Note

The maximum degree of a minimally hamiltonian-connected graph

Xingzhi Zhan
Department of Mathematics, East China Normal University, Shanghai 200241, China

A R T I C L E I N F O

Article history:

Received 17 February 2022
Received in revised form 5 June 2022
Accepted 26 August 2022
Available online xxxx

Keywords:

Minimally hamiltonian-connected
Maximum degree
Minimum degree

Abstract

We determine the possible maximum degrees of a minimally hamiltonian-connected graph with a given order. This answers a question posed by Modalleliyan and Omoomi in 2016. We also pose two unsolved problems.

© 2022 Elsevier B.V. All rights reserved.

We consider finite simple graphs and follow the book [5] for terminology and notations. The order of a graph is its number of vertices, and the size is its number of edges. We denote by $V(G)$ and $E(G)$ the vertex set and edge set of a graph G respectively. For two graphs G and $H, G \vee H$ denotes the join of G and H, which is obtained from the disjoint union $G+H$ by adding edges joining every vertex of G to every vertex of $H . K_{n}$ and C_{n} denote the complete graph of order n and the cycle of order n respectively. The wheel of order n, denoted by W_{n}, is the graph $K_{1} \vee C_{n-1}$.

A graph is called hamiltonian-connected if between any two distinct vertices there is a Hamilton path. Obviously, any hamiltonian-connected graph of order at least 4 is 3 -connected, and hence has minimum degree at least 3 .

Definition. A hamiltonian-connected graph G is said to be minimally hamiltonian-connected if for every edge $e \in E(G)$, the graph $G-e$ is not hamiltonian-connected.

Clearly every hamiltonian-connected graph contains a minimally hamiltonian-connected spanning subgraph. Concerning the maximum degree of a minimally hamiltonian-connected graph with a given order, Modalleliyan and Omoomi [2] proved the following results: (1) The maximum degree of any minimally hamiltonian-connected graph of order n is not equal to $n-2$; (2) the wheel W_{n} is the only minimally hamiltonian-connected graph of order n with maximum degree $n-1$; (3) for every integer $n \geq 6$ and any integer Δ with $\lceil n / 2\rceil \leq \Delta \leq n-3$, there exists a minimally hamiltonian-connected graph of order n with maximum degree Δ. They [2] posed the question of whether for Δ in the range $3 \leq \Delta<\lceil n / 2\rceil$, there exists a minimally hamiltonian-connected graph of order n with maximum degree Δ. In this note we answer the question affirmatively. Our construction covers the whole range $3 \leq \Delta \leq n-1$, not only $3 \leq \Delta<\lceil n / 2\rceil$.

Theorem 1. Let $n \geq 4$ be an integer. There exists a minimally hamiltonian-connected graph of order n with maximum degree Δ if and only if $3 \leq \Delta \leq n-1$ and $\Delta \neq n-2$, where $\Delta=3$ occurs only if n is even.

[^0]

Fig. 1. The graph $G(16,5)$.
Proof. Suppose there exists a minimally hamiltonian-connected graph G of order n with maximum degree Δ. Then G is 3-connected, implying that $\Delta \geq \delta \geq 3$ where δ denotes the minimum degree of G. Modalleliyan and Omoomi [2] proved that $\Delta \neq n-2$. If $\Delta=3$, then G is cubic and hence its order n is even.

Conversely suppose $3 \leq \Delta \leq n-1$ and $\Delta \neq n-2$, and when $\Delta=3, n$ is even. We will construct a minimally hamiltonianconnected graph of order n with maximum degree Δ. If $\Delta=n-1$, the wheel graph W_{n} is a minimally hamiltonianconnected graph of order n with maximum degree $n-1$. Next suppose $3 \leq \Delta \leq n-3$. We will distinguish the two cases when $n-\Delta$ is odd and when $n-\Delta$ is even. For symbols such as x_{i} below, if i exceeds its valid range, then x_{i} does not appear.

