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Motivated by work of Erdős, Ota determined the maximum size g(n, k) of a k-connected 
nonhamiltonian graph of order n in 1995. But for some pairs n, k, the maximum size is 
not attained by a graph of connectivity k. For example, g(15, 3) = 77 is attained by a 
unique graph of connectivity 7, not 3. In this paper we obtain more precise information 
by determining the maximum size of a nonhamiltonian graph of order n and connectivity 
k, and determining the extremal graphs. Consequently we solve the corresponding problem 
for nontraceable graphs.
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1. Introduction

We consider finite simple graphs, and use standard terminology and notations. The order of a graph is its number of 
vertices, and the size its number of edges. For graphs we will use equality up to isomorphism, so G1 = G2 means that G1

and G2 are isomorphic. For a given graph G , let G denote the complement of G . For two graphs G and H , G ∨ H denotes 
the join of G and H , which is obtained from the disjoint union G + H by adding edges joining every vertex of G to every 
vertex of H . Let Kn denote the complete graph of order n.

One way to understand hamiltonian graphs is to investigate nonhamiltonian graphs. In 1961 Ore [8] determined the 
maximum size of a nonhamiltonian graph with a given order and also determined the extremal graphs.

Lemma 1. (Ore [8]) The maximum size of a nonhamiltonian graph of order n ≥ 3 is 
(n−1

2

) + 1 and this size is attained by a graph G if 
and only if G = K1 ∨ (Kn−2 + K1) or G = K2 ∨ K3 .

Bondy [1] gave a new proof of Lemma 1. It is natural to ask the same question by putting constraints on the graphs. In 
1962 Erdős [6] determined the maximum size of a nonhamiltonian graph of order n and minimum degree at least k, while 
in 1995 Ota [9] determined the maximum size g(n, k) of a k-connected nonhamiltonian graph of order n. But for some 
pairs n, k, the maximum size is not attained by a graph of connectivity k. For example, g(15, 3) = 77 is attained by a unique 
graph of connectivity 7, not 3.
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In this paper we obtain more precise information by determining the maximum size of a nonhamiltonian graph of order 
n and connectivity k, and determining the extremal graphs, from which Ota’s result can be deduced. Consequently we solve 
the corresponding problem for nontraceable graphs.

2. Main results

Denote by V (G) and E(G) the vertex set and edge set of a graph G , respectively. For S ⊆ V (G), we denote by G[S] the 
subgraph of G induced by S . Let deg(v) denote the degree of a vertex v , and let δ(G) denote the minimum degree of a 
graph G . Let Ks, t denote the complete bipartite graph whose partite sets have cardinality s and t , respectively.

We denote by κ(G) and α(G) the connectivity and independence number of a graph G , respectively.
We will need the following lemmas.

Lemma 2. (Chvátal [4]) Let G be a graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn where n ≥ 3. If there is no integer k with 1 ≤ k < n/2
such that dk ≤ k and dn−k < n − k, then G is hamiltonian.

Lemma 2 can also be found in [3, p. 488].

Lemma 3. (Chvátal-Erdős [5]) Let G be a graph of order at least three. If κ(G) ≥ α(G), then G is hamiltonian.

Lemma 3 can also be found in [3, p. 488] and [10, p. 292].
Given a graph G and a positive integer s with s ≤ α(G), denote

σs(G) = min

{∑
v∈T

deg(v)

∣∣∣∣∣ T ⊆ V (G) is an independent set and |T | = s

}
.

The following result is a special case of Ota’s theorem.

Lemma 4. (Ota [9, Theorem 1]) Let G be a k-connected graph of order n where 2 ≤ k < α(G). If for every integer p with k ≤ p ≤
α(G) − 1 we have σp+1(G) ≥ n + p2 − p, then G is hamiltonian.

A bipartite graph with partite sets X and Y is called balanced if |X | = |Y |. For n ≥ 3, we denote by Kn,n−2 + 4e the 
bipartite graph obtained from Kn,n−2 by adding two vertices which are adjacent to two common vertices of degree n − 2.

Lemma 5. (Liu-Shiu-Xue [7]) Given an integer n ≥ 4, let �(n) denote the set of all nonhamiltonian balanced bipartite graphs of order 
2n with minimum degree at least 2, and let �(3) denote the set of all nonhamiltonian balanced bipartite graphs of order 6. Then for 
any n ≥ 3, the maximum size of a graph in �(n) is n2 − 2n + 4 and this maximum size is uniquely attained by the graph Kn,n−2 + 4e.

