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1. Introduction

We consider finite simple graphs, and use standard terminology and notations. The order of a graph is its number of
vertices, and the size its number of edges. For graphs we will use equality up to isomorphism, so G; = G, means that G
and G are isomorphic. For a given graph G, let G denote the complement of G. For two graphs G and H, G v H denotes
the join of G and H, which is obtained from the disjoint union G + H by adding edges joining every vertex of G to every
vertex of H. Let K, denote the complete graph of order n.

One way to understand hamiltonian graphs is to investigate nonhamiltonian graphs. In 1961 Ore [8] determined the
maximum size of a nonhamiltonian graph with a given order and also determined the extremal graphs.

Lemma 1. (Ore [8]) The maximum size of a nonhamiltonian graph of order n > 3 is (”;1) + 1 and this size is attained by a graph G if
and only if G = K1 V (Kn—z + K1) or G = K5 v K.

Bondy [1] gave a new proof of Lemma 1. It is natural to ask the same question by putting constraints on the graphs. In
1962 Erdos [6] determined the maximum size of a nonhamiltonian graph of order n and minimum degree at least k, while
in 1995 Ota [9] determined the maximum size g(n,k) of a k-connected nonhamiltonian graph of order n. But for some
pairs n, k, the maximum size is not attained by a graph of connectivity k. For example, g(15, 3) = 77 is attained by a unique
graph of connectivity 7, not 3.
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In this paper we obtain more precise information by determining the maximum size of a nonhamiltonian graph of order
n and connectivity k, and determining the extremal graphs, from which Ota’s result can be deduced. Consequently we solve
the corresponding problem for nontraceable graphs.

2. Main results

Denote by V(G) and E(G) the vertex set and edge set of a graph G, respectively. For S C V(G), we denote by G[S] the
subgraph of G induced by S. Let deg(v) denote the degree of a vertex v, and let §(G) denote the minimum degree of a
graph G. Let Ks ; denote the complete bipartite graph whose partite sets have cardinality s and ¢, respectively.

We denote by «(G) and «(G) the connectivity and independence number of a graph G, respectively.
We will need the following lemmas.

Lemma 2. (Chvdtal [4]) Let G be a graph with degree sequencedi < d, < --- < d, wheren > 3. If thereis no integer k with 1 <k <n/2
such that d, <k and d,_, <n — k, then G is hamiltonian.

Lemma 2 can also be found in [3, p. 488].
Lemma 3. (Chvdtal-Erdés [5]) Let G be a graph of order at least three. If k (G) > «(G), then G is hamiltonian.

Lemma 3 can also be found in [3, p. 488] and [10, p. 292].
Given a graph G and a positive integer s with s < «(G), denote

05(G) = min { Zdeg(v)

veT

T C V(G) is an independent set and |T| :s} .

The following result is a special case of Ota’s theorem.

Lemma 4. (Ota [9, Theorem 1]) Let G be a k-connected graph of order n where 2 <k < a(G). If for every integer p withk < p <
a(G) — 1 we have 611(G) > n+ p? — p, then G is hamiltonian.

A bipartite graph with partite sets X and Y is called balanced if |X| = |Y|. For n > 3, we denote by K, n_» + 4e the
bipartite graph obtained from K, ,—» by adding two vertices which are adjacent to two common vertices of degree n — 2.

Lemma 5. (Liu-Shiu-Xue [7]) Given an integer n > 4, let Q2(n) denote the set of all nonhamiltonian balanced bipartite graphs of order
2n with minimum degree at least 2, and let 2(3) denote the set of all nonhamiltonian balanced bipartite graphs of order 6. Then for
any n > 3, the maximum size of a graph in §2(n) is n? — 2n + 4 and this maximum size is uniquely attained by the graph Kn, n—2 +4e.

The case n > 4 of Lemma 5 is proved in [7, p. 257] and the case n =3 can be verified easily. We will use this lemma
with all n > 3 cases.

Lemma 6. (Bondy [2]) Let G be a graph of order n with degree sequence dy <d; < --- <d, and let k be an integer withO <k <n—2.
If for each integer j with1 < j <n —1—d,_, we haved; > j+k, then G is (k + 1)-connected.

