Proof of a conjecture of Mircea Merca

Victor J. W. Guo

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, People’s Republic of China
jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~jwguo

Abstract. We prove that, for any prime p and positive integer r with $p^r > 2$, the number of multinomial coefficients such that
\[
\binom{k}{k_1, k_2, \ldots, k_n} = p^r, \quad \text{and} \quad k_1 + 2k_2 + \cdots + nk_n = n,
\]
is given by
\[
\delta_{p^r, k} \left(\left\lfloor \frac{n-1}{p^r-1} \right\rfloor - \delta_{0, n \mod p^r} \right),
\]
where $\delta_{i,j}$ is the Kronecker delta and $\lfloor x \rfloor$ stands for the largest integer not exceeding x. This confirms a recent conjecture of Mircea Merca.

Keywords: multinomial coefficients; binomial coefficients; Fine’s formula

AMS Subject Classifications: 05A10; 05A19

1 Introduction

The multinomial coefficients are defined by
\[
\binom{k}{k_1, k_2, \ldots, k_n} = \frac{k!}{k_1!k_2!\cdots k_n!},
\]
where $k = k_1 + k_2 + \cdots + k_n$. Fine [1, p. 87] gave a connection between multinomial coefficients and binomial coefficients:
\[
\sum_{k_1 + k_2 + \cdots + k_n = n \atop k_1 + 2k_2 + \cdots + nk_n = n} \binom{k}{k_1, k_2, \ldots, k_n} = \binom{n-1}{k-1}.
\]
(1.1)

Let $M_m(n, k)$ be the number of multinomial coefficients such that
\[
\binom{k}{k_1, k_2, \ldots, k_n} = m, \quad \text{and} \quad k_1 + 2k_2 + \cdots + nk_n = n.
\]

For example, we have $M_6(10, 3) = 4$, since
\[
10 = 1 + 2 + 7 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 3 + 5.
\]
It is easy to see that $M_1(n, k) = \delta_{0, n \mod k}$. Recently, applying Fine’s formula (1.1), Merca [2] obtained new upper bounds involving $M_m(n, k)$ for the number of partitions of n into k parts. He also proved that

$$M_2(n, k) = \delta_{2, k} \left\lfloor \frac{n-1}{2} \right\rfloor, \quad M_p(n, k) = \delta_{p, k} \left(\left\lfloor \frac{n-1}{p-1} \right\rfloor - \delta_{0, n \mod p} \right),$$

where p is an odd prime.

In this paper, we shall prove the following result, which was conjectured by Merca [2, Conjecture 1].

Theorem 1. Let p be a prime and let n, k, r be positive integers with $p^r > 2$. Then

$$M_{p^r}(n, k) = \delta_{p^r, k} \left(\left\lfloor \frac{n-1}{p^r-1} \right\rfloor - \delta_{0, n \mod p^r} \right).$$

Merca [2] pointed out that, when m is not a prime power, the formula for $M_m(n, k)$ is more involved. For example, we have

$$M_{10}(n, k) = \delta_{10, k} \left(\left\lfloor \frac{n-1}{9} \right\rfloor - \delta_{0, n \mod 10} \right) + \delta_{5, k} \left(\left\lfloor \frac{n+1}{6} \right\rfloor - \delta_{0, n \mod 5} - \delta_{0, n \mod 6} \right).$$

2 Proof of Theorem 1

We need the following result.

Lemma 2. Let n and k be two positive integers with $2 \leq k \leq \frac{n}{2}$. Then the binomial coefficient $\binom{n}{k}$ is not a prime power.