The case n ≥ 4 of Lemma 5 is proved in [7, p. 257] and the case n = 3 can be verified easily. We will use this lemma 
with all n ≥ 3 cases.

Lemma 6. (Bondy [2]) Let G be a graph of order n with degree sequence d1 ≤ d2 ≤ · · · ≤ dn and let k be an integer with 0 ≤ k ≤ n − 2. 
If for each integer j with 1 ≤ j ≤ n − 1 − dn−k we have d j ≥ j + k, then G is (k + 1)-connected.

Lemma 7. Let G = Ks ∨ Kt or G = Ks ∨ (K2 + Kt) where t ≥ 2 in both cases, and let F ⊆ E(G). If κ(G − F ) = k, then |F | ≥ s − k, 
with equality if and only if all the edges in F are incident to one common vertex in Kt .

Proof. We prove the case when G = Ks ∨ Kt . The case when G = Ks ∨ (K2 + Kt) can be proved similarly.
It is easy to see that κ(G) = s. Since deleting one edge reduces the connectivity by at most one [10, p. 169], we have 

|F | ≥ s − k.
Denote f = |F |. Next we use induction on f to prove the equality condition; i.e., κ(G − F ) = s − f . First consider the case 

f = 1. Let e ∈ E(G). It is easy to check that κ(G − e) = s − 1 if and only if e has one endpoint in Ks and the other endpoint 
in Kt . Now let F ⊆ E(G) with |F | = f ≥ 2 and suppose that for any A ⊆ E(G) with |A| = f − 1, κ(G − A) = s − ( f − 1) if 
and only if all the edges in A are incident to one common vertex in Kt .

If all edges in F are incident to one common vertex in Kt , it is easy to verify that κ(G − F ) = s − f . Conversely, suppose 
κ(G − F ) = s − f . Let F = {e1, e2, . . . , e f } and denote F ′ = F \ {e f }. Then κ(G − F ′) = s − f + 1. By the induction hypothesis, 
the edges e1, . . . , e f −1 are incident to one common vertex w in Kt . The degree sequence of G − F ′ is

s − f + 1, s, . . . , s︸ ︷︷ ︸
t−1

, n − 2, . . . ,n − 2︸ ︷︷ ︸, n − 1, . . . ,n − 1︸ ︷︷ ︸

f −1 s− f +1

2
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where n = s + t and s − f + 1 = deg(w). We assert that e f is incident to w and consequently all the edges in F are 
incident to one common vertex in Kt . Let the degree sequence of G − F be d1 ≤ · · · ≤ dn . By the above degree sequence 
of G − F ′ we deduce that dn−s+ f ≥ n − 2. Thus n − 1 − dn−s+ f ≤ 1. If e f is not incident to w , then we would have 
d1 = s − f + 1 = 1 + (s − f ). By Lemma 6, G − F is (s − f + 1)-connected, contradicting the assumption κ(G − F ) = s − f . 
This proves that e f is incident to w . �
Notation 1. We denote by e(G) the size of a graph G .

Notation 2. For positive integers n and k with n odd and n ≥ 2k + 1, G1(n, k) denotes the graph obtained from K(n−1)/2 ∨
K(n+1)/2 by deleting (n − 1)/2 − k edges that are incident to one common vertex in K(n+1)/2; for positive integers n and k
with n even and n ≥ 2k + 2, G2(n, k) denotes the graph obtained from K(n−2)/2 ∨ (K2 + K(n−2)/2) by deleting (n − 2)/2 − k
edges that are incident to one common vertex in K(n−2)/2.

Note that by Dirac’s theorem [3, p. 485], for the existence of a nonhamiltonian graph of order n and connectivity k we 
necessarily have n ≥ 2k + 1. Now we are ready to state and prove the main result.

Theorem 8. Let f (n, k) denote the maximum size of a nonhamiltonian graph of order n and connectivity k. Then

f (n,k) =

⎧⎪⎪⎨
⎪⎪⎩

(n−k
2

) + k2 if n is odd and n ≥ 6k − 5 or n is even and n ≥ 6k − 8,

3n2−8n+5
8 + k if n is odd and 2k + 1 ≤ n ≤ 6k − 7,

3n2−10n+16
8 + k if n is even and 2k + 2 ≤ n ≤ 6k − 10.

