rewrite (11)–(12) as the stationary scheme

xk+1 = Tαxk + c, k = 0,1, . . .

where Tα is the iteration matrix

Tα = (A2 + αI)−1(αI − A1)(A1 + αI)−1(αI − A2) (13)
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and c is a certain vector. As in [9], one can show that there is a unique splitting A = Pα − Qα with Pα nonsingular such
that the iteration matrix Tα is the matrix induced by that splitting, i.e., Tα = P−1

α Qα = I − P−1
α A. Furthermore, c = P−1

α b.
Matrices Pα and Qα are given by

Pα = 1

2α
(A1 + αI)(A2 + αI), Qα = 1

2α
(αI − A1)(αI − A2). (14)

We refer to iteration (11)–(12) as the DS iteration, and to Pα as the DS preconditioner. Besides the already mentioned re-
semblance to the Peaceman–Rachford ADI method, the DS iteration bears some resemblance to another alternating method,
the Hermitian and skew-Hermitian splitting (HSS) iteration [2–4,6]. While the HSS method has proved quite successful in
solving such problems as the generalized Stokes problem and the rotation form of the Navier–Stokes equations (see [6]), it
is not well-suited for the standard (convection) form (1)–(2). This limitation of HSS was one of the main motivations for
introducing the DS approach.

3. Convergence of the fixed-point iteration

We now prove that, under standard assumptions on the saddle point problem (8), the alternating iteration (11)–(12)
converges to the solution of (8) for any choice of α > 0 and for all initial guesses. First we state two auxiliary results.
The first one is classical, and is known as Kellogg’s Lemma; see [21]. In the following, a (not necessarily Hermitian) matrix
A ∈ Cn×n is said to be positive definite (semidefinite) if the Hermitian matrix A + A∗ is positive definite (resp., semidefinite)
in the usual sense.

Lemma 1. Let A ∈ Cn×n be positive semidefinite. Then∥∥(α In + A)−1(α In − A)
∥∥

2 � 1

for all α > 0. Furthermore, if A is positive definite then∥∥(α In + A)−1(α In − A)
∥∥

2 < 1

for all α > 0.

Lemma 2. Assume that the (1,1) block A in (8) has positive definite symmetric part and that B has full row rank. Then the following
are equivalent:

(i) The matrix

Cα :=
⎡⎣ A1

1
α2 BT

1 B2 A2 BT
1 + 1

α2 BT
1 B2 BT

2

0 A2 BT
2

−B1 −B2 0

⎤⎦ (15)

has no purely imaginary eigenvalues.
(ii) The spectral radius of the iteration matrix Tα in (13) is strictly less than unity.

Proof. First we note that under the assumptions made on A and B , the matrix A in (8) is nonsingular; see [4, Lemma 1.1].
Let λ be an eigenvalue of the iteration matrix Tα = I − P−1

α A. Then λ = 1 − μ where μ is a generalized eigenvalue of the
matrix pencil (A,Pα); that is, there exists a vector x �= 0 such that Ax = μPαx. Expanding the right-hand side, we get

Ax = μ

2α
(A1A2 + αA + α2I)x.

Collecting terms in A, we rewrite this as(
1 − 1

2
μ

)
Ax = μα

2

(
I + 1

α2
A1A2

)
x. (16)

Since both A and Pα are nonsingular, it must be μ �= 0. Also, it must be 1 − 1
2 μ �= 0 for otherwise (16) implies that

(I + 1
α2 A1A2)x = 0 has a nonzero solution, but this is impossible since

G := I + 1

α2
A1A2 =

⎡⎣ In1 − 1
α2 BT

1 B2 0

0 In2 0

0 0 Im

⎤⎦
is clearly nonsingular. Hence, μ �= 2 and we can set (as in [25, p. 378])

θ := μα

2 − μ
, from which μ = 2 − 2α

θ + α
= 2θ

θ + α
.
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Hence, the generalized eigenproblem (16) can be reformulated as

Ax = θGx,

that is,⎡⎣ A1 0 BT
1

0 A2 BT
2

−B1 −B2 0

⎤⎦[ u
v
p

]
= θ

⎡⎣ In1 − 1
α2 BT

1 B2 0

0 In2 0

0 0 Im

⎤⎦[ u
v
p

]
,

or

G−1Ax = θx, where G−1 =
⎡⎣ In1

1
α2 BT

1 B2 0

0 In2 0

0 0 Im

⎤⎦ .