Lemma 7. Let G = K v K; or G = K v (K3 4 K;) where t > 2 in both cases, and let F € E(G). If k(G — F) =k, then |F| > s —k,
with equality if and only if all the edges in F are incident to one common vertex in K.

Proof. We prove the case when G = K, Vv K;. The case when G = Ks v (K2 + K;) can be proved similarly.

It is easy to see that k(G) =s. Since deleting one edge reduces the connectivity by at most one [10, p. 169], we have
IF|>s—k.

Denote f = |F|. Next we use induction on f to prove the equality condition; i.e., k (G — F) = s — f. First consider the case
f=1.Let e € E(G). It is easy to check that k(G —e) =s —1 if and only if e has one endpoint in K and the other endpoint
in K;. Now let F € E(G) with |F| = f > 2 and suppose that for any A C E(G) with |A|=f—1, k(G—A)=s—(f —1) if
and only if all the edges in A are incident to one common vertex in K.

If all edges in F are incident to one common vertex in Kg, it is easy to verify that « (G — F) =s — f. Conversely, suppose
k(G—F)=s— f.Let F={ey,ey,...,er} and denote F' = F \ {ef}. Then k(G — F’) =s — f + 1. By the induction hypothesis,

the edges ey, ..., ef_q are incident to one common vertex w in K;. The degree sequence of G — F’ is
s—f+4+1,s,...,s,n—2,....n—2,n—1,...,n—1
——
t—1 f-1 s—f+1
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where n=s+t and s — f + 1 =deg(w). We assert that ey is incident to w and consequently all the edges in F are
incident to one common vertex in K. Let the degree sequence of G — F be di < --- <d,. By the above degree sequence
of G — F' we deduce that d,_s;f>n—2. Thus n —1 —dy_s;yr < 1. If ey is not incident to w, then we would have
di=s—f+1=1+(s— f). By Lemma 6, G — F is (s — f + 1)-connected, contradicting the assumption x(G — F) =s — f.
This proves that ey is incident to w. O

Notation 1. We denote by e(G) the size of a graph G.

Notation 2. For positive integers n and k with n odd and n > 2k + 1, G1(n, k) denotes the graph obtained from K_1y/2 vV
Kn+1)/2 by deleting (n — 1)/2 — k edges that are incident to one common vertex in K+1y/2; for positive integers n and k
with n even and n > 2k 4 2, Ga(n, k) denotes the graph obtained from K_2)/2 Vv (K2 4+ Kn_2)/2) by deleting (n —2)/2 —k
edges that are incident to one common vertex in Kg—2)/2.

Note that by Dirac’s theorem [3, p. 485], for the existence of a nonhamiltonian graph of order n and connectivity k we
necessarily have n > 2k + 1. Now we are ready to state and prove the main result.

Theorem 8. Let f(n, k) denote the maximum size of a nonhamiltonian graph of order n and connectivity k. Then

(";k) +k? ifnis odd and n>6k—5 or n is even and n > 6k — 8,

fnky=1 308145 4 if nis odd and 2k +1<n<6k—7,

—3"2*?”“6 +k if nis even and 2k +2 <n <6k — 10.

Ifn =6k — 5, then f(n, k) is attained by a graph G if and only if G = K, V (Ky_ox + Ki) or G = G1(n, k). If n = 6k — 8, then f(n, k)
is attained by a graph G if and only if G = K, V (Kn_ax + Ki) or G = Ga(n, k). If n is odd and n > 6k — 3 or n is even and n > 6k — 6,
then f(n, k) is attained by a graph G ifand only if G = Ky, VV (Ky_ox + Ky). If nis odd and 2k +1 < n < 6k — 7, then f (n, k) is attained
by a graph H if and only if H = G1(n, k). If n is even and 2k + 2 < n < 6k — 10, then f(n, k) is attained by a graph Z if and only if
Z =Gy(n, k).

Proof. The case k=1 of Theorem 8 follows from Lemma 1. Note that the extremal graph K> v K3 of order 5 in Lemma 1
has connectivity 2 and hence it should be excluded.

