The Turán number of book graphs*

Jingru Yan and Xingzhi Zhan ${ }^{\dagger}$
Department of Mathematics, East China Normal University, Shanghai 200241, China

Abstract

Given a graph H and a positive integer n, the Turán number of H for the order n, denoted ex (n, H), is the maximum size of a simple graph of order n not containing H as a subgraph. The book with p pages, denoted B_{p}, is the graph that consists of p triangles sharing a common edge. Bollobás and Erdős initiated the research on the Turán number of book graphs in 1975. The two numbers $\operatorname{ex}\left(p+2, B_{p}\right)$ and $\operatorname{ex}\left(p+3, B_{p}\right)$ have been determined by Qiao and Zhan. In this paper we determine the numbers $\operatorname{ex}\left(p+4, B_{p}\right), \operatorname{ex}\left(p+5, B_{p}\right)$ and $\operatorname{ex}\left(p+6, B_{p}\right)$, and characterize the corresponding extremal graphs for the numbers ex $\left(n, B_{p}\right)$ with $n=p+2, p+3, p+$ $4, p+5$.

Key words. Turán number; book; triangle; extremal graph
Mathematics Subject Classification. 05C35, 05C75

1 Introduction

We consider finite simple graphs. The order of a graph G, denoted $|G|$, is its number of vertices, and the size its number of edges.

Definition 1. Given a graph H and a positive integer n, the Turán number of H for the order n, denoted $\operatorname{ex}(n, H)$, is the maximum size of a simple graph of order n not containing H as a subgraph.

[^0]Determining the Turán number of various graphs H is one of the main topics in extremal graph theory [1].

Definition 2. The book with p pages, denoted B_{p}, is the graph that consists of p triangles sharing a common edge.
B_{5} is depicted in Figure 1. Note that the graph B_{p} has order $p+2$.

Fig. 1. The book graph B_{5}

We denote by K_{p} the complete graph of order p. B_{1} is just K_{3}. Denote by $K_{s, t}$ the complete bipartite graph whose partite sets have cardinalities s and t. A classic result of Mantel [5] from 1907 states that $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$ and the balanced complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is the unique extremal graph.

In 1975 Bollobás and Erdős [2] posed the conjecture that $\operatorname{ex}\left(n, B_{\lceil n / 6\rceil}\right) \leq n^{2} / 4$, which was proved by Edwards [3] and independently by Hadžiivanov and Nikiforov [4].

The two numbers $\operatorname{ex}\left(p+2, B_{p}\right)$ and $\operatorname{ex}\left(p+3, B_{p}\right)$ have been determined by Qiao and Zhan [6] in solving a problem of Erdős and they posed the problem [6, Problem 3] of determining $\operatorname{ex}\left(n, B_{p}\right)$ for a general order n. In this paper we determine the numbers $\operatorname{ex}\left(p+4, B_{p}\right), \operatorname{ex}\left(p+5, B_{p}\right)$ and $\operatorname{ex}\left(p+6, B_{p}\right)$ and characterize the corresponding extremal graphs for the numbers ex $\left(n, B_{p}\right)$ with $n=p+2, p+3, p+4, p+5$.

For graphs we will use equality up to isomorphism, so $G=H$ means that G and H are isomorphic. Given graphs G and H, the notation $G+H$ means the disjoint union of G and H, and $G \vee H$ denotes the j oin of G and H, which is obtained from $G+H$ by adding edges joining every vertex of G to every vertex of $H . m H$ denotes the disjoint union of m copies of a graph H. We denote by $V(G)$ and $E(G)$ the vertex set and edge set of a graph G respectively. $\bar{G}, \delta(G)$ and $\Delta(G)$ will denote the complement, minimum degree and maximum degree of a graph G respectively. For $A \subseteq V(G)$, we denote by $G[A]$ the subgraph of G induced by A.

For a vertex $v \in V(G), N_{G}(v)$ and $\operatorname{deg}_{G}(v)$ will denote the neighborhood and degree of v in G respectively. If the graph G is clear from the context, we will omit it as the subscript. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 a leaf.

We denote by C_{s} and P_{t} the cycle of length s and path of order t respectively.
Notation. For an even positive integer n, the notation $K_{n}-P M$ denotes the graph obtained from the complete graph K_{n} by deleting all the edges in a perfect matching of K_{n}; i.e., it is the complement of $(n / 2) K_{2}$.

