Classification of simple amenable C^*-algebras

Huaxin Lin
East China Normal University
and University of Oregon

References

★. A C^*-algebra is a complete normed algebra over \mathbb{C} with an involution (\ast) for which

$$\|a^*\| = \|a\| \quad \text{and} \quad \|a^*a\| = \|a\|^2.$$

★. Every C^*-algebra is closed and adjoint closed sub-algebra of $B(H)$, where $B(H)$ is the C^*-algebra of all bounded operators on a Hilbert space H.

★. Examples: \mathbb{C}, M_n, $C_0(X)$, where X is a locally compact Hausdorff space, \mathcal{K}, the algebra of all compact operators on l^2.

★. Gelfand: Every (unital) commutative C^*-algebra is isomorphic (as C^*-algebra) to $C(X)$ for some compact Hausdorff space X.

★. C^*-algebra are viewed as non-commutative topology.
Minimal dynamical systems.

Let \(X \) be a compact metric space and \(\alpha : X \to X \) be a minimal homeomorphism. There is an \(\alpha \)-invariant normalized Borel measure \(\mu \). Consider the Hilbert space \(H = L^2(X, \mu) \) and homomorphism \(\pi : C(X) \to B(H) \) defined by

\[
\pi(g)(f) = gf \quad \text{for} \quad f \in L^2(X, \mu)
\]

for all \(g \in C(X) \). Define

\[
U(f) = f \circ \alpha^{-1} \quad f \in L^2(X, \mu).
\]

Then \(U \) gives a homomorphism from \(\mathbb{Z} \) into the unitary group of \(B(H) \). The \(C^* \)-algebra generated by \(\pi(C(X)) \) and \(\alpha \) is denoted by \(A_\alpha = C(X) \rtimes_\alpha \mathbb{Z} \) and is called the crossed product of \(C(X) \) by \(\mathbb{Z} \) via \(\alpha \).

In this special case \(A_\alpha \) is a unital separable simple \(C^* \)-algebra. (no proper ideal).

Irrational rotations.

Let \(S^1 \) be the unit circle and \(\theta \) be an irrational number. Define \(\alpha : S^1 \to S^1 \) by \(\alpha(e^{2\pi i t}) = e^{2\pi i (t+\theta)} \). This is an irrational rotation.
One can show that A_α is the universal C^*-algebra generated by two uniatres u and v with relation:

$$uv = e^{2\pi i \theta} vu.$$

(non-commutative torus).

★. Question: when two C^*-algebras are isomorphic?

★.

Two unital commutative C^*-algebras $A = C(X)$ and $B = C(Y)$ are isomorphic if and only if X and Y are homeomorphic.

★. We are NOT going to classify commutative C^*-algebras.
★. We consider simple separable amenable C^*-algebras with lower rank (for this talk zero rank).

★. AF-algebras can be classified by (scaled) dimension groups (G. A. Elliott—1978).

AF==== approximately finite dimensional. $C(X)$ is AF if and only if $\dim X = 0$.

★. A C^*-algebra has real rank zero if the set of invertible self-adjoint elements is dense in $A_{s.a.}$.

Every AF-algebra has real rank zero.

$C(X)$ has real rank zero if and only if $\dim X = 0$.

Every Von-Neumann algebras has real rank zero.
★. AH-algebras:

\[A = \lim_{n \to \infty} (A_n, \phi_n), \text{ where} \]

\[A_n = P(C(X_n) \otimes F_n)P = P(C(X, F_n))P, \]

where \(X_n \) is a finite CW-complex, \(P \) is a projection in \(C(X, F_n) \).

\(A \) is said to be AT-algebra if each \(X_n \) can be taken as the unit circle.

★. Theorem (Elliott-Gong) (On the classification of \(C^* \)-algebras of real rank zero. II. Ann. of Math. 144 (1996), 497–610.)