Proof. For any prime p, the p-adic order of $n!$ can be given by

$$\text{ord}_p n! = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

If $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ were a prime power, say p^r, then

$$r = \sum_{i=1}^{\infty} \left(\left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{k}{p^i} \right\rfloor - \left\lfloor \frac{n-k}{p^i} \right\rfloor \right).$$

(2.1)

Note that $\lfloor x+y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor \leq 1$. From (2.1) we deduce that r is less than or equal to the largest integer i such that $p^i \leq n$. Namely, $p^r \leq n$. On the other hand, for $2 \leq k \leq \frac{n}{2}$, we have $\binom{n}{k} > n$, a contradiction. Therefore, the initial assumption must be false. □

Proof of Theorem 1. Let

$$\binom{k_1 + k_2 + \cdots + k_n}{k_1, k_2, \ldots, k_n} = p^r.$$

(2.2)
We assert that there are exactly two \(i \)’s such that \(k_i \geq 1 \). In fact, if \(k_1, k_2, k_3 \geq 1 \), then either \(\binom{k_1+k_2+k_3}{k_1,k_2,k_3} = \binom{3}{1,1,1} = 6 \), or by Lemma 2, \(\binom{k_1+k_2+k_3}{k_a} \) \((k_a = \max\{k_1, k_2, k_3\})\) is not a prime power. But this is impossible, since both \(\binom{k_1+k_2+k_3}{k_1,k_2,k_3} \) and \(\binom{k_1+k_2+k_3}{k_1,k_2,k_3} \) divide \(\binom{k_1+k_2+\ldots+k_n}{k_1,k_2,\ldots,k_n} \). This proves the assertion. Furthermore, by Lemma 2 again, one of the two non-zero \(k_i \)’s must be 1, and by (2.2), the other non-zero term is equal to \(p^r - 1 \). In other words, the identity (2.2) holds if and only if \((k_1, k_2, \ldots, k_n)\) is a rearrangement of \((p^r - 1, 1, 0, \ldots, 0)\). Consider the equation

\[
(p^r - 1)x + y = n.
\]

(2.3)

If \(k = p^r \), then we conclude that \(M_{p^r}(n, k) \) is equal to the number of positive integer solutions \((x, y)\) to (2.3) with \(x \neq y \), i.e.,

\[
M_{p^r}(n, k) = \left\lfloor \frac{n - 1}{p^r - 1} \right\rfloor - \begin{cases} 1, & \text{if } n \equiv 0 \pmod{p^r}, \\ 0, & \text{otherwise}. \end{cases}
\]

If \(k \neq p^r \), then it is obvious that \(M_{p^r}(n, k) = 0 \). This completes the proof. \(\square \)

3 Concluding remarks

Note that, Lemma 2 plays an important part in our proof of Theorem 1. It seems that we may say something more about the factors of \(\binom{n}{k} \) for \(2 \leq k \leq \frac{n}{2} \). Since \(\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} \), we have \(\gcd(\binom{n}{k}, n) > 1 \), where \(\gcd(a, b) \) denotes the greatest common divisor of two integers \(a \) and \(b \). If

\[
\gcd\left(\binom{n}{k}, n - 1\right) > 1,
\]

(3.1)

then, noticing that \(\gcd(n, n - 1) = 1 \), we immediately deduce that \(\binom{n}{k} \) has at least two different prime factors (namely, Lemma 2 holds). However, in general, the inequality (3.1) does not hold. For example, \(\gcd\left(\binom{14}{3}, 6\right) = 1 \). Similarly, the fact \(\gcd\left(\binom{14}{4}, 12\right) = 1 \) means that we cannot expect

\[
\gcd\left(\binom{n}{k}, n - 2\right) > 1.
\]

(3.2)

We close our paper with the following conjecture, which asserts that at least one of (3.1) and (3.2) is true.

Conjecture 3. Let \(n \) and \(k \) be two positive integers with \(2 \leq k \leq \frac{n}{2} \). Then

\[
\gcd\left(\binom{n}{k}, \binom{n - 1}{2}\right) > 1.
\]

We have verified the above conjecture for \(n \) up to 5000 via Maple.

Acknowledgments. This work was partially supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (grant 11371144).
References
