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We determine the possible maximum degrees of a minimally hamiltonian-connected graph 
with a given order. This answers a question posed by Modalleliyan and Omoomi in 2016. 
We also pose two unsolved problems.
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We consider finite simple graphs and follow the book [5] for terminology and notations. The order of a graph is its 
number of vertices, and the size is its number of edges. We denote by V (G) and E(G) the vertex set and edge set of a graph 
G respectively. For two graphs G and H , G ∨ H denotes the join of G and H , which is obtained from the disjoint union 
G + H by adding edges joining every vertex of G to every vertex of H . Kn and Cn denote the complete graph of order n and 
the cycle of order n respectively. The wheel of order n, denoted by Wn , is the graph K1 ∨ Cn−1.

A graph is called hamiltonian-connected if between any two distinct vertices there is a Hamilton path. Obviously, any 
hamiltonian-connected graph of order at least 4 is 3-connected, and hence has minimum degree at least 3.

Definition. A hamiltonian-connected graph G is said to be minimally hamiltonian-connected if for every edge e ∈ E(G), the 
graph G − e is not hamiltonian-connected.

Clearly every hamiltonian-connected graph contains a minimally hamiltonian-connected spanning subgraph. Concerning 
the maximum degree of a minimally hamiltonian-connected graph with a given order, Modalleliyan and Omoomi [2] proved 
the following results: (1) The maximum degree of any minimally hamiltonian-connected graph of order n is not equal to 
n − 2; (2) the wheel Wn is the only minimally hamiltonian-connected graph of order n with maximum degree n − 1; (3) 
for every integer n ≥ 6 and any integer � with �n/2� ≤ � ≤ n − 3, there exists a minimally hamiltonian-connected graph 
of order n with maximum degree �. They [2] posed the question of whether for � in the range 3 ≤ � < �n/2�, there 
exists a minimally hamiltonian-connected graph of order n with maximum degree �. In this note we answer the question 
affirmatively. Our construction covers the whole range 3 ≤ � ≤ n − 1, not only 3 ≤ � < �n/2�.

Theorem 1. Let n ≥ 4 be an integer. There exists a minimally hamiltonian-connected graph of order n with maximum degree � if and 
only if 3 ≤ � ≤ n − 1 and � �= n − 2, where � = 3 occurs only if n is even.
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Fig. 1. The graph G(16,5).

Proof. Suppose there exists a minimally hamiltonian-connected graph G of order n with maximum degree �. Then G is 
3-connected, implying that � ≥ δ ≥ 3 where δ denotes the minimum degree of G . Modalleliyan and Omoomi [2] proved 
that � �= n − 2. If � = 3, then G is cubic and hence its order n is even.

Conversely suppose 3 ≤ � ≤ n −1 and � �= n −2, and when � = 3, n is even. We will construct a minimally hamiltonian-
connected graph of order n with maximum degree �. If � = n − 1, the wheel graph Wn is a minimally hamiltonian-
connected graph of order n with maximum degree n − 1. Next suppose 3 ≤ � ≤ n − 3. We will distinguish the two cases 
when n − � is odd and when n − � is even. For symbols such as xi below, if i exceeds its valid range, then xi does not 
appear.

Case 1. n − � is odd

We define a graph G(n, �) as follows. Denote k = � − 2 and s = (n − � + 1)/2. We have k ≥ 1 and s ≥ 2.

V (G(n,�)) = {x1, x2, . . . , xk} ∪ {y1, y2, . . . , ys} ∪ {z1, z2, . . . , zs+1},
E(G(n,�)) = {xi xi+1| i = 1, . . . ,k − 1} ∪ {yi yi+1| i = 1, . . . , s − 1} ∪ {zi zi+1| i = 1, . . . , s}

∪ {y1xi| i = 1, . . . ,k} ∪ {yi zi | i = 1, . . . , s} ∪ {x1z1, xkzs+1, yszs+1}.
The graph G(16, 5) is depicted in Fig. 1.