Case 1. $n-\Delta$ is odd
We define a graph $G(n, \Delta)$ as follows. Denote $k=\Delta-2$ and $s=(n-\Delta+1) / 2$. We have $k \geq 1$ and $s \geq 2$.

$$
\begin{aligned}
V(G(n, \Delta)) & =\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\} \cup\left\{z_{1}, z_{2}, \ldots, z_{s+1}\right\} \\
E(G(n, \Delta)) & =\left\{x_{i} x_{i+1} \mid i=1, \ldots, k-1\right\} \cup\left\{y_{i} y_{i+1} \mid i=1, \ldots, s-1\right\} \cup\left\{z_{i} z_{i+1} \mid i=1, \ldots, s\right\} \\
& \cup\left\{y_{1} x_{i} \mid i=1, \ldots, k\right\} \cup\left\{y_{i} z_{i} \mid i=1, \ldots, s\right\} \cup\left\{x_{1} z_{1}, x_{k} z_{s+1}, y_{s} z_{s+1}\right\} .
\end{aligned}
$$

The graph $G(16,5)$ is depicted in Fig. 1.
Clearly the graph $G(n, \Delta)$ has order n and maximum degree Δ. We first show that the graph $G(n, \Delta)$ is hamiltonianconnected; i.e., for any two distinct vertices u and v, there is a Hamilton (u, v)-path. There are 8 cases for the vertex pairs (u, v). In each case we display a Hamilton (u,v)-path.

We define several symbols to describe the Hamilton paths. For i and j with $i \leq j, x_{i} \vec{X} x_{j}, y_{i} \vec{Y} y_{j}$ and $z_{i} \vec{Z} z_{j}$ denote the paths $x_{i} x_{i+1} \ldots x_{j}, y_{i} y_{i+1} \ldots y_{j}$ and $z_{i} z_{i+1} \ldots z_{j}$, respectively. Throughout $h \vec{P} g$ will denote a path starting from the vertex h and ending at the vertex g whose vertex set is to be specified. For $1 \leq i \leq s$, let $x_{1} \vec{P} y_{i}$ and $x_{1} \vec{P} z_{i}$ denote the paths both with vertex set $\left\{x_{1}, y_{1}, \ldots, y_{i}, z_{1}, \ldots, z_{i}\right\}$. Similarly, let $y_{i} \vec{P} z_{s+1}$ and $z_{i} \vec{P} z_{s+1}$ denote the paths both with vertex set $\left\{y_{i}, \ldots, y_{s}, z_{i}, \ldots, z_{s}, z_{s+1}\right\}$. Also, we let $z_{s+1} \vec{P} z_{s+1}=z_{s+1}$. Finally, given a sequence $p \vec{S} q$, we denote by $q \overleftarrow{S} p$ its reverse sequence. In the following Hamilton paths, strings like $a_{i} \vec{A} a_{j}$ or $a_{j} \overleftarrow{A} a_{i}$ with $i>j$ do not appear.

Case 1.1. $\left(x_{i}, x_{j}\right)$ with $1 \leq i<j \leq k$.
$x_{i} \vec{X} x_{j-1} y_{1} x_{i-1} \overleftarrow{X} x_{1} z_{1} z_{2} \vec{P} z_{s+1} x_{k} \overleftarrow{X} x_{j}$.
Case 1.2. $\left(x_{i}, y_{j}\right)$ with $1 \leq i \leq k$ and $1 \leq j \leq s$.
$x_{i} \vec{X} x_{k} z_{s+1} \overleftarrow{P} z_{j+1} z_{j} \overleftarrow{Z} z_{1} x_{1} \vec{X} x_{i-1} y_{1} \vec{Y} y_{j}$
Case 1.3. $\left(x_{i}, z_{j}\right)$ with $1 \leq i \leq k$ and $1 \leq j \leq s$.
$x_{i} \vec{X} x_{k} z_{s+1} \overleftarrow{P} y_{j+1} y_{j} \overleftarrow{Y} y_{1} x_{i-1} \overleftarrow{X} x_{1} z_{1} \vec{Z} z_{j}$
where when $j=s$ the string $z_{s+1} \overleftarrow{P} y_{j+1}$ means z_{s+1}
Case 1.4. $\left(x_{i}, z_{s+1}\right)$ with $1 \leq i \leq k$. $x_{i} \vec{X} x_{k} y_{1} x_{i-1} \overleftarrow{X} x_{1} z_{1} z_{2} \vec{P} z_{s+1}$
Case 1.5. $\left(y_{i}, y_{j}\right)$ with $1 \leq i<j \leq s$.
$y_{i} \vec{Y} y_{j-1} z_{j-1} \overleftarrow{Z} z_{i} z_{i-1} \overleftarrow{P} x_{1} x_{2} \vec{X} x_{k} z_{s+1} \overleftarrow{P} y_{j}$
where when $i=1$ the string $z_{i-1} \overleftarrow{P} x_{1}$ means x_{1}.
Case 1.6. $\left(y_{i}, z_{j}\right)$ with $1 \leq i<j \leq s+1$.
$y_{i} \vec{Y} y_{j-1} z_{j-1} \overleftarrow{Z} z_{i} z_{i-1} \overleftarrow{P} x_{1} x_{2} \vec{X} x_{k} z_{s+1} \overleftarrow{P} z_{j}$
where when $i=1$ the string $z_{i-1} \overleftarrow{P} x_{1}$ means x_{1}.