This eigenproblem is precisely Cαx = θx, where Cα = G−1A is the matrix in (15). Note that Cα is necessarily nonsingular.
Recall now that the eigenvalues of P−1

α A are of the form μ = 2θ/(θ + α). It must be |1 − μ| � 1, since λ = 1 − μ is an
eigenvalue of the iteration matrix

Tα = I − P−1
α A = (αI + A2)

−1(αI − A1)(αI + A1)
−1(αI − A2),

which is similar to

T̂α = (αI − A1)(αI + A1)
−1(αI − A2)(αI + A2)

−1,

hence 
(Tα), the spectral radius of Tα , satisfies


(Tα) = 
(T̂α) �
∥∥(αI − A1)(αI + A1)

−1
∥∥

2

∥∥(αI − A2)(αI + A2)
−1

∥∥
2 � 1. (17)

The last inequality is an immediate consequence of Kellogg’s Lemma.
Denoting by �(θ) and �(θ) the real and imaginary parts of θ , respectively, we claim that 
(Tα) < 1 if and only if

�(θ) �= 0 for every eigenvalue θ of Cα ; equivalently, 
(Tα) = 1 if and only if there exists at least one θ with �(θ) = 0.
Indeed, we have

|1 − μ| = 1 ⇔
∣∣∣∣ 2θ

θ + α
− 1

∣∣∣∣ = 1 ⇔
∣∣∣∣θ − α

θ + α

∣∣∣∣ = 1 ⇔ |θ − α| = |θ + α|.

The last equality can be rewritten as (�(θ) − α)2 + �(θ)2 = (�(θ) + α)2 + �(θ)2, or(�(θ) − α
)2 = (�(θ) + α

)2 ⇔ 4α�(θ) = 0 ⇔ �(θ) = 0.

Therefore, 
(Tα) = 1 if and only if Cα has at least one purely imaginary eigenvalue. The proof is complete. �
We are now in a position to prove the following convergence result.

Theorem 3. Under the assumptions of Lemma 2, the iteration (11)–(12) is unconditionally convergent; that is, 
(Tα) < 1 for all α > 0.

Proof. By Lemma 2, it suffices to show that for all α > 0, the matrix Cα in (15) has no purely imaginary eigenvalues.
We will argue by contradiction. Recall that Cα is nonsingular. Thus, let θ �= 0 be an eigenvalue of Cα corresponding to an
eigenvector x = [u; v; p], where u ∈ Cn1 , v ∈ Cn2 and p ∈ Cm are not all equal to zero. Expanding Cαx = θx we obtain

A1u + 1

α2
BT

1 B2 A2 v + BT
1 p + 1

α2
BT

1 B2 BT
2 p = θu, (18)

A2 v + BT
2 p = θ v, (19)

−B1u − B2 v = θ p. (20)

Assuming that the eigenvector x has been normalized so that ‖x‖2 = 1, we have

θ = x∗Cαx, θ̄ = x∗CT
αx and �(θ) = θ + θ̄

2
= 1

2
x∗(Cα + CT

α

)
x.