Clearly the graph G(n, �) has order n and maximum degree �. We first show that the graph G(n, �) is hamiltonian-
connected; i.e., for any two distinct vertices u and v , there is a Hamilton (u, v)-path. There are 8 cases for the vertex pairs 
(u, v). In each case we display a Hamilton (u, v)-path.

We define several symbols to describe the Hamilton paths. For i and j with i ≤ j, xi
−→
X x j , yi

−→
Y y j and zi

−→
Z z j denote the 

paths xi xi+1 . . . x j , yi yi+1 . . . y j and zi zi+1 . . . z j , respectively. Throughout h
−→
P g will denote a path starting from the vertex 

h and ending at the vertex g whose vertex set is to be specified. For 1 ≤ i ≤ s, let x1
−→
P yi and x1

−→
P zi denote the paths 

both with vertex set {x1, y1, . . . , yi, z1, . . . , zi}. Similarly, let yi
−→
P zs+1 and zi

−→
P zs+1 denote the paths both with vertex set 

{yi, . . . , ys, zi, . . . , zs, zs+1}. Also, we let zs+1
−→
P zs+1 = zs+1. Finally, given a sequence p

−→
S q, we denote by q

←−
S p its reverse 

sequence. In the following Hamilton paths, strings like ai
−→
A a j or a j

←−
A ai with i > j do not appear.

Case 1.1. (xi, x j) with 1 ≤ i < j ≤ k.

xi
−→
X x j−1 y1xi−1

←−
X x1z1z2

−→
P zs+1xk

←−
X x j .

Case 1.2. (xi, y j) with 1 ≤ i ≤ k and 1 ≤ j ≤ s.

xi
−→
X xk zs+1

←−
P z j+1z j

←−
Z z1x1

−→
X xi−1 y1

−→
Y y j .

Case 1.3. (xi, z j) with 1 ≤ i ≤ k and 1 ≤ j ≤ s.

xi
−→
X xk zs+1

←−
P y j+1 y j

←−
Y y1xi−1

←−
X x1z1

−→
Z z j ,

where when j = s the string zs+1
←−
P y j+1 means zs+1.

Case 1.4. (xi, zs+1) with 1 ≤ i ≤ k.

xi
−→
X xk y1xi−1

←−
X x1z1z2

−→
P zs+1.

Case 1.5. (yi, y j) with 1 ≤ i < j ≤ s.

yi
−→
Y y j−1z j−1

←−
Z zi zi−1

←−
P x1x2

−→
X xk zs+1

←−
P y j ,

where when i = 1 the string zi−1
←−
P x1 means x1.

Case 1.6. (yi, z j) with 1 ≤ i < j ≤ s + 1.

yi
−→
Y y j−1z j−1

←−
Z zi zi−1

←−
P x1x2

−→
X xk zs+1

←−
P z j ,

where when i = 1 the string zi−1
←−
P x1 means x1.
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Fig. 2. The graph H(17,5).

Case 1.7. (yi, z j) with 1 ≤ j ≤ i ≤ s.

yi
←−
Y y j y j−1

←−
P x1x2

−→
X xkzs+1

←−
P zi+1zi

←−
Z z j ,

where when j = 1 the string y j−1
←−
P x1 means x1.

Case 1.8. (zi, z j) with 1 ≤ i < j ≤ s + 1.

zi
−→
Z z j−1 y j−1

←−
Y yi yi−1

←−
P x1x2

−→
X xk zs+1

←−
P z j ,

where when i = 1 the string yi−1
←−
P x1 means x1.

We have shown that G(n, �) is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at least 
4 is 3-connected and hence has minimum degree at least 3. Note that every edge of G(n, �) has one endpoint of degree 
3. Thus for any e ∈ E(G(n, �)), G(n, �) − e has a vertex of degree 2, implying that it is not hamiltonian-connected. This 
completes the proof that G(n, �) is minimally hamiltonian-connected.