Fig. 2. The graph $H(17,5)$.
Case 1.7. $\left(y_{i}, z_{j}\right)$ with $1 \leq j \leq i \leq s$.
$y_{i} \overleftarrow{Y} y_{j} y_{j-1} \overleftarrow{P} x_{1} x_{2} \vec{X} x_{k} z_{s+1} \overleftarrow{P} z_{i+1} z_{i} \overleftarrow{Z} z_{j}$
where when $j=1$ the string $y_{j-1} \overleftarrow{P} x_{1}$ means x_{1}.
Case 1.8. $\left(z_{i}, z_{j}\right)$ with $1 \leq i<j \leq s+1$.
$z_{i} \vec{Z} z_{j-1} y_{j-1} \overleftarrow{Y} y_{i} y_{i-1} \overleftarrow{P} x_{1} x_{2} \vec{X} x_{k} z_{s+1} \overleftarrow{P} z_{j}$
where when $i=1$ the string $y_{i-1} \overleftarrow{P} x_{1}$ means x_{1}.
We have shown that $G(n, \Delta)$ is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at least 4 is 3 -connected and hence has minimum degree at least 3 . Note that every edge of $G(n, \Delta)$ has one endpoint of degree 3. Thus for any $e \in E(G(n, \Delta)), G(n, \Delta)-e$ has a vertex of degree 2 , implying that it is not hamiltonian-connected. This completes the proof that $G(n, \Delta)$ is minimally hamiltonian-connected.

Case 2. $n-\Delta$ is even
We define a graph $H(n, \Delta)$ as follows. Denote $k=\Delta-1$ and $s=(n-\Delta-2) / 2$. Since $n-\Delta$ is even and $\Delta \leq n-3$, we have $k \geq 3$ and $s \geq 1$.

$$
\begin{aligned}
V(H(n, \Delta)) & =\{x\} \cup\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \cup\left\{z_{0}, z_{1}, z_{2}, \ldots, z_{s}\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{s+1}\right\} \\
E(H(n, \Delta)) & =\left\{y_{i} y_{i+1} \mid i=1, \ldots, k-1\right\} \cup\left\{z_{i} z_{i+1} \mid i=0,1, \ldots, s-1\right\} \cup\left\{w_{i} w_{i+1} \mid i=1, \ldots, s\right\} \\
& \cup\left\{x y_{i} \mid i=1, \ldots, k\right\} \cup\left\{z_{i} w_{i} \mid i=1, \ldots, s\right\} \cup\left\{x z_{1}, y_{1} z_{0}, z_{0} w_{1}, y_{k} w_{s+1}, z_{s} w_{s+1}\right\} .
\end{aligned}
$$

The graph $H(17,5)$ is depicted in Fig. 2.
Clearly the graph $H(n, \Delta)$ has order n and maximum degree Δ. We first show that the graph $H(n, \Delta)$ is hamiltonianconnected; i.e., for any two distinct vertices u and v, there is a Hamilton (u, v)-path. There are 18 cases for the vertex pairs (u, v). In each case we display a Hamilton (u, v)-path.

We define several symbols to describe the Hamilton paths. For i and j with $i \leq j, y_{i} \vec{Y} y_{j}, z_{i} \vec{Z} z_{j}$ and $w_{i} \vec{W} w_{j}$ denote the paths $y_{i} y_{i+1} \ldots y_{j}, z_{i} z_{i+1} \ldots z_{j}$ and $w_{i} w_{i+1} \ldots w_{j}$, respectively. Throughout $h \vec{P} g$ will denote a path starting from the vertex h and ending at the vertex g whose vertex set is to be specified. For $1 \leq i \leq s$, let $z_{0} \vec{P} z_{i}$ and $z_{0} \vec{P} w_{i}$ denote the paths both with vertex set $\left\{z_{0}, z_{1}, \ldots, z_{i}, w_{1}, \ldots, w_{i}\right\}$. Similarly, let $z_{i} \vec{P} w_{s+1}$ and $w_{i} \vec{P} w_{s+1}$ denote the paths both with vertex set $\left\{z_{i}, \ldots, z_{s}, w_{i}, \ldots, w_{s}, w_{s+1}\right\}$. Also, we let $z_{0} \vec{P} z_{0}=z_{0}$ and $w_{s+1} \vec{P} w_{s+1}=w_{s+1}$. Finally, given a sequence $p \vec{S} q$, we denote by $q \overleftarrow{S} p$ its reverse sequence. In the following Hamilton paths, strings like $a_{i} \vec{A} a_{j}$ or $a_{j} \overleftarrow{A} a_{i}$ with $i>j$ do not appear.