Therefore, letting H1 = (A1 + AT
1 )/2 and H2 = (A2 + AT

2 )/2, we find after some easy algebraic manipulations

�(θ) = u∗H1u + v∗H2 v + 1

2α2

[
u∗BT

1 B2
(

A2 v + BT
2 p

) + (
v∗ AT

2 + p∗B2
)

BT
2 B1u

]
.
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First we observe that at least one between u and v must be nonzero, for otherwise (20), together with the fact that θ �= 0,
implies p = 0 and thus x = 0, a contradiction. Since H1 and H2 are symmetric positive definite we have that u∗H1u +
v∗H2 v > 0, therefore

�(θ) = 0 ⇒ u∗BT
1 B2

(
A2 v + BT

2 p
) + (

v∗ AT
2 + p∗B2

)
BT

2 B1u < 0, (21)

showing that if θ is purely imaginary, it must necessarily be u �= 0. Next, consider the case where v = 0. Then Eqs. (18)–(20)
reduce to

A1u + BT
1 p = θu, (22)

BT
2 p = 0, (23)

−B1u = θ p, (24)

that is, Ax = θx where x = [u;0; p] �= 0. Hence, θ is an eigenvalue of A; but then �(θ) > 0 by virtue of Lemma 1.1 in [4].
So it must be v �= 0. Furthermore, if p = 0, then Eq. (19) becomes A2 v = θ v , hence �(θ) > 0 since A2 is positive definite
(has positive definite symmetric part) by assumption, and therefore all its eigenvalues have positive real part. Thus, it must
be u �= 0, v �= 0 and p �= 0. Now, using (19) we rewrite the necessary condition in (21) in the form

θu∗BT
1 B2 v + θ̄ v∗BT

2 B1u = θ(B1u)∗B2 v + θ̄ (B2 v)∗B1u < 0. (25)

Now, from (20) we obtain B2 v = −B1u − θ p which substituted into (25) yields

θu∗BT
1 (−B1u − θ p) + θ̄

(−u∗BT
1 − θ̄ p∗)B1u < 0,

or, equivalently,

−θu∗BT
1 B1u − θ2u∗BT

1 p − θ̄u∗BT
1 B1u − θ̄2 p∗B1u < 0.

Now, if �(θ) = 0 then θ = iξ for some ξ ∈ R, ξ �= 0, where i = √−1. After simplification, we find

−θu∗BT
1 B1u − θ2u∗BT

1 p − θ̄u∗BT
1 B1u − θ̄2 p∗B1u = ξ2(u∗BT

1 p + p∗B1u
)
,

therefore condition (21) becomes

u∗BT
1 p + p∗B1u < 0

and since u∗BT
1 p + p∗B1u = 2�(u∗BT

1 p), we conclude that

�(θ) = 0 ⇒ �(
u∗BT

1 p
)
< 0.

Likewise, from (20) we obtain B1u = −B2 v − θ p; substituting this into (25) and going through the same algebraic
operations as before, we also find that

�(θ) = 0 ⇒ �(
v∗BT

2 p
)
< 0.

Therefore,

�(
(B1u + B2 v)∗p

) = �((
u∗BT

1 + v∗BT
2

)
p
)
< 0,

but together with (20) this implies �((−θ p)∗ p) < 0, or �(iξ‖p‖2
2) < 0, which is clearly absurd since iξ‖p‖2

2 is imaginary.
This proves that Cα cannot have purely imaginary eigenvalues. �

The restriction in Theorem 3 that A have positive definite symmetric part is not essential. If A + AT is only positive
semidefinite (and singular), the alternating iteration (11)–(12) is still well defined. Moreover, the spectral radius of the
iteration matrix cannot exceed 1. Indeed, the iteration matrix Tα still satisfies 
(Tα) � 1, and if the symmetric part of A
and B have no null vectors in common, the coefficient matrix A in (8) is still nonsingular; see again Lemma 1.1 in [4].
Hence, 1 is not an eigenvalue of Tα = I − P−1

α A. However, it may happen that 
(Tα) = 1 for some choices of α > 0.
A simple example is given by

A =
⎡⎣ I 0 0

0 0 I

0 −I 0

⎤⎦ .