Let \(A \) and \(B \) be two unital AH-algebras with no dimension growth and with real rank zero. Then \(A \cong B \) if and only if

\[(K_0(A), K_0(A)_+, [1_A], K_1(A)) \]

\[\cong (K_0(B), K_0(B)_+, [1_B], K_1(B)). \]
Moreover, for any countable abelian group G_1 and any countable weakly unperforated (partial) ordered group G_0 with order unit $u \in G_0$ with the Riesz interpolation, there is a unital simple AH-algebra with no dimension growth and with real rank zero such that

$$(K_0(A), K_0(A)_+, [1_A], K_1(A)) = (G_0, (G_0)_+, u, G_1).$$

Theorem (Elliott and Evans)

Let θ be an irrational number and $\alpha : S^1 \to S^1$ is defined by $\alpha(z) = e^{2\pi i \theta} z$. Then $C(X) \rtimes_{\alpha} \mathbb{Z}$ is a unital simple AT-algebra with real rank zero.

★. All purely infinite simple C^*-algebras have real rank zero. (S. Zhang)

★. Tracial (topological) rank was introduced in 1998. If A has tracial rank zero, it will written $TR(A) = 0$.

★. Every unital simple C^*-algebra with $TR(A) = 0$ is quasidiagonal, has real rank zero, stable rank and weakly unperforated K_0.

7
★. Every unital simple AH-algebra with no dimension growth and with real rank zero has tracial rank zero.

★. \mathcal{N}: the so-called Bootstrap class of C^*-algebras.

It contains most interesting separable C^*-algebras. It contains all commutative C^*-algebras, type III C^*-algebras, closed under inductive limit, quotient, ideal, tensor product with AF-algebras, crossed products by \mathbb{Z},...

We are only interested in C^*-algebras in \mathcal{N}.

★. **Theorem A (L—)**

Let A and B be two unital separable simple C^*-algebras in \mathcal{N}. Suppose that $TR(A) = TR(B) = 0$. Then

\[A \cong B \]

if and only if

\[(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).\]
Consider

\[\alpha : K_*(A) \longrightarrow K_*(B). \]

We hope to establish homomorphisms \(\phi : A \rightarrow B \) so that \([\phi] = \alpha\).

One can settle for “approximately multiplicative maps”.

★ A sequence of positive linear maps \(\phi_n : A \rightarrow B \) is said to be asymptotically multiplicative if

\[\lim_{n \to \infty} \| \phi_n(a)\phi_n(b) - \phi_n(ab) \| = 0 \]

for all \(a, b \in A \).

In general, asymptotically multiplicative completely positive linear maps cannot be “close” to any homomorphisms
For unital separable amenable simple C^*-algebras A and B with $TR(A) = TR(B) = 0$, given any
\[
\alpha : (K_0(A), K_0(A)_+, [1_A], K_1(A)) \rightarrow (K_0(B), K_0(B)_+, [1_B], K_1(B)).
\]
There existence a (sequence) of asymptotically multiplicative contractive completely positive linear maps $\{\phi_n\} : A \rightarrow B$ such that “locally” $\{\phi_n\}$ gives α.

★ (A non-commutative diagram)
\[
\begin{array}{ccc}
A & \overset{id}{\rightarrow} & A & \overset{id}{\rightarrow} & A \\
\downarrow \phi_1 & \nearrow \psi_1 & \downarrow \phi_2 \\
B & \overset{id}{\rightarrow} & B & \overset{id}{\rightarrow} & B
\end{array}
\]

★ Question:
Given two maps from $L_1, L_2 : \rightarrow B$.
1) When are they the “same”?
2) When are they unitarily equivalent?
Consider a spacial case:

Let X be a compact metric space and let A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose $h_1, h_2 : C(X) \to A$ are two unital monomorphisms. When they are “equivalent?”

★. Theorem B (L—)

Let A be a unital simple C^*-algebra with tracial rank zero and X be a compact metric space. Suppose that $h_1, h_2 : C(X) \to A$ are two unital monomorphisms. Then h_1 and h_2 are approximately unitarily equivalent if and only if

$$[h_1] = [h_2] \text{ in } KL(C(X), A) \text{ and } \tau(h_1(f)) = \tau(h_2(f))$$

for every $f \in C(X)$ and every trace τ of A.

★. Approximately unitarily equivalent:

There exists a sequence of unitaries $u_n \in A$ such that

$$\lim_{n \to \infty} \|u_n^* h_1(a) u_n - h_2(a)\| = 0$$

for all $f \in C(X)$.