Case 2. n − � is even

We define a graph H(n, �) as follows. Denote k = � − 1 and s = (n − � − 2)/2. Since n − � is even and � ≤ n − 3, we 
have k ≥ 3 and s ≥ 1.

V (H(n,�)) = {x} ∪ {y1, y2, . . . , yk} ∪ {z0, z1, z2, . . . , zs} ∪ {w1, w2, . . . , ws+1},
E(H(n,�)) = {yi yi+1| i = 1, . . . ,k − 1} ∪ {zi zi+1| i = 0,1, . . . , s − 1} ∪ {wi wi+1| i = 1, . . . , s}

∪ {xyi | i = 1, . . . ,k} ∪ {zi wi | i = 1, . . . , s} ∪ {xz1, y1z0, z0 w1, yk ws+1, zs ws+1}.
The graph H(17, 5) is depicted in Fig. 2.

Clearly the graph H(n, �) has order n and maximum degree �. We first show that the graph H(n, �) is hamiltonian-
connected; i.e., for any two distinct vertices u and v , there is a Hamilton (u, v)-path. There are 18 cases for the vertex pairs 
(u, v). In each case we display a Hamilton (u, v)-path.

We define several symbols to describe the Hamilton paths. For i and j with i ≤ j, yi
−→
Y y j , zi

−→
Z z j and wi

−→
W w j denote 

the paths yi yi+1 . . . y j , zi zi+1 . . . z j and wi wi+1 . . . w j , respectively. Throughout h
−→
P g will denote a path starting from the 

vertex h and ending at the vertex g whose vertex set is to be specified. For 1 ≤ i ≤ s, let z0
−→
P zi and z0

−→
P wi denote the 

paths both with vertex set {z0, z1, . . . , zi, w1, . . . , wi}. Similarly, let zi
−→
P ws+1 and wi

−→
P ws+1 denote the paths both with 

vertex set {zi, . . . , zs, wi, . . . , ws, ws+1}. Also, we let z0
−→
P z0 = z0 and ws+1

−→
P ws+1 = ws+1. Finally, given a sequence p

−→
S q, 

we denote by q
←−
S p its reverse sequence. In the following Hamilton paths, strings like ai

−→
A a j or a j

←−
A ai with i > j do not 

appear.

Case 2.1. (y1, y j) with 2 ≤ j ≤ k.

y1
−→
Y y j−1xz1z0 w1 w2

−→
P ws+1 yk

←−
Y y j .

Case 2.2. (yi, y j) with 2 ≤ i < j ≤ k.

yi
−→
Y y j−1xyi−1

←−
Y y1z0z1

−→
P ws+1 yk

←−
Y y j .

Case 2.3. (y1, x).
y1z0z1

−→
P ws+1 yk

←−
Y y2x.

Case 2.4. (yi, x) with 2 ≤ i ≤ k.
yi

−→
Y yk ws+1

←−
P z1z0 y1

−→
Y yi−1x.

Case 2.5. (yi, z j) with 1 ≤ i ≤ k − 1 and 0 ≤ j ≤ s.

yi
←−
Y y1xyi+1

−→
Y yk ws+1

←−
P w j+1 w j

←−
W w1z0

−→
Z z j .
3
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Case 2.6. (yk, z0).
yk

←−
Y y1xz1

−→
Z zs ws+1

←−
W w1z0.

Case 2.7. (yk, z j) with 1 ≤ j ≤ s.

yk
←−
Y y2xy1z0

−→
P w j−1 w j

−→
W ws+1zs

←−
Z z j ,

where when j = 1 the string z0
−→
P w j−1 means z0.

Case 2.8. (y1, w1).
y1z0z1xy2

−→
Y yk ws+1

←−
P w2 w1.

Case 2.9. (y1, w j) with 2 ≤ j ≤ s + 1.

y1z0 w1
−→
W w j−1z j−1

←−
Z z1xy2

−→
Y yk ws+1

←−
P w j .