Note that this matrix is nonsingular. It is easy to see that for α = 1, the iteration matrix Tα has only three distinct eigen-
values: λ = 0, λ = i and λ = −i. Hence, the spectral radius is 1. Nevertheless, a simple modification of the basic algorithm
yields a convergent iteration. To this end, recall that 
(Tα) � 1 for all α > 0; see (17). Let γ ∈ (0,1) be a parameter, then
the matrix (1 − γ )I + γ Tα has spectral radius less than 1 for all α > 0. Indeed, the eigenvalues of (1 − γ )I + γ Tα are
of the form 1 − γ + γ λ, where λ is an eigenvalue of Tα . It is easy to see that since |λ| � 1 and λ �= 1, all the quantities
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1−γ +γ λ have magnitude strictly less than 1. In practice, however, this modification is seldom used. In the next section we
discuss Krylov subspace acceleration, which is much more effective and is applicable whether or not 
(Tα) < 1. Neverthe-
less, knowing that 
(Tα) < 1 is useful because it implies that the spectrum of the preconditioned matrix lies entirely in the
right half-plane, a desirable property for Krylov subspace acceleration. Moreover, the smaller is 
(Tα), the more clustered
the spectrum of the preconditioned matrix is around 1.

4. Krylov subspace acceleration

The basic method (11)–(12) although unconditionally convergent, is not competitive as a solver for problem (8), mainly
due to the fact that convergence is generally slow. Fortunately, the rate of convergence can be greatly improved by Krylov
subspace acceleration. In other words, Pα can be used as a preconditioner for GMRES [24] or any other nonsymmetric
Krylov method. It should be noted that when Pα is used as a preconditioner, the pre-factor 1

2α in (14) is irrelevant and can
be neglected. In this paper we use the restarted GMRES algorithm with restart parameter m. Preconditioning is applied on
the right.

The rate of convergence of nonsymmetric Krylov iterations (like GMRES) preconditioned by Pα depends on the particular
choice of α. Finding the value of α that optimizes the rate of convergence appears to be a difficult problem in general.
Indeed, in practice the convergence rate depends to a large extent on the size, shape, and location of the entire spectrum of
the preconditioned matrix P−1

α A, and not just on the spectral radius of Tα = I − P−1
α A. (The rate of convergence may also

be affected by the conditioning of the eigenbasis of the preconditioned matrix, but this is usually difficult to estimate; see,
e.g., [26, p. 17].) Numerical experiments (see below) suggest that the value (or values) α∗ of α for which the number of
preconditioned iterations is minimized is a rather small number (0 < α∗ 
 1). Moreover, the convergence rate is not overly
sensitive to small relative changes in α.

5. Implementation aspects

For the proposed approach to be successful, it is imperative that the action of the DS preconditioner be computed
efficiently within each GMRES iteration. Written out explicitly, system (11) reads[ A1 + α In1 0 BT

1
0 α In2 0

−B1 0 α In3

]⎡⎣ uk+ 1
2

vk+ 1
2

pk+ 1
2

⎤⎦ =
⎡⎣ αuk + f1

(α In2 − A2)vk − BT
2 pk + f2

B2 vk + αpk − g

⎤⎦ , (26)

while system (12) becomes[
α In1 0 0

0 A2 + α In2 BT
2

0 −B2 α In3

][ uk+1

vk+1

pk+1

]
=

⎡⎣ (α In1 − A1)uk+ 1
2 − BT

1 pk+ 1
2 + f1

αvk+ 1
2 + f2

B1uk+ 1
2 + αpk+ 1

2 − g

⎤⎦ . (27)

Both systems (26) and (27) are highly reducible. Indeed, the second equation in (26) immediately yields vk+ 1
2 = 1

α [(α In2 −
A2)vk − BT

2 pk + f2] together with the reduced system[
A1 + α In1 BT

1−B1 α In3

][
uk+ 1

2

pk+ 1
2

]
=

[
αuk + f1

B2 vk + αpk − g

]
. (28)