2 Main Results

We will repeatedly use the first two lemmas below.
Lemma 1. Let n and p be positive integers with $n \geq p+2$. Then a graph G of order n does not contain B_{p} as a subgraph if and only if for every edge xy $\in E(G)$, $\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right| \geq n-p-1$. Consequently, if G is such a graph then \bar{G} has at most one isolated vertex.

Proof. For $x y \in E(G), V(G) \backslash\{x, y\}=\left(N_{G}(x) \cap N_{G}(y)\right) \cup\left(N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right)$ and $\left(N_{G}(x) \cap N_{G}(y)\right) \cap\left(N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right)=\phi$. Hence

$$
\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right|=n-2-\left|N_{G}(x) \cap N_{G}(y)\right| .
$$

G does not contain B_{p} if and only if for every edge $x y \in E(G),\left|N_{G}(x) \cap N_{G}(y)\right| \leq p-1$ if and only if $\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right| \geq n-p-1$. This shows the first conclusion. The second conclusion is obvious and it also follows from the first immediately.

Lemma 2. Let n and p be positive integers with $n \geq p+5$ and let G be a graph of order n. If \bar{G} has a component which is a cycle of length at least 4 , then G contains B_{p}.

Proof. Let C be a component of \bar{G} which is a cycle of length at least 4, and let x, z, y be three consecutive vertices of C. Then $x y \in E(G)$ and $\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right| \leq 3<n-p-1$, since $n \geq p+5$. By Lemma $1, G$ contains B_{p}.

Lemma 3. (Qiao and Zhan [6]) If p is an even positive integer, then $\operatorname{ex}\left(p+2, B_{p}\right)=$ $p(p+2) / 2$ and $\operatorname{ex}\left(p+3, B_{p}\right)=p(p+4) / 2$; if p is an odd positive integer, then $\operatorname{ex}\left(p+2, B_{p}\right)=$ $(p+1)^{2} / 2$ and $\operatorname{ex}\left(p+3, B_{p}\right)=(p+1)(p+3) / 2$.

We first characterize the extremal graphs for the two numbers ex $\left(p+2, B_{p}\right)$ and $\operatorname{ex}(p+$ 3, B_{p}) determined in Lemma 3.

Theorem 4. Suppose G is a graph of order $p+2$ not containing B_{p}.
(1) If p is even, then G has size $\operatorname{ex}\left(p+2, B_{p}\right)$ if and only if $G=K_{p+2}-P M$ or
$G=\overline{K_{1}+((p-2) / 2) K_{2}+P_{3}}$.
(2) If p is odd, then G has size $\operatorname{ex}\left(p+2, B_{p}\right)$ if and only if $G=K_{1} \vee\left(K_{p+1}-P M\right)$.

Proof. It is easy to check that the three graphs in the theorem satisfy the requirements. Next we prove that they are the only extremal graphs. Suppose G has size $\operatorname{ex}\left(p+2, B_{p}\right)$ and its vertices are v_{1}, \ldots, v_{p+2} with $\operatorname{deg}_{\bar{G}}\left(v_{1}\right) \leq \operatorname{deg}_{\bar{G}}\left(v_{2}\right) \leq \cdots \leq \operatorname{deg}_{\bar{G}}\left(v_{p+2}\right)$.
(1) p is even. By Lemma $3,|E(G)|=p(p+2) / 2$ which implies that $|E(\bar{G})|=(p+2) / 2$. By the degree-sum formula $\left[4\right.$, p.35], $\sum_{i=1}^{p+2} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=2|E(\bar{G})|=p+2$, implying $\delta(\bar{G}) \leq 1$.

Case 1. $\delta(\bar{G})=1$. The degree sequence of \bar{G} is $1,1, \ldots, 1$. Thus $\bar{G}=((p+2) / 2) K_{2}$, implying that $G=K_{p+2}-P M$.