Next suppose k > 2. It is easy to verify that the extremal graphs stated in Theorem 8 are nonhamiltonian graphs of
order n and connectivity k with size f(n, k). They are nonhamiltonian since any hamiltonian graph must be tough [3, pp.
472-473]. Thus it remains to show that f(n, k) is an upper bound on the size and it can only be attained by these extremal
graphs.

Let Q be a nonhamiltonian graph of order n and connectivity k with degree sequence di <d; <--- <dp. By Lemma 3,
k <a(Q) and by Lemma 4, there exists an integer p with k <p <a(Q) — 1 such that 041(Q) <n+ p2—p—1.Llet S
be an independent set of Q with cardinality p 4+ 1 whose degree sum is o4+1(Q). Then e(Q[V(Q)\ S]) < (”_‘2’_1). We
distinguish four cases.

Case 1. n is odd and n > 6k — 5.

Subcase 1.1. p < (n—3)/2.

The conditions p < (n —3)/2 and n > 6k — 5 imply 3p + 3k + 1 < 2n. This, together with the condition p > k, yields
(p—k)3Bp+3k+1—2n) <0. It follows that

e(Q)§n+p2—p—1+(n_§_])f(n;k>+k2 (1)

and equality holds in the second inequality in (1) if and only if p =k.

Now suppose that Q has size (”;k) +k2. Then p =k, S has cardinality k+ 1 and degree sum n+k%*—k—1, and V(Q)\ S
is a clique. Since k + 1 < (n + 1)/2, we have d41)2 >n —k — 2. By Lemma 2, there exists i with i <n/2 such that d; <i
and d,_; <n—i—1. Since n is odd, the condition i <n/2 means i < (n —1)/2. We have

n—k 2 2 : . .
e(Q)= ) +ke<[i"+m-20n—i-1)+i(n—1)]/2, (2)
where the inequality is equivalent to (i —k)(2n —3i —3k — 1) <0. Since i >d; > 5(Q) >k, we obtain i =k or n < (3i + 3k +
1)/2.

If i =k, equality holds in (2) and hence the degree sequence of Q is

k,....k, n—k—1,....n—k—1,n—-1,...,n—1,
N —’

k n—2k k
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implying that Q = Ky v (Kn_ax + Ki).

Now suppose i # k. Then we have n < (3i + 3k + 1)/2. If i < (n — 3)/2, then n < 6k — 7, contradicting our assumption
n>6k—>5. Thus i = (n—1)/2. We have n —k — 2 <du41),2 < (n — 1)/2. Hence 6k — 5 <n < 2k + 3, which, together with
the condition k > 2, yields k =2 and n = 7. It is easy to check that there are exactly four graphs of order 7 and size 14 with
d4 =3, among which G1(7, 2) is the only graph that is nonhamiltonian with connectivity 2. Hence Q = G1(7, 2).

Subcase 1.2. p>(n—1)/2.

Clearly Q is a spanning subgraph of R = Kn_p_1V Kp41. If p > (n+1)/2, then

E(Q)§(n_g_l>+(n—p—l)(p+1)<(n;k>+k2

where the second inequality follows from the condition n > 6k — 5. If p = (n — 1)/2, we have k(R) =n—p — 1 > k. Let
F C E(R) such that Q =R — F. Since k(Q) =k, by Lemma 7 we have |F|>n—p —1—k. Thus

n—p-—1 n—k 2
e(Q)s( 5 >+(n—p—l)(p+1)—(n—p—l—k)s< ) >+k (3)
and equality holds in the second inequality of (3) if and only if n = 6k — 5.

Suppose e(Q) = (”;k) +k2. Thenn=6k —5 and |F|=n—p —1—k. By Lemma 7, all the edges in F are incident to one
common vertex in Kpyq, Since p=n—1)/2, wehaven—p—-1=mn—-1)/2, p+1=m+1)/2and |F|l=n-1)/2-k. It
follows that Q = G1(n, k).

Case 2. nisodd and 2k+1 <n <6k —7.

Subcase 21. k<p<(n—1)/2.

We have

n—p-—1 3n2 —8n+5
e(Q)§n+p2—p—1+( Z ><T+k.
Subcase 2.2. p=(n—1)/2.