If n = 6k − 5, then f (n, k) is attained by a graph G if and only if G = Kk ∨ (Kn−2k + Kk) or G = G1(n, k). If n = 6k − 8, then f (n, k)

is attained by a graph G if and only if G = Kk ∨ (Kn−2k + Kk) or G = G2(n, k). If n is odd and n ≥ 6k − 3 or n is even and n ≥ 6k − 6, 
then f (n, k) is attained by a graph G if and only if G = Kk ∨ (Kn−2k + Kk). If n is odd and 2k + 1 ≤ n ≤ 6k − 7, then f (n, k) is attained 
by a graph H if and only if H = G1(n, k). If n is even and 2k + 2 ≤ n ≤ 6k − 10, then f (n, k) is attained by a graph Z if and only if 
Z = G2(n, k).

Proof. The case k = 1 of Theorem 8 follows from Lemma 1. Note that the extremal graph K2 ∨ K3 of order 5 in Lemma 1
has connectivity 2 and hence it should be excluded.

Next suppose k ≥ 2. It is easy to verify that the extremal graphs stated in Theorem 8 are nonhamiltonian graphs of 
order n and connectivity k with size f (n, k). They are nonhamiltonian since any hamiltonian graph must be tough [3, pp. 
472-473]. Thus it remains to show that f (n, k) is an upper bound on the size and it can only be attained by these extremal 
graphs.

Let Q be a nonhamiltonian graph of order n and connectivity k with degree sequence d1 ≤ d2 ≤ · · · ≤ dn . By Lemma 3, 
k < α(Q ) and by Lemma 4, there exists an integer p with k ≤ p ≤ α(Q ) − 1 such that σp+1(Q ) ≤ n + p2 − p − 1. Let S

be an independent set of Q with cardinality p + 1 whose degree sum is σp+1(Q ). Then e(Q [V (Q ) \ S]) ≤ (n−p−1
2

)
. We 

distinguish four cases.
Case 1. n is odd and n ≥ 6k − 5.
Subcase 1.1. p ≤ (n − 3)/2.
The conditions p ≤ (n − 3)/2 and n ≥ 6k − 5 imply 3p + 3k + 1 < 2n. This, together with the condition p ≥ k, yields 

(p − k)(3p + 3k + 1 − 2n) ≤ 0. It follows that

e(Q ) ≤ n + p2 − p − 1 +
(

n − p − 1

2

)
≤

(
n − k

2

)
+ k2 (1)

and equality holds in the second inequality in (1) if and only if p = k.
Now suppose that Q has size 

(n−k
2

)+k2. Then p = k, S has cardinality k + 1 and degree sum n +k2 −k − 1, and V (Q ) \ S
is a clique. Since k + 1 < (n + 1)/2, we have d(n+1)/2 ≥ n − k − 2. By Lemma 2, there exists i with i < n/2 such that di ≤ i
and dn−i ≤ n − i − 1. Since n is odd, the condition i < n/2 means i ≤ (n − 1)/2. We have

e(Q ) =
(

n − k

2

)
+ k2 ≤ [i2 + (n − 2i)(n − i − 1) + i(n − 1)]/2, (2)

where the inequality is equivalent to (i − k)(2n − 3i − 3k − 1) ≤ 0. Since i ≥ di ≥ δ(Q ) ≥ k, we obtain i = k or n ≤ (3i + 3k +
1)/2.

If i = k, equality holds in (2) and hence the degree sequence of Q is

k, . . . ,k︸ ︷︷ ︸, n − k − 1, . . . ,n − k − 1︸ ︷︷ ︸, n − 1, . . . ,n − 1︸ ︷︷ ︸,

k n−2k k

3
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implying that Q = Kk ∨ (Kn−2k + Kk).
Now suppose i 	= k. Then we have n ≤ (3i + 3k + 1)/2. If i ≤ (n − 3)/2, then n ≤ 6k − 7, contradicting our assumption 

n ≥ 6k − 5. Thus i = (n − 1)/2. We have n − k − 2 ≤ d(n+1)/2 ≤ (n − 1)/2. Hence 6k − 5 ≤ n ≤ 2k + 3, which, together with 
the condition k ≥ 2, yields k = 2 and n = 7. It is easy to check that there are exactly four graphs of order 7 and size 14 with 
d4 = 3, among which G1(7, 2) is the only graph that is nonhamiltonian with connectivity 2. Hence Q = G1(7, 2).