Case 2.10. (yi, w j) with 2 ≤ i ≤ k and 1 ≤ j ≤ s + 1.

yi
−→
Y ykxyi−1

←−
Y y1z0

−→
P z j−1z j

−→
Z zs ws+1

←−
W w j .

Case 2.11. (x, z j) with 0 ≤ j ≤ s.

xy1
−→
Y yk ws+1

←−
P w j+1 w j

←−
W w1z0

−→
Z z j .

Case 2.12. (x, w j) with 1 ≤ j ≤ s + 1.

xyk
←−
Y y1z0

−→
P z j−1z j

−→
Z zs ws+1

←−
W w j .

Case 2.13. (zi, z j) with 0 ≤ i < j ≤ s.

zi
←−
P z0 y1xy2

−→
Y yk ws+1

←−
P w j+1 w j

←−
W wi+1zi+1

−→
Z z j .

Case 2.14. (z0, w1).
z0z1xy1

−→
Y yk ws+1

←−
P w2 w1.

Case 2.15. (z0, w j) with 2 ≤ j ≤ s + 1.

z0 w1
−→
W w j−1z j−1

←−
Z z1xy1

−→
Y yk ws+1

←−
P w j ,

Case 2.16. (zi, w j) with 1 ≤ i < j ≤ s + 1.

zi
−→
Z z j−1 w j−1

←−
W wi wi−1

←−
P z0 y1xy2

−→
Y yk ws+1

←−
P w j ,

where when i = 1 the string wi−1
←−
P z0 means z0.

Case 2.17. (zi, w j) with 1 ≤ j ≤ i ≤ s.

zi
←−
Z z j z j−1

←−
P z0 y1xy2

−→
Y yk ws+1

←−
P wi+1 wi

←−
W w j .

Case 2.18. (wi, w j) with 1 ≤ i < j ≤ s + 1.

wi
−→
W w j−1z j−1

←−
Z zi zi−1

←−
P z0 y1xy2

−→
Y yk ws+1

←−
P w j .

Thus we have shown that H(n, �) is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at 
least 4 is 3-connected and hence has minimum degree at least 3. Since the graph H(n, �) − xz1 has connectivity 2, it is not 
hamiltonian-connected. For every edge e ∈ E(H(n, �)) with e �= xz1, e has one endpoint of degree 3. Therefore H(n, �) − e
has a vertex of degree 2, implying that it is not hamiltonian-connected. This completes the proof that H(n, �) is minimally 
hamiltonian-connected, and the theorem is proved. �
Remark. The graphs G(n, �) and H(n, �) constructed in the above proof of Theorem 1 have degree sequences �, 3, 3, . . . , 3
and �, 4, 3, . . . , 3 respectively, and hence they have the minimum possible sizes among all graphs of order n with maximum 
degree � and minimum degree at least 3 in the two cases when n − � is odd and when n − � is even respectively. The 
graph constructed in [2] for � in the range �n/2� ≤ � ≤ n − 3 has degree sequence �, n − �, 3, . . . , 3.

Finally we pose two unsolved problems.

Problem 1. Let n ≥ 4 be a given integer. What are the possible values of the minimum degree of a minimally hamiltonian-
connected graph of order n?

A computer search shows that every minimally hamiltonian-connected graph of order n with 4 ≤ n ≤ 10 has minimum 
degree 3. The author does not know of an example of a minimally hamiltonian-connected graph with minimum degree at 
least 4. The following easier problem is of a more basic nature.

Problem 2. Does there exist a minimally hamiltonian-connected graph with minimum degree at least 4?

There are some sufficient conditions for hamiltonian-connected graphs; for recent ones see [1,3] and [4]. But very little is 
known about necessary conditions. Restrictions on the maximum or minimum degree of a minimally hamiltonian-connected 
graph may be viewed as necessary conditions for this smaller class of graphs.
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