Floquet Theory

Consider the linear periodic system as follows.

\[\dot{x} = A(t)x, \quad A(t + p) = A(t), \quad p > 0, \]

where \(A(t) \in C(R) \).

Lemma 8.4 If \(C \) is a \(n \times n \) matrix with \(\det C \neq 0 \), then, there exists a \(n \times n \) (complex) matrix \(B \) such that \(e^B = C \).

Proof: For any matrix \(C \), there exists an invertible matrix \(P \), s.t. \(P^{-1}CP = J \), where \(J \) is a Jordan matrix.

If \(e^B = C \), then, \(e^{P^{-1}BP} = P^{-1}e^B P = P^{-1}CP = J \). Therefore, it is suffice to prove the result when \(C \) is in a canonical form.

Suppose that \(C = \text{diag}(C_1, \cdots, C_s) \), \(C_j = \lambda_j I_j + N_j \), where \(N_j \) is nilpotent, that is,

\[
N_j = \begin{pmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & 0
\end{pmatrix} \quad \text{with} \quad N_j^{n_j} = O.
\]

Since \(C \) is invertible for each \(\lambda_j \neq 0 \).

If we can show that for each \(C_j \), there exists \(B_j \) s.t. \(C_j = e^{B_j} \Rightarrow C = e^B \).

Since \(C_j = \lambda_j (I_j + \frac{N_j}{\lambda_j}) \), using the expansion of \(\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k \), \(|x|<1 \), we have

\[
B_j = \ln C_j = \ln \left\{ \lambda_j \left(I_j + \frac{N_j}{\lambda_j} \right) \right\} = I_j \ln \lambda_j + \ln \left(I_j + \frac{N_j}{\lambda_j} \right) \\
= I_j \ln \lambda_j + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{N_j}{\lambda_j} \right)^k.
\]

Since \(N_j^{n_j} = O \), we actually have

\[
B_j = \ln C_j = I_j \ln \lambda_j + \sum_{k=1}^{n_j-1} \frac{(-1)^{k+1}}{k} \left(\frac{N_j}{\lambda_j} \right)^k = I_j \ln \lambda_j + M_j, \quad j = 1, 2, \cdots, s,
\]
where \(M_j = \sum_{k=1}^{n-1} \frac{(-1)^{k-1} \lambda^k}{k} \). Therefore, we have
\[
e^{B_j} = \exp \{ I_j \ln \lambda + M_j \} = \exp \{ \ln C_j \} = C_j, \quad j = 1, 2, \ldots, s.
\]

Let \(B = \text{diag}(B_1, \cdots, B_s) \), where \(B_j \) is defined above. We have the desired result given by
\[
e^B = \text{diag}(e^{B_1}, e^{B_2}, \cdots, e^{B_s}) = \text{diag}(C_1, C_2, \cdots, C_s) = C. \quad \Box
\]

Remark 8.16 Clearly, \(B \) is not unique since \(e^{B + 2\pi k I_s} = e^B e^{2\pi k I_s} = e^B e^{2\pi k I_n} = e^B e^{2\pi ki} = e^B \) for any integer \(k \).

Theorem 8.6 (Floquet Theorem) If \(\Phi(t) \) is a fundamental matrix solution of the periodic system \(\dot{x} = Ax \), then so is \(\Phi(t + p) \). Moreover, there exists an invertible matrix \(P(t) \) with \(p \)-period such that
\[
\Phi(t) = P(t)e^{Bt}.
\]

Proof. Let \(\Psi(t) = \Phi(t + p) \). Since \(\Phi'(t) = A(t)\Phi(t) \), it follows that
\[
\Psi'(t) = \Phi'(t + p) = A(t + p)\Phi(t + p) = A(t)\Psi(t),
\]
Hence, \(\Psi(t) \) is also a matrix solution. Since \(\Phi(t) \) is invertible for all \(t \in \mathbb{R} \), so is \(\Phi(t + p) \Rightarrow \Psi(t) \) is also a fundamental matrix solution. Therefore, there exists an invertible matrix \(C \) (for example, if \(\Phi(t) \) satisfies \(\Phi(0) = I_n \), then \(C = \Phi(p) \))!

Depends on solutions. It is a point of difficulty for computation) s.t.
\[
\Phi(t + p) = \Phi(t)C \quad \text{for all} \quad t \in \mathbb{R}.
\]

By Lemma 8.4, there exists a matrix \(B \) such that \(e^{Bp} = C \). For such a matrix \(B \), we take \(P(t) := \Phi(t)e^{-Bt} \), that is, \(\Phi(t) = P(t)e^{Bt} \). Then
\[
P(t + p) = \Phi(t + p)e^{-B(t+p)} = \Phi(t)Ce^{-B(t+p)} = \Phi(t)e^{-Bt} = P(t).
\]

Therefore \(P(t) \) is invertible for all \(t \in \mathbb{R} \) and \(p \)-periodic. This concludes the proof.
Remark 8.17

1) If we know $\Phi(t)$ over $[t_0, t_0 + p]$, then we will know $\Phi(t)$ for all $t \in R$ by Floquet Theorem. This means that $\Phi(t)$ on $[t_0, t_0 + p]$ determines $\Phi(t)$ for all $t \in R$.