Subcase 1.2. p ≥ (n − 1)/2.
Clearly Q is a spanning subgraph of R = Kn−p−1 ∨ K p+1. If p ≥ (n + 1)/2, then

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) <

(
n − k

2

)
+ k2

where the second inequality follows from the condition n ≥ 6k − 5. If p = (n − 1)/2, we have κ(R) = n − p − 1 > k. Let 
F ⊆ E(R) such that Q = R − F . Since κ(Q ) = k, by Lemma 7 we have |F | ≥ n − p − 1 − k. Thus

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) − (n − p − 1 − k) ≤

(
n − k

2

)
+ k2 (3)

and equality holds in the second inequality of (3) if and only if n = 6k − 5.
Suppose e(Q ) = (n−k

2

) + k2. Then n = 6k − 5 and |F | = n − p − 1 − k. By Lemma 7, all the edges in F are incident to one 
common vertex in K p+1. Since p = (n − 1)/2, we have n − p − 1 = (n − 1)/2, p + 1 = (n + 1)/2 and |F | = (n − 1)/2 − k. It 
follows that Q = G1(n, k).

Case 2. n is odd and 2k + 1 ≤ n ≤ 6k − 7.
Subcase 2.1. k ≤ p < (n − 1)/2.
We have

e(Q ) ≤ n + p2 − p − 1 +
(

n − p − 1

2

)
<

3n2 − 8n + 5

8
+ k.

Subcase 2.2. p = (n − 1)/2.
In this case Q is a spanning subgraph of K p ∨ K p+1. Since κ(Q ) = k, by Lemma 7 we obtain

e(Q ) ≤
(

p

2

)
+ p(p + 1) − (p − k) = 3n2 − 8n + 5

8
+ k

and equality holds if and only if Q = G1(n, k).
Subcase 2.3. p > (n − 1)/2.
In this case Q is a spanning subgraph of Kn−p−1 ∨ K p+1. Then

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) <

3n2 − 8n + 5

8
+ k,

where we have used the condition n ≤ 2p − 1.
Case 3. n is even and n ≥ 6k − 8.
Subcase 3.1. p < (n − 2)/2.
Since n is even, the condition p < (n −2)/2 means p ≤ (n −2)/2 −1 = (n/2) −2. The assumptions imply 3p +3k +1 −2n <

0. We have

e(Q ) ≤ n + p2 − p − 1 +
(

n − p − 1

2

)
≤

(
n − k

2

)
+ k2 (4)

where the second inequality is equivalent to

(p − k)(3p + 3k + 1 − 2n) ≤ 0.

Thus equality holds in the second inequality in (4) if and only if p = k.
Suppose e(Q ) = (n−k

2

) + k2. Then p = k and Q has a clique of cardinality n − p − 1 and an independent set of cardinality 
p + 1 whose degree sum equals n + p2 − p − 1. Also d(n+2)/2 ≥ n − k − 2. By Lemma 2, there exists i < n/2 such that di ≤ i
and dn−i ≤ n − i − 1. We have

e(Q ) =
(

n − k

2

)
+ k2 ≤ [i2 + (n − 2i)(n − i − 1) + i(n − 1)]/2,

where the inequality is equivalent to

(i − k)(2n − 3i − 3k − 1) ≤ 0. (5)
4
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Note that i ≥ k since i ≥ di ≥ δ(Q ) ≥ k. If i = k, then the degree sequence of Q is

k, . . . ,k︸ ︷︷ ︸
k

, n − k − 1, . . . ,n − k − 1︸ ︷︷ ︸
n−2k

, n − 1, . . . ,n − 1︸ ︷︷ ︸
k

,

implying Q = Kk ∨ (Kn−2k + Kk).
Next suppose i 	= k. Then the inequality (5) implies 2n − 3i − 3k − 1 ≤ 0. If i ≤ (n − 4)/2, we deduce that n ≤ 6k − 10, a 

contradiction. Hence i = (n −2)/2. Now the conditions dn−i ≤ n − i −1 and d(n+2)/2 ≥ n −k −2 yield n −k −2 ≤ d(n+2)/2 ≤ n/2. 
Thus 6k − 8 ≤ n ≤ 2k + 4. It follows that k = 2 and 4 ≤ n ≤ 8 or k = 3 and n = 10. The possibility n = 4 contradicts k < n/2
and n = 6 contradicts i 	= k. Only the two pairs (k, n) = (2, 8), (3, 10) can occur.