Likewise, system (27) is equivalent to uk+1 = 1
α [(α In1 − A1)uk+ 1

2 − BT
1 pk+ 1

2 + f1] together with the reduced system[
A2 + α In2 BT

2−B2 α In3

][
vk+1

pk+1

]
=

[
αvk+ 1

2 + f2

B1uk+ 1
2 + αpk+ 1

2 − g

]
. (29)

Both systems (28) and (29) can be further reduced. Let ck = αuk + f1 and dk = B2 vk +αpk − g . For (28), the second equation
yields

pk+ 1
2 = 1

α

(
dk + B1uk+ 1

2
)

(30)

which, substituted in the first one, yields(
A1 + α In1 + 1

α
BT

1 B1

)
uk+ 1

2 = ck − 1

α
BT

1 dk. (31)

Once this equation has been solved for uk+ 1
2 , we recover pk+ 1

2 from (30). Similarly, let ck+ 1
2 = αvk+ 1

2 + f2 and dk+ 1
2 =

B1uk+ 1
2 + αpk+ 1

2 − g , then the second equation of (29) yields
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pk+1 = 1

α

(
dk+ 1

2 + B2 vk+1) (32)

which, substituted in the first one, yields(
A2 + α In2 + 1

α
BT

2 B2

)
vk+1 = ck+ 1

2 − 1

α
BT

2 dk+ 1
2 . (33)

Once this equation has been solved, the new value pk+1 of the pressure can be obtained from (32).
Hence, the bulk of the work in applying the preconditioner is in the solution of the two reduced systems (31) and (33).

Each of these is a discrete analogue of a scalar, second-order, elliptic, anisotropic convection–diffusion–reaction equation.
The anisotropy is in a sense artificial, since it depends on the size of the algorithmic parameter α: the smaller α is, the
stronger the anisotropy in the diffusion terms. Note that for the Stokes and generalized Stokes problems, the convection
terms are missing in (31) and (33) and the coefficient matrices are symmetric and positive definite. Some remarks on the
solution of these two subsystems are given in the next section.

On the basis of the foregoing discussion, it is clear that the DS approach can be regarded as a dimensionally segregated
method, i.e., a method where the values of the velocity components u and v (or u, v and w in 3D) are updated separately
through a decoupling process; the new value of the pressure p is obtained at very low cost from the new velocity values.

We conclude this section with a discussion of diagonal scaling. In the alternating iteration (11)–(12), it is possible to
replace the (n + m)-by-(n + m) identity matrix I with an arbitrary symmetric positive definite matrix D, leading to a
preconditioner of the form

P̂α = 1

2α
(A1 + αD)(A2 + αD).

It is easy to check that this is equivalent to applying the original DS preconditioner Pα to the linear system Âx̂ = b̂, where

Â := D− 1
2 AD− 1

2 , x̂ = D− 1
2 x, and b̂ = D− 1

2 b. A natural choice for finite element problems is to take D to be a block
diagonal matrix with the velocity and pressure mass matrices on the main diagonal. In order to reduce the cost of applying
the preconditioner, the mass matrices can be lumped or replaced by their main diagonals. In this paper we form D from
the diagonals of the mass matrices. We found that this scaling, which is used in all numerical experiments in the next
section, is quite effective in improving the convergence rate of DS preconditioning, especially for problems on stretched
grids. Incidentally, it was noted in [4] that diagonal scaling is very beneficial for the HSS preconditioner as well.

6. Numerical experiments

In this section we report the results of numerical experiments on linear systems from Stokes and Oseen models of
incompressible flow. We consider Q2–Q1 finite element discretizations of two standard model problems: the leaky-lid driven
cavity problem, and the backward facing step problem (see [18]). For the driven cavity problem, we consider both uniform
and stretched grids of increasing size. All test problems were generated under Matlab using the IFISS software package [16]
(see also [18]). We use the DS preconditioner in conjunction with restarted GMRES with m = 30 as the restart. In all cases
the initial guess was the zero vector, and the stopping criterion was a reduction of at least six orders of magnitude of the
initial residual norm. We discuss experiments for both steady and unsteady cases.