In this case Q is a spanning subgraph of Kj v K,41. Since k(Q) =k, by Lemma 7 we obtain

3n% —8n+5
e(Q) < (5) PP+ = (P -l = +k
and equality holds if and only if Q = G1(n, k).
Subcase 2.3. p> (n—1)/2.
In this case Q is a spanning subgraph of K,_,_1 V Kp41. Then

n—p-—1 3n2 —8n+5
e(Q)s( i’ >+(n—p—1><p+1>< ———+k,
where we have used the condition n <2p — 1.

Case 3. n is even and n > 6k — 8.

Subcase 3.1. p < (n—2)/2.

Since n is even, the condition p < (n—2)/2 means p < (n—2)/2—1 = (n/2) —2. The assumptions imply 3p+3k+1—2n <
0. We have

—p-1 _
e(Q)sn+p2—p—1+(n g >s<n2k>+k2 (4)

where the second inequality is equivalent to

(p—k@Bp+3k+1-2n)<0.

Thus equality holds in the second inequality in (4) if and only if p =k.

Suppose e(Q) = (";k) +k%. Then p =k and Q has a clique of cardinality n — p — 1 and an independent set of cardinality
p + 1 whose degree sum equals n + p% — p — 1. Also dny2)/2 =n —k — 2. By Lemma 2, there exists i <n/2 such that d; <i
and d,_; <n—1i—1. We have

n—k

e(Q)=< 5

) I <[4 (1= 20— — 1) +i(i— 1]/2,
where the inequality is equivalent to

i—-k@n-3i—3k—1)<0. (5)
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Note that i > k since i > d; > 8(Q) > k. If i =k, then the degree sequence of Q is

k,....k, n—k—1,....n—k—1,n—1,...,n—1,
——

k n—2k k

implying Q = K V (Kn—2k + K-

Next suppose i # k. Then the inequality (5) implies 2n —3i —3k —1 <0. If i < (n —4)/2, we deduce that n <6k — 10, a
contradiction. Hence i = (n—2)/2. Now the conditions dy,_; <n—i—1 and dn42),2 >n—k—2 yield n—k—2 <dpu42)2 <n/2.
Thus 6k — 8 <n <2k + 4. It follows that k=2 and 4 <n <8 or k=3 and n = 10. The possibility n =4 contradicts k < n/2
and n = 6 contradicts i # k. Only the two pairs (k,n) = (2, 8), (3, 10) can occur.

If k=2 and n =8, by the conditions n =8, e = 19, ds = 4 and being nonhamiltonian we deduce that Q = K3V (K2 + K3)
which has connectivity 3; if k=3 and n = 10, the conditions n =10, e(Q) =30, k =3, dg =5 and being nonhamiltonian
force Q = G;(10, 3). These two facts can be verified by simple computer programs. Thus, in the case k=2 and n =38, no
more extremal graphs exist, while in the case k =3 and n =10, a second extremal graph exists.

Subcase 3.2. p=(n—2)/2.

Clearly @(Q) > p + 1. We further distinguish two cases.

If ®(Q) > p +2, then Q is a spanning subgraph of Kp v Kp;>. By Lemma 7 we have

—k
e(Q) < <s>+p(p+2)—(p—k)< (”2 )+k2. (6)

The second inequality in (6) is equivalent to p% + (5 — 4k)p + 3k? — 5k +2 > 0 which is guaranteed by p = (n —2)/2 > 3k —5.
If (Q)=p+1, then Q is a spanning subgraph of K,;1 Vv Kp11. Let Q" denote the graph obtained from Q by deleting
all the edges in Kp4q. Then Q' is a nonhamiltonian balanced bipartite graph. There are two cases.
(a) Suppose n>8 and §(Q’) > 2 or n=6. By Lemma 5, e(Q’) < (p + 1)2 — 2(p + 1) +4 = p? + 3. Hence

e(Q)S(p;1>+p2+3§<ngk>+k2. 7)

The second inequality in (7) is equivalent to

p? 4+ (5 —4kp+3k*—3k—4>0 (8)

which is implied by the condition p > 3k — 5. Equality holds in (8) if and only if k=2 and p =2, i.e,, Q' is the extremal
graph of order 6 defined in Lemma 5. Hence Q has size (";k) + k2 if and only if Q = Ky v (K2 + K2).