Case 2.1. $\left(y_{1}, y_{j}\right)$ with $2 \leq j \leq k$.

$$
y_{1} \vec{Y} y_{j-1} x z_{1} z_{0} w_{1} w_{2} \vec{P} w_{s+1} y_{k} \overleftarrow{Y} y_{j}
$$

Case 2.2. $\left(y_{i}, y_{j}\right)$ with $2 \leq i<j \leq k$.
$y_{i} \vec{Y} y_{j-1} x y_{i-1} \overleftarrow{Y} y_{1} z_{0} z_{1} \vec{P} w_{s+1} y_{k} \overleftarrow{Y} y_{j}$
Case 2.3. $\left(y_{1}, x\right)$.
$y_{1} z_{0} z_{1} \vec{P} w_{s+1} y_{k} \overleftarrow{Y} y_{2} x$
Case 2.4. $\left(y_{i}, x\right)$ with $2 \leq i \leq k$.
$y_{i} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} z_{1} z_{0} y_{1} \vec{Y} y_{i-1} x$
Case 2.5. $\left(y_{i}, z_{j}\right)$ with $1 \leq i \leq k-1$ and $0 \leq j \leq s$.
$y_{i} \overleftarrow{Y} y_{1} x y_{i+1} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j+1} w_{j} \overleftarrow{W} w_{1} z_{0} \vec{Z} z_{j}$

Case 2.6. $\left(y_{k}, z_{0}\right)$.

$$
y_{k} \overleftarrow{Y} y_{1} x z_{1} \vec{Z} z_{s} w_{s+1} \overleftarrow{W} w_{1} z_{0}
$$

Case 2.7. $\left(y_{k}, z_{j}\right)$ with $1 \leq j \leq s$.
$y_{k} \overleftarrow{Y} y_{2} x y_{1} z_{0} \vec{P} w_{j-1} w_{j} \vec{W} w_{s+1} z_{s} \overleftarrow{Z} z_{j}$
where when $j=1$ the string $z_{0} \vec{P} w_{j-1}$ means z_{0}.
Case 2.8. $\left(y_{1}, w_{1}\right)$.
$y_{1} z_{0} z_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{2} w_{1}$
Case 2.9. $\left(y_{1}, w_{j}\right)$ with $2 \leq j \leq s+1$.
$y_{1} z_{0} w_{1} \vec{W} w_{j-1} z_{j-1} \overleftarrow{Z} z_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j}$
Case 2.10. $\left(y_{i}, w_{j}\right)$ with $2 \leq i \leq k$ and $1 \leq j \leq s+1$.

$$
y_{i} \vec{Y} y_{k} x y_{i-1} \overleftarrow{Y} y_{1} z_{0} \stackrel{\vec{P}}{z_{j-1}} z_{j} \vec{Z} z_{s} w_{s+1} \overleftarrow{W} w_{j}
$$

Case 2.11. $\left(x, z_{j}\right)$ with $0 \leq j \leq s$.

$$
x y_{1} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j+1} w_{j} \overleftarrow{W} w_{1} z_{0} \vec{Z} z_{j}
$$

Case 2.12. $\left(x, w_{j}\right)$ with $1 \leq j \leq s+1$.

$$
x y_{k} \overleftarrow{Y} y_{1} z_{0} \vec{P} z_{j-1} z_{j} \vec{Z} z_{s} w_{s+1} \overleftarrow{W} w_{j}
$$

Case 2.13. $\left(z_{i}, z_{j}\right)$ with $0 \leq i<j \leq s$.

$$
z_{i} \stackrel{\leftarrow}{P} z_{0} y_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j+1} w_{j} \overleftarrow{W} w_{i+1} z_{i+1} \vec{Z} z_{j}
$$

Case 2.14. $\left(z_{0}, w_{1}\right)$.

$$
z_{0} z_{1} x y_{1} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{2} w_{1}
$$