6.1. Steady problems

Application of the DS preconditioner requires, at each iteration, the solution of the linear systems (31) and (33), where
the general form of Ai is given in (10). For the steady Stokes problems, σ = 0 and Ni = 0; hence, the coefficient matrices
in these two systems are symmetric positive definite. The systems can be solved very efficiently with a sparse Cholesky
factorization with an approximate minimum degree (AMD) ordering; see [1,12]. The factorization is computed once and
for all at the outset, and only forward and backward triangular solves need to be performed at each GMRES iteration. For
the steady Oseen problem (σ = 0, Ni �= 0 in (10)) the two systems (31) and (33) are nonsymmetric, although structurally
symmetric. We compute sparse LU factorizations [12] using again an AMD reordering. These direct methods are much faster
than iterative methods in the case of 2D problems; in the solution of large 3D problems iterative methods will have to be
used instead, necessitating the use of a flexible Krylov method (like flexible GMRES [23]) for the outer iteration.

The first set of experiments is aimed at assessing the performance of the DS preconditioner on steady Stokes and Oseen
problems, in particular to investigate the dependence on the discretization parameter h and on the viscosity ν . We begin
with the leaky-lid driven cavity problem.

In Table 1 we show iteration counts for DS-preconditioned GMRES (30) applied to the steady Stokes problem on a
sequence of uniform grids. We report results for the optimal choice of α, determined experimentally. We see that the
iteration count is independent of mesh size. Our tests show that for the Stokes problem, small changes in the value of α do
not have a dramatic effect on the number of iterations.

In Table 2 we report iteration counts for the steady Oseen problem on a sequence of uniform grids and for different
values of ν , using optimal or near-optimal values of α. We found that for small values of the viscosity, scaling (as described
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Table 1
Preconditioned GMRES iterations for Stokes problem with the optimal α.

Grid Its αopt

16 × 16 11 0.006
32 × 32 12 0.001
64 × 64 12 0.0006

128 × 128 10 0.0002

Table 2
Preconditioned GMRES iterations for Oseen problem for different values
of ν , optimal α (lid driven cavity, uniform grids).

Grid ν = 0.1 ν = 0.01 ν = 0.001

16 × 16 14 19 44
32 × 32 15 20 57
64 × 64 15 19 50

128 × 128 14 18 39

Table 3
Preconditioned GMRES iterations for Oseen problem for different values
of ν , optimal α (backward facing step, uniform grids).

Grid ν = 0.1 ν = 0.01 ν = 0.005

16 × 48 19 21 22
32 × 96 19 22 27
64 × 192 20 24 30

128 × 384 19 25 32

Table 4
Preconditioned GMRES iterations for Stokes problem with the optimal α (lid
driven cavity, stretched grids).

Grid Its αopt

16 × 16 9 0.2
32 × 32 9 0.3
64 × 64 9 0.3

128 × 128 9 0.4

Table 5
Preconditioned GMRES iterations for Oseen problem for different values
of ν , optimal α (lid driven cavity, stretched grids).

Grid ν = 0.1 ν = 0.01 ν = 0.001

16 × 16 14 30 137
32 × 32 14 37 166
64 × 64 14 39 177

128 × 128 14 39 189

in the previous section) dramatically improves the rate of convergence of preconditioned GMRES iteration. For example,
for ν = 0.001 the preconditioned iteration without scaling requires over 200 iterations on the fine grid. One can clearly
see again that DS preconditioning results in h-independent convergence rates. There is a mild dependence of the rate of
convergence on the viscosity. Note, however, that the convergence rate on the finest grid remains excellent.