11
Let A be the Calkin algebra. Suppose that $h_1, h_2 : C(X) \to A$ are two unital monomorphisms. Then h_1 and h_2 are unitarily equivalent if and only if
$$[h_1] = [h_2] \text{ in } KK(C(X), A).$$

If $K_*(C(X))$ is torsion free, in Theorem A, condition about KL can be replaced by
$$(h_1)_{*i} = (h_2)_{*i}, \quad i = 0, 1,$$
where $(h_j)_{*i} : K_i(C(X)) \to K_i(A)$ ($i = 0, 1$) is the induced homomorphism on K_i.

If A has a trace τ and h_1 and h_2 are approximately unitarily equivalent, then
$$\tau(h_1(f)) = \tau(h_2(f))$$
for all $f \in C(X)$.

Calkin algebra is purely infinite and simple—no trace.
★. **Theorem C** Let A and B be two unital separable simple C^*-algebras with $TR(A) = TR(B) = 0$. Suppose that $\{\phi_n\}, \{\psi_n\} : A \to B$ are two sequences of completely positive linear maps which are asymptotically multiplicative such that

$$[[\phi_n]] = [[\psi_n]] \text{ in } KL(A, B)$$

. Then there exists a sequence of unitaries $\{u_k\} \subset B$ such that

$$\lim_{k \to \infty} \|u_k^* \phi_{n_k}(a) u_k - \psi_{n_k}(a)\| = 0$$

for all $a \in A$.

★ If $K_*(A)$ is torsion free,

$$KL(A, B) = Hom(K_*(A), K_*(B)).$$

By using the "existence theorem" and the "uniqueness theorem" one can construct an approximate intertwining:

★

$$\begin{align*}
A & \xrightarrow{\id} A \\
\downarrow \phi_1 & \xleftarrow{\text{ad } u_1 \circ \psi_1} \uparrow \text{ad } v_2 \circ \phi_2 \\
B & \xrightarrow{\id} B \\
\end{align*}$$

13
Minimal dynamical systems

★. Let X be a compact metric space and α be a homeomorphism on X. Set $A_\alpha = C(X) \rtimes_\alpha \mathbb{Z}$ and $j_\alpha : C(X) \to A_\alpha$ the obvious embedding map.

★. Let X be a compact metric space and $\alpha, \beta : X \to X$ be minimal homeomorphisms. We say α and β are conjugate if there exists homeomorphism $\sigma : X \to X$ such that

$$\sigma^{-1} \circ \beta \circ \sigma = \alpha.$$

We say α and β are flip conjugate if either α and β^{-1} (or α^{-1} and β or α and β) are conjugate.
★. Theorem T (J. Tomiyama)

Let X be a compact metric space and $\alpha, \beta : X \to X$ be homeomorphisms. Suppose that (X, α) and (X, β) are topologically transitive. Then α and β are flip conjugate if and only if there is an isomorphism $\phi : C(X) \rtimes_\alpha \mathbb{Z} \to C(X) \rtimes_\beta \mathbb{Z}$ such that $\phi \circ j_\alpha = j_\beta \circ \chi$ for some isomorphism $\chi : C(X) \to C(X)$.

It should be noted that all minimal dynamical systems are transitive.

★. Definition

Let (X, α) and (X, β) be two topological transitive systems. (X, α) and (X, β) are C^*-strongly approximately flip conjugate if there exists an $\phi : A_\alpha \to A_\beta$, a sequence of unitaries $u_n \in C(X) \rtimes_\alpha \mathbb{Z}$ and an isomorphism $\chi : C(X) \to C(X)$ such that

$$\lim_{n \to \infty} \| \text{ad} \ u_n \circ \phi \circ j_\alpha(f) - j_\beta \circ \chi(f) \| = 0 \text{ for } f \in C(X).$$
In Theorem T, let $\theta = [\phi]$ in $KK(A_\alpha, A_\beta)$. Let $\Gamma(\theta)$ be the induced element in $\text{Hom}(K_*(A_\alpha), K_*(A_\beta))$ which preserves the order and the unit. Then one has

$$[j_\alpha] \times \theta = [j_\beta \circ \chi]$$

Let A be a stably finite C^*-algebra and $T(A)$ be the space of tracial states on A. There is a positive homomorphism $\rho_A : K_0(A) \to \text{Aff}(T(A))$, where $\text{Aff}(T(A))$ is the set of all real affine continuous functions on $T(A)$.