If k = 2 and n = 8, by the conditions n = 8, e = 19, d5 = 4 and being nonhamiltonian we deduce that Q = K3 ∨ (K2 + K3)

which has connectivity 3; if k = 3 and n = 10, the conditions n = 10, e(Q ) = 30, k = 3, d6 = 5 and being nonhamiltonian 
force Q = G2(10, 3). These two facts can be verified by simple computer programs. Thus, in the case k = 2 and n = 8, no 
more extremal graphs exist, while in the case k = 3 and n = 10, a second extremal graph exists.

Subcase 3.2. p = (n − 2)/2.
Clearly α(Q ) ≥ p + 1. We further distinguish two cases.
If α(Q ) ≥ p + 2, then Q is a spanning subgraph of K p ∨ K p+2. By Lemma 7 we have

e(Q ) ≤
(

p

2

)
+ p(p + 2) − (p − k) <

(
n − k

2

)
+ k2. (6)

The second inequality in (6) is equivalent to p2 + (5 −4k)p +3k2 −5k +2 > 0 which is guaranteed by p = (n −2)/2 ≥ 3k −5.
If α(Q ) = p + 1, then Q is a spanning subgraph of K p+1 ∨ K p+1. Let Q ′ denote the graph obtained from Q by deleting 

all the edges in K p+1. Then Q ′ is a nonhamiltonian balanced bipartite graph. There are two cases.
(a) Suppose n ≥ 8 and δ(Q ′) ≥ 2 or n = 6. By Lemma 5, e(Q ′) ≤ (p + 1)2 − 2(p + 1) + 4 = p2 + 3. Hence

e(Q ) ≤
(

p + 1

2

)
+ p2 + 3 ≤

(
n − k

2

)
+ k2. (7)

The second inequality in (7) is equivalent to

p2 + (5 − 4k)p + 3k2 − 3k − 4 ≥ 0 (8)

which is implied by the condition p ≥ 3k − 5. Equality holds in (8) if and only if k = 2 and p = 2, i.e., Q ′ is the extremal 
graph of order 6 defined in Lemma 5. Hence Q has size 

(n−k
2

) + k2 if and only if Q = K2 ∨ (K2 + K2).
(b) Now suppose n ≥ 8 and δ(Q ′) ≤ 1. Let x ∈ V (Q ′) with degQ ′ (x) = δ(Q ′). Starting with the structure K p+1 ∨ K p+1, 

we deduce that x lies in K p+1, since δ(Q ) ≥ 2. In this case Q is a spanning subgraph of K p ∨ (K2 + K p). By Lemma 7 and 
using the fact that p ≥ 3k − 5 we have

e(Q ) ≤
(

p + 2

2

)
+ p2 − (p − k) ≤

(
n − k

2

)
+ k2. (9)

Equality in the second inequality in (9) holds if and only if p = 3k − 5 or p = k. Suppose p = 3k − 5. Then n = 6k − 8. By (9)
and Lemma 7, Q has size 

(n−k
2

) + k2 if and only if Q = G2(n, k) with n = 6k − 8. If p = k, then the conditions p = (n − 2)/2
and n ≥ 6k − 8 imply n ≤ 7, contradicting our assumption n ≥ 8. Hence the case p = k cannot occur.

Subcase 3.3. p > (n − 2)/2.
Note that Q is a spanning subgraph of Kn−p−1 ∨ K p+1. If p = n/2, we have n − p − 1 ≥ k. By Lemma 7

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) − (n − p − 1 − k) <

(
n − k

2

)
+ k2. (10)

The second inequality in (10) is equivalent to p2 + (3 − 4k)p + 3k2 − k − 2 > 0, which is implied by p = n/2 ≥ 3k − 4.
If p ≥ (n + 2)/2, we have

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) <

(
n − k

2

)
+ k2. (11)

The second inequality in (11) is equivalent to p2 + p + 3k2 + k − 2nk > 0. To prove this inequality it suffices to show 
p2 + (1 − 4k)p + 3k2 + 5k > 0, which is implied by p ≥ (n + 2)/2 ≥ 3k − 3.