Results for the backward facing step problem (Oseen only) are presented in Table 3. Note that for this problem, the
number of cells is different in the horizontal and vertical directions. Here the smallest value of the viscosity we consider
is ν = 0.005, since the flow is unsteady for ν ≈ 0.001. The experiments show a fairly robust convergence behavior with
respect to both h and ν .

Next, we present some results using stretched grids, using the default stretch factors provided by IFISS. These are 1.2712
for the 16×16 grid, 1.1669 for the 32×32 grid, 1.0977 for the 64×64 grid, and 1.056 for the 128×128 grid. The stretching
is done in both the horizontal and vertical directions starting at the center of the domain, resulting in rather fine grids near
the boundaries. In practice, stretched grids of this kind are often used to resolve boundary layers, if present. However, using
stretched grids typically results in linear systems that are considerably more difficult to solve with iterative methods. Ta-
bles 4–5 report results on numerical experiments for the driven cavity Stokes and Oseen problems (respectively) discretized
on a sequence of stretched grids. Clearly, the results for the Stokes problem are very good—indeed, even better than on the
uniform grids. It is important to mention that without the diagonal scaling (using the diagonals of the mass matrices), the
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Table 6
Preconditioned GMRES iterations for generalized Stokes driven cavity prob-
lem (ν = 1, σ = h−1) with the optimal α.

Grid Its αopt

16 × 16 11 0.006
32 × 32 12 0.001
64 × 64 11 0.0005

128 × 128 12 0.0001

Table 7
Preconditioned GMRES iterations for generalized Oseen driven cavity prob-
lem (σ = h−1) for different values of ν , optimal α.

Grid ν = 0.1 ν = 0.01 ν = 0.001

16 × 16 12 13 13
32 × 32 14 15 15
64 × 64 16 18 19

128 × 128 19 22 23

convergence behavior is much worse; in particular, the number of iterations increases as the mesh is refined. Also note that
the optimal value of α is much larger now than for the uniform grid case. Table 5 shows that mesh independent conver-
gence is observed also for the steady Oseen problem, although there is a noticeable dependence on the viscosity. We note
that without scaling with the mass matrices, the rate of convergence deteriorates very rapidly for decreasing mesh size and
viscosity. Hence, diagonal scaling helps mitigate the negative impact of stretched meshes and removes the dependence on
mesh size; however, it does not appear to be enough to achieve robustness for very small values of ν . In our experience,
this kind of degradation in solver performance is observed also with other preconditioners when stretched grids are used.

6.2. Unsteady problems

Next, we report on analogous experiments involving the generalized Stokes problem (with ν = 1) and the generalized
Oseen problem (for several values of ν). A sequence of linear systems of this type needs to be solved when the time-
dependent Stokes or Navier–Stokes equations are integrated numerically using implicit time-stepping schemes. Now the
matrices A1 and A2 in (31)–(33) are of the form (10) where σ = h−1 and M is the velocity mass matrix; also, Ni = 0
for generalized Stokes and Ni �= 0 for generalized Oseen. For brevity, we only consider the driven cavity problem on square
meshes. As one can see from Table 6, for the generalized Stokes problem the results are virtually the same as those obtained
in the steady case. The behavior, however, is somewhat different for the generalized Oseen problem. Indeed, we can see from
the results in Table 7 that the rate of convergence for DS-preconditioned GMRES(20) is essentially independent of viscosity,
while showing a mild dependence on h.

6.3. Choosing α

As with all parameter dependent preconditioners, some guidelines need to be provided for the choice of α. The analytic
determination of the value of α which results in the fastest convergence of the preconditioned GMRES iteration appears to
be quite difficult, especially in the case of the Oseen problem. Our numerical experiments indicate that for problems posed
on uniform meshes, α should be taken very small; for the Q2–Q1 discretization used in our experiments, the best value of
α is often of the order of 10−3 or even smaller. Moreover, the best value of α gets smaller as the mesh is refined. Note that
taking too small a value of α can lead to excessive ill-conditioning in the subsystems (31)–(33) to be solved at each GMRES
iteration; in our experiments, however, this was never a problem. For problems posed on stretched meshes, on the other
hand, our experiments show that with proper diagonal scaling the optimal α is often of the order of 10−1.