Suppose that $TR(A_\alpha) = TR(A_\beta) = 0$. Then $\rho_{A_\alpha}(K_0(A_\alpha))$ and $\rho_{A_\beta}(K_0(A_\beta))$ are dense in $\text{Aff}(T(A_\alpha))$ and $\text{Aff}(T(A_\beta))$ respectively. Thus $\Gamma(\theta)$ induces an order and unit preserving affine isomorphism $\theta_\rho : \text{Aff}(T(A_\alpha)) \to \text{Aff}(T(A_\beta))$.

For each $a \in A_{s.a.}$, one defines an element $\hat{a} \in \text{Aff}(T(A_\alpha))$ by $\hat{a}(\tau) = \tau(a)$. In particular, each element in $j_\alpha(C(X)_{s.a})$ gives an element in $\text{Aff}(T(A_\alpha))$. Therefore, in terms of K-theory and KK-theory, one has the following: If α and β are flip conjugate, then there is an isomorphism.
\[\chi : C(X) \to C(X) \text{ such that} \]
\[[j_\alpha] \times \theta = [j_\beta \circ \chi] \text{ in } KK(C(X), A_\beta) \quad \text{and} \]
\[\theta_\rho \circ \rho_{A_\alpha} \circ j_\alpha = \rho_{A_\beta} \circ j_\beta \circ \chi. \]

\[\star. \textbf{Theorem D (L—2004)} \]

Let \((X, \alpha)\) and \((X, \beta)\) be two minimal dynamical systems such that \(A_\alpha\) and \(A_\beta\) have tracial rank zero. Then \(\alpha\) and \(\beta\) are \(C^*\)-strongly approximately flip conjugate if and only if the following hold: There is an sequence of isomorphism \(\chi_n : C(X) \to C(X)\) and \(\theta \in KL(A_\alpha, A_\beta)\) such that \(\Gamma(\theta)\) gives an isomorphism from

\((K_0(A_\alpha), K_0(A_\alpha)_+, [1], K_1(A_\alpha))\) to \((K_0(A_\beta), K_0(A_\beta)_+, [1], K_1(A_\beta))\),

\[[j_\alpha] \times \theta = [j_\beta \circ \chi_n] \text{ in } KL(C(X), A_\beta) \text{ for all } n \quad \text{and} \]

\[\lim_{n \to \infty} \| \rho_{A_\beta} \circ j_\beta \circ \chi_n(f) - \theta_\rho \circ \rho_{A_\alpha} \circ j_\alpha(f) \| = 0 \]

for all \(f \in C(X)\).
Cor C. Let X be a compact metric space with torsion free K-theory. Let (X, α) and (X, β) be two minimal dynamical systems such that $TR(A_\alpha) = TR(A_\beta) = 0$. Suppose that there is a unit preserving order isomorphism

- (i) $\gamma : (K_0(A_\alpha), K_0(A_\alpha)_+, [1_{A_\alpha}], K_1(A_\alpha))$
 \hspace{1cm} $\rightarrow (K_0(A_\beta), K_0(A_\beta)_+, [1_{A_\beta}], K_1(A_\beta))$,

- (ii) $[j_\alpha] \times \theta = [j_\beta \circ \chi]$ in $KL(C(X), A_\beta)$ and

- (iii) $\gamma_\rho \circ j_\alpha = \rho_{A_\beta} \circ j_\beta \circ \chi$

for some isomorphism $\chi : C(X) \rightarrow C(X)$. Then (X, α) and (X, β) are C^*-strongly approximately flip conjugate.
\[\star \text{. The Cantor set.} \]

In the case when \(X \) is the Cantor set, \(K_0(C(X)) = C(X, \mathbb{Z}) \). It follows that, if there is \(\theta : K_i(A_{\alpha}) \to K_i(A_{\beta}) \) that is an order and unit preserving isomorphism, then there exists \(\chi : C(X) \to C(X) \) such that

\[
\theta \circ (j_{\alpha})_{*0} = (j_{\beta} \circ \chi)_{*0}.
\]

Moreover, it implies that

\[
\theta_{\rho} \circ \rho_{A_{\alpha}} \circ j_{\alpha} = \rho_{A_{\beta}} \circ j_{\beta} \circ \chi.
\]

In other words, in the case that \(X \) is the Cantor set condition (ii) and (iii) is automatic.

\[\star \text{. Approximate conjugacy.} \]

Two dynamical systems \((X, \alpha)\) and \((X, \beta)\) are said to be weakly approximately conjugate if there are \(\sigma_n, \gamma_n : X \to X \) such that

\[
\lim_{n \to \infty} \| f(\sigma_n^{-1} \circ \beta \circ \sigma_n) - f(\alpha) \| = 0 \quad \text{and} \quad \lim_{n \to \infty} \| f(\gamma_n^{-1} \circ \alpha \circ \gamma_n) - f(\beta) \| = 0
\]

for all \(f \in C(X) \).
This is too weak since there is no consistency among σ_n and γ_n.