Case 4. n is even and 2k + 2 ≤ n ≤ 6k − 10.
Denote m = (n − 2)/2. Then 3 ≤ k ≤ m. We distinguish three subcases.
Subcase 4.1. p < m.
5
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We have

e(Q ) ≤
(

n − p − 1

2

)
+ n + p2 − p − 1 <

3n2 − 10n + 16

8
+ k. (12)

The second inequality in (12) is equivalent to 3p2 − (4m + 3)p + m2 + 5m − 2k < 0, which is implied by the conditions 
k ≤ p < m ≤ 3k − 6.

Subcase 4.2. p = m.
If α(Q ) ≥ p + 2, then Q is a spanning subgraph of K p ∨ K p+2. Recall that p ≥ k. By Lemma 7 we have

e(Q ) ≤
(

p

2

)
+ p(p + 2) − (p − k) = (3p2 + p + 2k)/2 < (3p2 + p + 2k)/2 + 1

= 3n2 − 10n + 16

8
+ k.

Now suppose α(Q ) = p + 1. Then Q is a spanning subgraph of K p+1 ∨ K p+1. Define the graph Q ′ as in Subcase 3.2 
above.

If δ(Q ′) ≥ 2, by Lemma 5 we have e(Q ′) ≤ p2 + 3. Hence

e(Q ) ≤
(

p + 1

2

)
+ p2 + 3 <

3n2 − 10n + 16

8
+ k.

If δ(Q ′) ≤ 1, then Q is a spanning subgraph of K p ∨ (K2 + K p). By Lemma 7 we obtain

e(Q ) ≤
(

p + 2

2

)
+ p2 − (p − k) = 3n2 − 10n + 16

8
+ k

and equality holds if and only if Q = G2(n, k).
Subcase 4.3. p > m.
Note that Q is a spanning subgraph of Kn−p−1 ∨ K p+1. We further distinguish two cases.
(a) p = m + 1. Now the conditions 2k + 2 ≤ n and p = m + 1 = n/2 imply n − p − 1 = (n − 2)/2 ≥ k. By Lemma 7, we 

have

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) − (n − p − 1 − k) <

3n2 − 10n + 16

8
+ k

where the second inequality is equivalent to 4p2 − n2 + 2n − 4p + 8 > 0 which holds, since n = 2p.
(b) p ≥ m + 2. In this case the following rough estimate suffices:

e(Q ) ≤
(

n − p − 1

2

)
+ (n − p − 1)(p + 1) <

3n2 − 10n + 16

8
+ k. (13)

The second inequality in (13) is equivalent to 4p2 +4p −n2 −6n +8k +16 > 0, which holds, since n ≤ 2p −2. This completes 
the proof. �

The following corollary follows from Theorem 8 immediately.

Corollary 9. Let f (n, k) be defined as in Theorem 8. If G is a graph of order n and connectivity k with size greater than f (n, k), then G
is hamiltonian.

Next we use Theorem 8 to deduce Ota’s result.

Corollary 10. (Ota [9, p. 209]) The maximum size of a k-connected nonhamiltonian graph of order n is

max

{(
n − k

2

)
+ k2,

(
(n + 2)/2�
2

)
+

⌊
n − 1

2

⌋2
}

. (14)

Proof. Denote the number in (14) by M . Let f (n, c) be defined as in Theorem 8 with c in place of k there. Note that by 
Dirac’s theorem ([3] or [10]), the connectivity c of a nonhamiltonian graph of order n satisfies c < n/2.

If n is odd, by Theorem 8

f (n, c) =
{(n−c

2

) + c2 if n ≥ 6c − 5,

3n2−8n+5 + c if 2c + 1 ≤ n ≤ 6c − 7.
8
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Thus the maximum size of a k-connected nonhamiltonian graph of order n is

max{ f (n, c)|k ≤ c ≤ (n − 1)/2}

=max

{
max

{(
n − c

2

)
+ c2

∣∣∣∣k ≤ c ≤ n + 5

6

}
, max

{
3n2 − 8n + 5

8
+ c

∣∣∣∣ n + 7

6
≤ c ≤ n − 1

2

}}

=max

{(
n − k

2

)
+ k2,

3n2 − 8n + 5

8
+ n − 1

2

}
=M.

