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We consider finite simple graphs and follow the book [5] for terminology and notations. The order of a graph is its
number of vertices, and the size is its number of edges. We denote by V (G) and E(G) the vertex set and edge set of a graph
G respectively. For two graphs G and H, G v H denotes the join of G and H, which is obtained from the disjoint union
G + H by adding edges joining every vertex of G to every vertex of H. K, and C, denote the complete graph of order n and
the cycle of order n respectively. The wheel of order n, denoted by Wy, is the graph Ky v Cy_1.

A graph is called hamiltonian-connected if between any two distinct vertices there is a Hamilton path. Obviously, any
hamiltonian-connected graph of order at least 4 is 3-connected, and hence has minimum degree at least 3.

Definition. A hamiltonian-connected graph G is said to be minimally hamiltonian-connected if for every edge e € E(G), the
graph G — e is not hamiltonian-connected.

Clearly every hamiltonian-connected graph contains a minimally hamiltonian-connected spanning subgraph. Concerning
the maximum degree of a minimally hamiltonian-connected graph with a given order, Modalleliyan and Omoomi [2] proved
the following results: (1) The maximum degree of any minimally hamiltonian-connected graph of order n is not equal to
n —2; (2) the wheel W,, is the only minimally hamiltonian-connected graph of order n with maximum degree n — 1; (3)
for every integer n > 6 and any integer A with [n/2] < A <n — 3, there exists a minimally hamiltonian-connected graph
of order n with maximum degree A. They [2] posed the question of whether for A in the range 3 < A < [n/2], there
exists a minimally hamiltonian-connected graph of order n with maximum degree A. In this note we answer the question
affirmatively. Our construction covers the whole range 3 <A <n—1, not only 3 < A < [n/27.

Theorem 1. Let n > 4 be an integer. There exists a minimally hamiltonian-connected graph of order n with maximum degree A if and
onlyif3<A <n-—1and A #n— 2, where A =3 occurs only if n is even.
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Fig. 1. The graph G(16,5).

Proof. Suppose there exists a minimally hamiltonian-connected graph G of order n with maximum degree A. Then G is
3-connected, implying that A > § > 3 where § denotes the minimum degree of G. Modalleliyan and Omoomi [2] proved
that A #n —2.If A =3, then G is cubic and hence its order n is even.

Conversely suppose 3 <A <n—1 and A #n—2, and when A =3, n is even. We will construct a minimally hamiltonian-
connected graph of order n with maximum degree A. If A =n — 1, the wheel graph W, is a minimally hamiltonian-
connected graph of order n with maximum degree n — 1. Next suppose 3 < A <n — 3. We will distinguish the two cases
when n — A is odd and when n — A is even. For symbols such as x; below, if i exceeds its valid range, then x; does not
appear.

Case 1. n — A is odd
We define a graph G(n, A) as follows. Denote k= A —2 and s=(n — A+ 1)/2. We have k>1 and s > 2.

VG, A) ={x1,%2, ..., %} U{y1, Y2, ..., ¥s}U{z1, 22, ..., Zs41},
E(G(n, A)) ={xixip1li=1,....k =1} U{yiyir1li=1,...,s =1} U {zizip1]i=1,...,5}
Ulyixili=1,....k}U{yizili=1,...,s} U {X121, XkZs 41, YsZs+1)

The graph G(16,5) is depicted in Fig. 1.

Clearly the graph G(n, A) has order n and maximum degree A. We first show that the graph G(n, A) is hamiltonian-
connected; i.e., for any two distinct vertices u and v, there is a Hamilton (u, v)-path. There are 8 cases for the vertex pairs
(u, v). In each case we display a Hamilton (u, v)-path.

We define several symbols to describe the Hamilton paths. For i and j with i < j, xi7(>xj, yf7yj and 2,7)21- denote the
paths XiXiy1...Xj, YiYiy1...yj and z;zjyq ...z}, respectively. Throughout h?g will denote a path starting from the vertex
h and ending at the vertex g whose vertex set is to be spec1ﬁed For 1 < z <s, let x1—P>y, and x1?zl denote the paths
both with vertex set {x1, ¥1,..., Vi, Z1, ..., z;}. Similarly, let y; P Zs+1 and z; P Zs+1 denote the paths both w1th vertex set
{Yis. . ¥Ys:Ziy ..., Zs, Zs+1}. Also, we let z$+1_P)zs+1 = Zgy1. Finally, glven a sequence p S q, we denote by q S p its reverse
sequence. In the following Hamilton paths, strings like a; Aa; or a; A a; with i > j do not appear.