Suppose

$$\lim_{n \to \infty} \| f(\sigma_n \circ \alpha \circ \sigma_n^{-1}) - f(\beta) \| = 0$$

for all $f \in C(X)$. Then there exists a sequence of completely positive linear maps $\psi_n : B \to A$ such that

$$\lim_{n \to \infty} \| \psi_n(ab) - \psi(a)\psi(b) \| = 0$$

for all $a, b \in B$ and

$$\lim_{n \to \infty} \| \psi_n(f) - f \circ \sigma_n \| = 0$$

for all $f \in C(X)$ and

$$\lim_{n \to \infty} \psi_n(u_\beta) = u_\alpha,$$

where u_α and u_β denote the implementing unitaries in $C(X) \ltimes_\alpha \mathbb{Z}$ and $C(X) \ltimes_\beta \mathbb{Z}$.

Let (X, α) and (X, β) be dynamical systems on compact metrizable spaces X and Y. Suppose that a sequence of homeomorphisms $\sigma_n : X \to X$ satisfies $\sigma_n \alpha \sigma_n^{-1} \to \beta$.

Let $\{\psi_n\}$ be the asymptotic morphism arising from σ_n.

20
★. We say that the sequence \(\{\sigma_n\} \) induces an order and unit preserving homomorphism \(H_* : K_*(C(X) \rtimes_\beta \mathbb{Z}) \to K_*(C(X) \rtimes_\alpha \mathbb{Z}) \) between \(K \)-groups, if for every projection \(p \in M_\infty(C(X) \rtimes_\beta \mathbb{Z}) \) and every unitary \(u \in M_\infty(C(X) \rtimes_\beta \mathbb{Z}) \), there exists \(N \in \mathbb{N} \) such that

\[
[\psi_n(p)] = H_*([p]) \in K_0(C(X) \rtimes_\alpha \mathbb{Z}) \quad \text{and}
\]

\[
[\psi_n(u)] = H_*([u]) \in K_1(C(X) \rtimes_\beta \mathbb{Z})
\]

for every \(n \geq N \).

★. (For torsion free case). We say that \((X, \alpha)\) and \((X, \beta)\) are approximately \(K \)-conjugate, if there exist homeomorphisms \(\sigma_n : X \to X \), \(\gamma_n : X \to X \) and a (unit preserving) order isomorphism \(H_* : K_*(C(X) \rtimes_\beta \mathbb{Z}) \to K_*(C(X) \rtimes_\alpha \mathbb{Z}) \) between \(K \)-groups such that

\[
\lim_{n \to \infty} \|f(\sigma_n \alpha \sigma_n^{-1}) - f(\beta)\| = 0 \quad \text{and}
\]

\[
\lim_{n \to \infty} \|f(\gamma_n \beta \gamma_n^{-1}) - f(\alpha)\| = 0
\]

for all \(f \in C(X) \) and the associated asymptotic morphisms \(\{\psi_n\} : B \to A \) and \(\{\phi_n\} : A \to B \) induce the isomorphisms \(H_* \) and \(H_*^{-1} \).
Theorem E (with H. Matui)

Let X be the Cantor set and α and β be minimal homeomorphisms. Then the following are equivalent:

(i) α and β are C^*-strongly approximately flip conjugate,

(ii) α and β are approximately K-conjugate,

(iii) A_α and A_β are isomorphic,

(iv) $(K_0(A_\alpha), K_0(A_\alpha)_+, [1_{A_\alpha}]) \cong (K_0(A_\beta), K_0(A_\beta)_+, [1_{A_\beta}])$.

By a theorem of Giordano, Putnam and Skau, the above also equivalent to

(v) (X, α) and (X, β) are strong orbit equivalent.