Case 2.15. $\left(z_{0}, w_{j}\right)$ with $2 \leq j \leq s+1$.
$z_{0} w_{1} \vec{W} w_{j-1} z_{j-1} \overleftarrow{Z} z_{1} x y_{1} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j}$
Case 2.16. $\left(z_{i}, w_{j}\right)$ with $1 \leq i<j \leq s+1$.
$z_{i} \vec{Z} z_{j-1} w_{j-1} \overleftarrow{W} w_{i} w_{i-1} \overleftarrow{P} z_{0} y_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j}$
where when $i=1$ the string $w_{i-1} \overleftarrow{P} z_{0}$ means z_{0}
Case 2.17. $\left(z_{i}, w_{j}\right)$ with $1 \leq j \leq i \leq s$.

$$
z_{i} \overleftarrow{Z} z_{j} z_{j-1} \overleftarrow{P} z_{0} y_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{i+1} w_{i} \overleftarrow{W} w_{j}
$$

Case 2.18. $\left(w_{i}, w_{j}\right)$ with $1 \leq i<j \leq s+1$.

$$
w_{i} \vec{W} w_{j-1} z_{j-1} \overleftarrow{Z} z_{i} z_{i-1} \stackrel{\overleftarrow{P}}{z_{0} y_{1} x y_{2} \vec{Y} y_{k} w_{s+1} \overleftarrow{P} w_{j} . . .}
$$

Thus we have shown that $H(n, \Delta)$ is hamiltonian-connected. Recall that any hamiltonian-connected graph of order at least 4 is 3 -connected and hence has minimum degree at least 3 . Since the graph $H(n, \Delta)-x z_{1}$ has connectivity 2 , it is not hamiltonian-connected. For every edge $e \in E(H(n, \Delta))$ with $e \neq x z_{1}$, e has one endpoint of degree 3 . Therefore $H(n, \Delta)-e$ has a vertex of degree 2 , implying that it is not hamiltonian-connected. This completes the proof that $H(n, \Delta)$ is minimally hamiltonian-connected, and the theorem is proved.

Remark. The graphs $G(n, \Delta)$ and $H(n, \Delta)$ constructed in the above proof of Theorem 1 have degree sequences $\Delta, 3,3, \ldots, 3$ and $\Delta, 4,3, \ldots, 3$ respectively, and hence they have the minimum possible sizes among all graphs of order n with maximum degree Δ and minimum degree at least 3 in the two cases when $n-\Delta$ is odd and when $n-\Delta$ is even respectively. The graph constructed in [2] for Δ in the range $\lceil n / 2\rceil \leq \Delta \leq n-3$ has degree sequence $\Delta, n-\Delta, 3, \ldots, 3$.

Finally we pose two unsolved problems.

Problem 1. Let $n \geq 4$ be a given integer. What are the possible values of the minimum degree of a minimally hamiltonianconnected graph of order n ?

A computer search shows that every minimally hamiltonian-connected graph of order n with $4 \leq n \leq 10$ has minimum degree 3. The author does not know of an example of a minimally hamiltonian-connected graph with minimum degree at least 4. The following easier problem is of a more basic nature.

Problem 2. Does there exist a minimally hamiltonian-connected graph with minimum degree at least 4 ?

There are some sufficient conditions for hamiltonian-connected graphs; for recent ones see [1,3] and [4]. But very little is known about necessary conditions. Restrictions on the maximum or minimum degree of a minimally hamiltonian-connected graph may be viewed as necessary conditions for this smaller class of graphs.

Declaration of competing interest

There is no conflict of interest in this work.

Acknowledgement

This research was supported by the NSFC grant 11671148 and Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.

References

[1] Q. Bian, R.J. Gould, P. Horn, S. Janiszewski, S.L. Fleur, P. Wrayno, 3-connected $\left\{K_{1,3}, P_{9}\right\}$-free graphs are hamiltonian-connected, Graphs Comb. 30 (2014) 1099-1122.
[2] M. Modalleliyan, B. Omoomi, Critical hamiltonian-connected graphs, Ars Comb. 126 (2016) 13-27.
[3] Z. Ryjáček, P. Vrána, Every 3-connected $\left\{K_{1,3}, Z_{7}\right\}$-free graph of order at least 21 is Hamilton-connected, Discrete Math. 344 (2021) 112350.
[4] P. Vrána, X. Zhan, L. Zhang, Proof of a conjecture on hamiltonian-connected graphs, Discrete Math. 345 (8) (2022) 112909.
[5] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., 1996.

[^0]: E-mail address: zhan@math.ecnu.edu.cn.
 https://doi.org/10.1016/j.disc.2022.113159
 0012-365X/© 2022 Elsevier B.V. All rights reserved.