A possible rule of thumb, applicable in case of uniform meshes, is to tie α to the discretization parameter h. Taking
α ≈ h2 was found to give pretty good results in most cases, at least for h small enough.

In the case of a uniform mesh, the rate of convergence of DS-preconditioned GMRES does not appear to be overly
sensitive to the choice of α, in the sense that small relative changes in the size of α do not usually cause the number of
iterations to change too drastically. In Fig. 1 we show the total number of GMRES and GMRES(30) iterations for the solution
of the steady Oseen problem (with ν = 0.01) as a function of α, for two choices of h. Fig. 2 displays the corresponding data
for the unsteady case. From these plots, it appears that slightly overestimating the parameter α does not lead to drastic
changes in the number of iterations, especially in the steady case. Underestimating the optimal α can be more harmful, but
this is easy to avoid. One way to do this is to find a (near-)optimal value of α on a coarse grid, and then use the same value
of α on finer grids. Since the optimal α tends to decrease as the grid id refined, this strategy will generally overestimate
the optimal α. This strategy, again, assumes uniform meshes are used.
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(a) 16 × 16 grid (b) 64 × 64 grid

Fig. 1. Number of GMRES iterations vs. the value of α, steady Oseen problem, ν = 0.01. Uniform mesh.

(a) 16 × 16 grid (b) 64 × 64 grid

Fig. 2. Number of GMRES iterations vs. the value of α, unsteady Oseen problem, ν = 0.01. Uniform mesh.

7. Conclusions and future work

In this paper we have introduced a “dimensional splitting” approach for the solution of saddle point systems in which
the (1,1) block can be partitioned into a two-by-two block diagonal structure. Saddle point systems of this kind arise in
a number of applications: in this paper we focused on linear systems arising from the discretization of two-dimensional
incompressible flow problems. We have established the convergence of the fixed-point iteration, and investigated experi-
mentally its use as a preconditioner for restarted GMRES on a set of Stokes and Oseen problems (both steady and unsteady)
discretized by Q2–Q1 finite elements on both uniform meshes and stretched meshes. The numerical experiments indicate
that for uniform meshes, the preconditioner results in fast convergence for a wide range of mesh sizes and Reynolds num-
bers. Diagonal scaling was found to be essential to achieve robustness for small values of the viscosity. For stretched meshes,
on the other hand, we found that diagonal scaling (using the diagonals of the velocity and pressure mas matrices) is ab-
solutely necessary to retain mesh-independent convergence for steady Stokes and Oseen problems. On stretched meshes,
however, the performance of the preconditioner deteriorates for small values of the viscosity. This problem occurs with
other preconditioners as well.

Future work should include further analysis of the preconditioned iteration, including using Local Fourier Analysis [28,3]
for estimating the optimal value of the relaxation parameter α, and extension to the 3D case. We observe here that the basic
alternating iteration (11)–(12) is of Peaceman–Rachford type and cannot be directly extended to the case of three splittings.
Extension to the 3D case requires the alternating iteration to be of Douglas–Rachford type; see [27, pp. 244–245]. From the
viewpoint of implementation, the 3D case necessitates using (inexact) inner iterative solves for the subproblems that occur
in the application of the preconditioner. The effect of inexact solves on the performance of the DS preconditioner needs to
be investigated. We mention that a promising approach for solving systems of the type (31)–(33) was recently described
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in [10]. Another possibility would be to use the scalable algebraic multilevel solvers for scalar elliptic PDEs provided in the
state-of-the-art Trilinos software package [20].

Finally, we mention that the method presented in this paper forms the starting point for a new preconditioning scheme,
called Relaxed Dimensional Factorization, which is currently under development; see [7].
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