(b) Now suppose n > 8 and 5(Q") < 1. Let x € V(Q’) with degq/(x) = 8(Q’). Starting with the structure Kpy1 Vv Kpy1,
we deduce that x lies in Kp1, since §(Q) > 2. In this case Q is a spanning subgraph of K, Vv (K2 + Kp). By Lemma 7 and
using the fact that p > 3k — 5 we have

e(Q)S(szrz>+p2—(p—1<)§ (n;k>+k2. 9)

Equality in the second inequality in (9) holds if and only if p =3k —5 or p =k. Suppose p =3k — 5. Then n = 6k — 8. By (9)
and Lemma 7, Q has size (";k) +k? if and only if Q = G(n, k) with n =6k — 8. If p =k, then the conditions p = (n —2)/2
and n > 6k — 8 imply n <7, contradicting our assumption n > 8. Hence the case p =k cannot occur.

Subcase 3.3. p > (n — 2)/2.

Note that Q is a spanning subgraph of K, p_1 Vv m. If p=n/2, we have n — p — 1 > k. By Lemma 7

e(Q)§(n_g_]>+(n—p—l)(p+1)—(n—p—l—k)<(n;k>+k2. (10)

The second inequality in (10) is equivalent to p? + (3 —4k)p + 3k*> — k — 2 > 0, which is implied by p =n/2 > 3k — 4.
If p>(n+2)/2, we have

—p—-1 _
e(Q)s(" ‘2’ )+(n—p—1>(p+1><<"2k>+k2. (11)

The second inequality in (11) is equivalent to p? + p + 3k® + k — 2nk > 0. To prove this inequality it suffices to show
p% + (1 — 4k)p + 3k? + 5k > 0, which is implied by p > (n+2)/2 > 3k — 3.

Case 4. n is even and 2k +2 <n <6k — 10.

Denote m = (n — 2)/2. Then 3 <k <m. We distinguish three subcases.

Subcase 4.1. p <m.
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We have

3n2 —10n+ 16
—_

s k. (12)

n—p-—1 5
ﬁQ)S( 5 >+n+p —-p-1<
The second inequality in (12) is equivalent to 3p% — (4m + 3)p + m? + 5m — 2k < 0, which is implied by the conditions
k<p<m<3k-—6.
Subcase 4.2. p =m.
If (Q) > p+2, then Q is a spanning subgraph of K, v K, 5. Recall that p > k. By Lemma 7 we have

e(Q) < (5) +p(p+2)—(p—k)=@p* +p+2k)/2<@Bp*+p+2k)/2+1

3n2 —10n+ 16
== + k.

Now suppose «(Q) = p + 1. Then Q is a spanning subgraph of K1 V K,11. Define the graph Q' as in Subcase 3.2
above.
If §(Q’) > 2, by Lemma 5 we have e(Q’) < p? + 3. Hence

1 3n2 —10n+ 16
e(Q)f(p;_ >+p2+3<%+k.

If §(Q") <1, then Q is a spanning subgraph of K v (K> +E). By Lemma 7 we obtain

3n2 —10n+ 16
f—i_

p+2
e(Q)s( 5 >+p2—(p—k)= k
and equality holds if and only if Q = Ga(n, k).
Subcase 4.3. p > m.
Note that Q is a spanning subgraph of Kn_p_1 V K,41. We further distinguish two cases.
(@) p=m+ 1. Now the conditions 2k+2 <nand p=m+1=n/2 implyn—p—1= (1 —2)/2 > k. By Lemma 7, we
have

3n2 —10n+ 16

l>+(n—p—l)(p+1)—(n—p—l—k)<f+k

n—p-—

E(Q)§< 5

where the second inequality is equivalent to 4p? —n? 4+ 2n — 4p + 8 > 0 which holds, since n = 2p.
(b) p = m+ 2. In this case the following rough estimate suffices:

3n2 —10n + 16

l)+(n—p—1><w1)<—8 +k. (13)

n—p-—

E(Q)§< 5

The second inequality in (13) is equivalent to 4p? +4p —n? —6n+ 8k +16 > 0, which holds, since n < 2p —2. This completes
the proof. O

The following corollary follows from Theorem 8 immediately.