Reasoning:

Suppose $\Phi(t)$ is known on $[t_0, t_0 + p]$. Since $\Phi(t + p) = \Phi(t)C$, we take $C = \Phi^{-1}(t_0)\Phi(t_0 + p)$ and $B = p^{-1}\ln C$. $P(t) = \Phi(t)e^{-Bt}$ is known on $[t_0, t_0 + p]$. Since $P(t)$ is periodic for $t \in R$, $\Phi(t)$ is given over $t \in R$ by $\Phi(t) = P(t)e^{Bt}$.

2) If $\Phi(t)$ determines e^{Bt} (or B), then any fundamental matrix solution $\Psi(t)$ determines a similar matrix $Se^{Bp}S^{-1}$ (or SBS^{-1}).

Reasoning:

For any fundamental matrix solution $\Psi(t)$, there exists S with $\det S \neq 0$ s.t. $\Phi(t) = \Psi(t)S$. Since $\Phi(t + p) = \Phi(t)e^{Bp}$, we have

$$\Psi(t + p)S = \Psi(t)Se^{Bp} \Rightarrow \Psi(t + p) = \Psi(t)S e^{Bp}S^{-1} = \Psi(t)e^{SB^{-1}p}.$$

3) For the linear periodic system, its solutions are not necessarily periodic. That is, $\Phi(t) \neq \Phi(t + p)$ in general!!! Give counter-example by yourselves.

Corollary 8.1 Under the transformation $x = P(t)y$, which is invertible and periodic, the periodic system $\dot{x} = A(t)x \Rightarrow$ a time-invariant system.

Proof. Suppose $P(t)$ and B defined by before and let $x = P(t)y$. Then

$$x' = P'(t)y + P(t)y' \quad \text{and} \quad x' = A(t)x = A(t)P(t)y \Rightarrow P'(t)y + P(t)y' = A(t)P(t)y,$$

$$\Rightarrow y' = P^{-1}(t)[A(t)P(t) - P'(t)]y.$$

By Floquet Theorem with $P(t) = \Phi(t)e^{-Bt}$, we have

$$P'(t) = A(t)\Phi(t)e^{-Bt} + \Phi(t)e^{-Bt}(-B) = A(t)P(t) - P(t)B.$$
It follows that
\[y' = P^{-1}(t) [A(t)P(t) - P'(t)] y = P^{-1}(t) P(t) B y = B y. \]

This completes the proof. □

Remark 8.18

1) \(x = P(t)y \) is called Lyapunov transformation. \(P(t) \), which plays an important role. But it is difficult to be found explicitly since the computation of \(P(t) = \Phi(t) e^{-B t} \) depends on a fundamental matrix solution \(\Phi(t) \).

2) Since \(\Phi(t + p) = \Phi(t) C \) with \(\det C \neq 0 \), \(e^B = C \), the eigenvalues \(\rho \) of \(C \) are called the characteristic multipliers of the periodic linear system. The eigenvalues \(\lambda \) of \(B \) are called characteristic exponents of the periodic linear system. \(\rho = e^{\lambda_p} \).

3) Since \(B \) is not unique, the characteristic exponents are not uniquely defined, but the multipliers \(\{ \rho \} \) are uniquely defined (Why?) We always choose the exponents \(\{ \lambda \} \) as the eigenvalues of \(B \), where \(B \) is any matrix such that \(e^{B_p} = C \).

4) Since \(B \) is not unique and satisfies \(e^{B_p} = C \), so \(B \) is not necessarily real.

5) \(B \) may be complex, even if \(C \) is real. However, if \(A(t) \) is real (so that \(C \) is real), then, there exists a real \(S \) such that \(e^{2S_p} = C^2 \).

Reasoning:

Suppose \(\Phi(t) \) with \(\Phi(0) = I_n \), then \(C = \Phi(p) = e^{B_p} \), so
\[
\Phi^2(p) = e^{B_p} e^{B_p} = e^{(B+B)p}.
\]

Let \(S = \frac{B + \bar{B}}{2} \), then \(S \) is real s.t. \(e^{2S_p} = \Phi^2(p) = C^2 \).

6) Let \(S(t) = \Phi(t)e^{-St} \). Then \(S(t) \) is real, \(2p \)-periodic.

Moreover, \(x = S(t)z \) reduces the periodic system \(\dot{x} = A(t)x \) into \(z' = S z \).

Reasoning:

Clearly, \(S(t) \) is real since \(S \) is real, and
\[
S(t + 2p) = \Phi(t + 2p)e^{-S(t+2p)} = \Phi(t) C^2 e^{-2S_p} e^{-St} = \Phi(t) e^{-St} = S(t);\]
It is similar to obtain $\dot{z} = Sz$ under the transformation $x = S(t)z$.

- Floquet theory gives a theoretical result which reduces it into linear systems with constant coefficients. However, The Lyapunov transformation can not be computed.

- Floquet theory is very useful to study stability of a given periodic solution, noted that not equilibrium here. This is a topic of research for dynamic systems, or it is also named as geometric theory of differential equations. It is noted that this type of stability is not in Lyapunov sense.