Case 1.1. (x;, xj) with 1 <i< j<k.
— <~ — <«
Xi XXj_1y1Xi—1 X X12122 P Zs 1% X X;.
Case 1.2. (x;, yj)) with1<i<kand1<j<s.

- <~ < - —
Xi X XkZs41 P 2j112j Z 1% X xi_1y1 Y Y.
Case 1.3. (x;, zj) with 1 <i<kand 1<j<s.

— <~ <~ <~ —
Xi Xxkzsp1 Pyjryj Y yixio1 Xx1z21 Z zj,
. . <
where when j =s the string zs4q1 P yj11 means zs;1.
Case 1.4. (xj, zg+1) with 1 <i <k.
<~ —>
Xi X Xk Y1Xi—1 X x12122 P zs41.
Case 1.5. (yl, y;j) with 1 <i< ] <s.
Vi Yy] 1Zj-1 Zz,zl 1 lexz Xxkzs+1 Py],
where when i =1 the string z;_; P X1 means Xj.
Case 1.6. (yj, zj) with 1 <i<j<s+1.
— <~ <~ — <«
ViYyj1zj1Zzizi1 P x1x2 X X¢Zsy1 P zj,
. . <~
where when i =1 the string z;_; P x; means x;.



X. Zhan Discrete Mathematics 345 (2022) 113159

Fig. 2. The graph H(17,5).

Case 1.7. (yl,z]) W1th]<]<l<5
Yi Y Yi¥Vj-1 Px1x2 XXst+l Pz,+1z, Zz],

where when j =1 the string y;_q Px1 means Xxi.
Case 1.8. (z,,zj) w1th1<1<]<s+1

Zi ZZ_] 1Yj-1 YYIYI 1 PX1X2 Xxkzs-H PZ],
where when i =1 the string y;_1 P x; means xi.

We have shown that G(n, A) is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at least
4 is 3-connected and hence has minimum degree at least 3. Note that every edge of G(n, A) has one endpoint of degree
3. Thus for any e € E(G(n, A)), G(n, A) — e has a vertex of degree 2, implying that it is not hamiltonian-connected. This
completes the proof that G(n, A) is minimally hamiltonian-connected.

Case 2. n — A is even

We define a graph H(n, A) as follows. Denote k= A —1 and s=(n— A —2)/2. Since n — A is even and A <n — 3, we
have k>3 and s > 1.

V(H(n, A) ={x}U{y1.y2,..., ¥k} U {20, 21, 22, ..., Zs} U{w1, wa, ..., Wwsi1},
E(Hn, A)) ={yiyit1li=1,....k—1}U{zizi}1]i=0,1,...,s = 1} U{wiw;1|i=1,...,s}
Ulxyili=1,....k}U{ziwili=1,...,s} U{Xz1, ¥120, Z0W1, Yk Ws41, ZsWs41}.

The graph H(17,5) is depicted in Fig. 2.

Clearly the graph H(n, A) has order n and maximum degree A. We first show that the graph H(n, A) is hamiltonian-
connected; i.e., for any two distinct vertices u and v, there is a Hamilton (u, v)-path. There are 18 cases for the vertex pairs
(u, v). In each case we display a Hamilton (u, v)-path.

We define several symbols to describe the Hamilton paths. For i and j with i < j, yiT/)yj, Zj—Z)Zj and wiij denote
the paths y;yit1...¥j, ZiZit1...zj and w;jwitq ... wj, respectively. Throughout h_P)g will denote a path starting from the
vertex h and ending at the vertex g whose vertex set is to be spec1ﬁed For1<i< s let ZO_P)Z, and ZQT’) w; denote the
paths both with vertex set {zg, z1, ..., zj, W1, ..., w;}. Similarly, let z; P Ws+1 and w; P w41 denote the paths both w1th
vertex set {z;, ..., Zs, Wi, ..., Ws, Ws41}. Also, we let on’)zo =20 and Ws41q P Ws4+1 = Ws41. Finally, given a sequence p S q,

we denote by q S p its reverse sequence. In the following Hamilton paths, strings like a; Aa; or aj Aa; with i > j do not
appear.