If n is even, by Theorem 8

f (n, c) =
{(n−c

2

) + c2 if n ≥ 6c − 8,

3n2−10n+16
8 + c if 2c + 2 ≤ n ≤ 6c − 10.

The maximum size of a k-connected nonhamiltonian graph of order n is

max{ f (n, c)|k ≤ c ≤ (n − 2)/2}

=max

{
max

{(
n − c

2

)
+ c2

∣∣∣∣k ≤ c ≤ n + 8

6

}
, max

{
3n2 − 10n + 16

8
+ c

∣∣∣∣ n + 10

6
≤ c ≤ n − 2

2

}}

=max

{(
n − k

2

)
+ k2,

3n2 − 10n + 16

8
+ n − 2

2

}
=M. �

A graph is traceable if it contains a Hamilton path; otherwise it is nontraceable. Next we turn to nontraceable graphs.
The following trick is well-known (e.g. [4, p. 166] or [5, p. 112]).

Lemma 11. Let G be a graph and denote H = G ∨ K1 . Then G is traceable if and only if H is hamiltonian, and κ(G) = k if and only if 
κ(H) = k + 1.

Notation 3. For positive integers n and k with n odd and n ≥ 2k + 3, H1(n, k) denotes the graph obtained from K(n−3)/2 ∨
(K2 + K(n−1)/2) by deleting (n − 3)/2 − k edges that are incident to one common vertex in K(n−1)/2; for positive integers n
and k with n even and n ≥ 2k + 2, H2(n, k) denotes the graph obtained from K(n−2)/2 ∨ K(n+2)/2 by deleting (n − 2)/2 − k
edges that are incident to one common vertex in K(n+2)/2.

By Dirac’s theorem [3, p. 485] and Lemma 11, for the existence of a nontraceable graph of order n and connectivity k
we must have n ≥ 2k + 2. The next corollary follows from Theorem 8 and Lemma 11 immediately. Note that all extremal 
graphs in Theorem 8 have a dominating vertex.

Corollary 12. Let ϕ(n, k) denote the maximum size of a nontraceable graph of order n and connectivity k. Then

ϕ(n,k) =

⎧⎪⎪⎨
⎪⎪⎩

(n−k−1
2

) + k(k + 1) if n is odd and n ≥ 6k − 3 or n is even and n ≥ 6k,

3n2−12n+17
8 + k if n is odd and 2k + 3 ≤ n ≤ 6k − 5,

3n2−10n+8
8 + k if n is even and 2k + 2 ≤ n ≤ 6k − 2.

If n = 6k − 3, then ϕ(n, k) is attained by a graph G if and only if G = Kk ∨ (Kn−2k−1 + Kk+1) or G = H1(n, k). If n = 6k, then ϕ(n, k)

is attained by a graph G if and only if G = Kk ∨ (Kn−2k−1 + Kk+1) or G = H2(n, k). If n is odd and n ≥ 6k − 1 or n is even and 
n ≥ 6k + 2, then ϕ(n, k) is attained by a graph G if and only if G = Kk ∨ (Kn−2k−1 + Kk+1). If n is odd and 2k + 3 ≤ n ≤ 6k − 5, then 
ϕ(n, k) is attained by a graph G if and only if G = H1(n, k). If n is even and 2k + 2 ≤ n ≤ 6k − 2, then ϕ(n, k) is attained by a graph 
G if and only if G = H2(n, k).

Declaration of competing interest

We claim that there is no conflict of interest in our paper.

Data availability

No data was used for the research described in the article.
7



X. Zhan and L. Zhang Discrete Mathematics 346 (2023) 113208
Acknowledgement

The authors are grateful to the two anonymous referees for their kind and professional suggestions which have im-
proved the presentation of the paper. This research was supported by the NSFC grant 12271170 and Science and Technology 
Commission of Shanghai Municipality (STCSM) grant 22DZ2229014.

References

[1] J.A. Bondy, Variations on the Hamiltonian theme, Can. Math. Bull. 15 (1) (1972) 57–62.
[2] J.A. Bondy, Properties of graphs with constraints on degrees, Studia Sci. Math. Hung. 4 (1969) 473–475.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM, vol. 244, Springer, 2008.
[4] V. Chvátal, On Hamilton’s ideals, J. Comb. Theory, Ser. B 12 (1972) 163–168.
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