Corollary 9. Let f(n, k) be defined as in Theorem 8. If G is a graph of order n and connectivity k with size greater than f (n, k), then G
is hamiltonian.

Next we use Theorem 8 to deduce Ota’s result.

Corollary 10. (Ota [9, p. 209]) The maximum size of a k-connected nonhamiltonian graph of order n is

n—k , (Ln+2)/2] n—1|?
max{( 5 >+k, ( 5 )+{TJ ] (14)

Proof. Denote the number in (14) by M. Let f(n,c) be defined as in Theorem 8 with c in place of k there. Note that by
Dirac’s theorem ([3] or [10]), the connectivity ¢ of a nonhamiltonian graph of order n satisfies c <n/2.

If n is odd, by Theorem 8
(") +c if n>6c—5,

3”2_#4% if 2c+1<n<6c—7.

f(n,c)z{
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Thus the maximum size of a k-connected nonhamiltonian graph of order n is

max{f(n,c)lk <c<(n-1)/2}

n—c ) n+5 3n? —8n+5 n+7 n—1
=max | max +cflk<c<——}, max +c <c<
2 6 8 6 2
Cmax ) (MK iy 3n2—8n+5+n—1
B 2 ' 8 2
=M.
If n is even, by Theorem 8
(") +c if n>6c-38,
FO.0=1 32 tons16 :
=g+ if 2c4+2<n<6¢—-10.
The maximum size of a k-connected nonhamiltonian graph of order n is
max{f (@, o)k <c < (n-2)/2}
n—c\ n+8 3n%2 —10n + 16 n+10 n—2
=max { max ) +c kscsT , max 3 +c 6 <c< >

] (K iy 3n2—10n+16+n—2
B 2 ’ 8 2

=M. O

A graph is traceable if it contains a Hamilton path; otherwise it is nontraceable. Next we turn to nontraceable graphs.
The following trick is well-known (e.g. [4, p. 166] or [5, p. 112]).

Lemma 11. Let G be a graph and denote H = G Vv Ky. Then G is traceable if and only if H is hamiltonian, and k (G) = k if and only if
Kk(H)=k+1.

Notation 3. For positive integers n and k with n odd and n > 2k 4 3, Hy(n, k) denotes the graph obtained from K_3)/2 vV
(K2 + Kn—1),2) by deleting (n — 3)/2 — k edges that are incident to one common vertex in K_1),2; for positive integers n
and k with n even and n > 2k 4 2, Ha(n, k) denotes the graph obtained from K@_2)/2 V Kny2),2 by deleting (n —2)/2 —k
edges that are incident to one common vertex in K42)/2.

By Dirac’s theorem [3, p. 485] and Lemma 11, for the existence of a nontraceable graph of order n and connectivity k
we must have n > 2k + 2. The next corollary follows from Theorem 8 and Lemma 11 immediately. Note that all extremal
graphs in Theorem 8 have a dominating vertex.

Corollary 12. Let ¢ (n, k) denote the maximum size of a nontraceable graph of order n and connectivity k. Then

(n—§—1

@, k) = 3 3212117 | if s odd and 2k+3 <n <6k —5,

3nl_l%—i—k if n is even and 2k +2 <n <6k — 2.

)+k(l<+1) if n is odd and n> 6k —3 or n is even and n > 6k,

Ifn =6k — 3, then ¢(n, k) is attained by a graph G if and only if G = Ky V (Kn_ak—1 + Ki1) or G = Hi(n, k). If n = 6k, then ¢ (n, k)
is attained by a graph G if and only if G = K, v (Kp_2k—1 + m) or G = Hy(n, k). If nis odd and n > 6k — 1 or n is even and
n > 6k + 2, then ¢ (n, k) is attained by a graph G if and only if G = Ky vV (Kp—ak—1 + Ki+1)- Ifnis odd and 2k 4+ 3 <n < 6k — 5, then
@ (n, k) is attained by a graph G if and only if G = Hy(n, k). If n is even and 2k 4+ 2 <n < 6k — 2, then ¢(n, k) is attained by a graph
G ifand only if G = Hy(n, k).
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