Case 2.1. (y1, y]) with 2 < j <k

1 Y Yj-1XZ1Z0W1 w3 P Wsi1Yk Y yj-
Case 2.2. (yi, y]) with 2 <i<j <k

yi Y Yi-1XYi-1 Y Y12021 7 Wst1Yk Y yj.
Case 2.3. (y1, X).

<«
YV1zoz1 P W1 yi Y yox.
Case 2.4. (y,, X) with 2 <i<k.

yi Y YkWst1 P 212091 Y yicax.
Case 2.5. (yi, zj)) with1<i<k—-1and 0<j<s.

<~ — <~ <« —
YiY yixyiz1 Y yewsp1 PwjpqwiWwizg Z z;.
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Case 2.6. (yk, 20).
Yk Y yixz1 Z ZsWs+1WW1ZO
Case 2.7. (Vk, z]) with 1 <j <s.
—
Yk Y Yaxy1zo P wj_ 1wJst+1zs z zj,
where when j =1 the string zo P w;_; means z.
Case 2.8. (y1, wq).
Y120Z1XY2 Y YiWst1 P wawi.
Case 2.9. (y1, w]) with 2 < j <s+1
Y120W1WW1 1Zj-1 Zz1xy2 Y YkWst1 P wj.
Case 2.10. (y,, wj) w1th 2 <1<k and 1 <]<s+1
Vi YkaJ’l 1 Y Y120 PZ] 1Zj ZZSWS+1WW1
Case 2.11. (x, z,) with 0 < j<s.
&
XY1 Y YkWsyq P leijW]zo Zz]
Case 2.12. (x, wj) with 1 <j<s+1.
<~ — - <~
Xy Y y1z0 P zj12zj Z zsws 1 Wwj.
Case 2.13. (zj, zj) with 0 <i < j<s.
<~ — <~ <~ -
zi P zoy1xy2 Y yiwsi1 PwjpawiWwii1zig Z z;.
Case 2.14. (zo, w1)
Z0Z1Xy1 Y YikWst1 P wowi.
Case 2.15. (z, w]) with 2 < ] < s+1
zow1Ww1 1Zj-1 Zzlxy1 Yykws+1 P wj,
Case 2.16. (z,, w;) with 1 <i<]j <s+l
Z ZZ] 1Wj— 1WW Wi PZO}’1X}/2 Y YkWs1 P wj,
<~
where when i =1 the string w;_1 P zp means zg.
Case 2.17. (zj, wj) with 1 < j<i<s.
<~ <« — <« <~
zi Zzjzj 1 Pzoy1xy2 Y yiwsi1 P wipawiWwj.
Case 2.18. (w;, wj) with 1 <i< j<s+1.
— <~ <~ — <«
wWiWwj_1zj1 Z zizi—1 P zoy1xy2 Y yxWsy1 P wj.

Thus we have shown that H(n, A) is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at
least 4 is 3-connected and hence has minimum degree at least 3. Since the graph H(n, A) — xz; has connectivity 2, it is not
hamiltonian-connected. For every edge e € E(H(n, A)) with e # xz1, e has one endpoint of degree 3. Therefore H(n, A) —e
has a vertex of degree 2, implying that it is not hamiltonian-connected. This completes the proof that H(n, A) is minimally
hamiltonian-connected, and the theorem is proved. O

Remark. The graphs G(n, A) and H(n, A) constructed in the above proof of Theorem 1 have degree sequences A, 3,3,...,3
and A, 4,3,..., 3 respectively, and hence they have the minimum possible sizes among all graphs of order n with maximum
degree A and minimum degree at least 3 in the two cases when n — A is odd and when n — A is even respectively. The
graph constructed in [2] for A in the range [n/2] < A <n —3 has degree sequence A,n— A,3,...,3.

Finally we pose two unsolved problems.

Problem 1. Let n > 4 be a given integer. What are the possible values of the minimum degree of a minimally hamiltonian-
connected graph of order n?

A computer search shows that every minimally hamiltonian-connected graph of order n with 4 <n <10 has minimum
degree 3. The author does not know of an example of a minimally hamiltonian-connected graph with minimum degree at
least 4. The following easier problem is of a more basic nature.

Problem 2. Does there exist a minimally hamiltonian-connected graph with minimum degree at least 4?

There are some sufficient conditions for hamiltonian-connected graphs; for recent ones see [1,3] and [4]. But very little is
known about necessary conditions. Restrictions on the maximum or minimum degree of a minimally hamiltonian-connected
graph may be viewed as necessary conditions for this smaller class of graphs.
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