Case 2. $\delta(\bar{G})=0$. By Lemma 1, v_{1} is the only isolated vertex of \bar{G}. Since $\sum_{i=1}^{p+2} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=$ $p+2$ and $\operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq 1$ for every $i \geq 2$, we deduce that $\Delta(\bar{G})=2$ and \bar{G} has a unique vertex of degree 2 . Thus the degree sequence of \bar{G} is $2,1, \ldots, 1,0$, implying that $\bar{G}=K_{1}+((p-2) / 2) K_{2}+P_{3}$; i.e., $G=\overline{K_{1}+((p-2) / 2) K_{2}+P_{3}}$.
(2) p is odd. By Lemma 3, $|E(G)|=(p+1)^{2} / 2$, implying $|E(\bar{G})|=(p+1) / 2$. Hence $\sum_{i=1}^{p+2} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=2|E(\bar{G})|=p+1$, implying $\delta(\bar{G})=0$. By Lemma $1, \bar{G}$ has a unique isolated vertex. Thus, the degree sequence of \bar{G} is $1,1, \ldots, 1,0$. It follows that $\bar{G}=K_{1}+((p+1) / 2) K_{2}$; i.e, $G=K_{1} \vee\left(K_{p+1}-P M\right)$.

Theorem 5. Suppose G is a graph of order $p+3$ not containing B_{p}.
(1) If $p=2$, then G has size $\operatorname{ex}\left(p+3, B_{p}\right)$ if and only if $G=K_{1} \vee\left(2 P_{2}\right)$, or $G=K_{2,3}$, or $G=\overline{P_{5}}$; if p is even and $p \geq 4$, then G has size $\operatorname{ex}\left(p+3, B_{p}\right)$ if and only if $G=$ $\left(3 K_{1}\right) \vee\left(K_{p}-P M\right)$ or $G=\overline{P_{5}} \vee\left(K_{p-2}-P M\right)$.
(2) If p is odd, then G has size $\operatorname{ex}\left(p+3, B_{p}\right)$ if and only if $G=K_{p+3}-P M$.

Proof. It is easy to check that the graphs in the theorem satisfy the requirements. Next we prove that they are the only extremal graphs. Suppose G has size $\operatorname{ex}\left(p+3, B_{p}\right)$ and its vertices are v_{1}, \ldots, v_{p+3} with $\operatorname{deg}_{\bar{G}}\left(v_{1}\right) \leq \operatorname{deg}_{\bar{G}}\left(v_{2}\right) \leq \cdots \leq \operatorname{deg}_{\bar{G}}\left(v_{p+3}\right)$.
(1) p is even. By Lemma $3,|E(G)|=p(p+4) / 2$ which implies that $|E(\bar{G})|=(p+6) / 2$. Since $\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=2|E(\bar{G})|=p+6$, we have $\delta(\bar{G}) \leq 1$.

Case 1. $\delta(\bar{G})=0$. By Lemma 1, v_{1} is the only isolated vertex of \bar{G} and hence by Lemma 1 we deduce that $\operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq 2$ for every $i \geq 2$. We have

$$
p+6=\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq 0+(p+2) \times 2=2 p+4
$$

implying $p=2$. The degree sequence of \bar{G} is $2,2,2,2,0$. Thus $\bar{G}=K_{1}+C_{4}$; i.e., $G=$ $K_{1} \vee\left(2 P_{2}\right)$.

Case 2. $\delta(\bar{G})=1$. Since $\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=p+6$, we have $2 \leq \Delta(\bar{G}) \leq 4$. We assert that $\Delta(\bar{G})=2$. If $\Delta(\bar{G})=4$ or $\Delta(\bar{G})=3$, then the vertex v_{p+3} has at least two neighbors which are leaves in \bar{G}, contradicting the fact that for any $x y \in E(G),\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right| \geq 2$. Thus the degree sequence of \bar{G} is $2,2,2,1,1, \ldots, 1$. Note that the two neighbors of a vertex of degree 2 in \bar{G} cannot be both leaves. It follows that $\bar{G}=(p / 2) K_{2}+K_{3}$ or $\bar{G}=((p-2) / 2) K_{2}+P_{5}$; i.e., $G=\left(3 K_{1}\right) \vee\left(K_{p}-P M\right)$ or $G=\overline{P_{5}} \vee\left(K_{p-2}-P M\right)$. Note that when $p=2$, these two graphs are $K_{2,3}$ and $\overline{P_{5}}$.
(2) p is odd. By Lemma 3, $|E(G)|=(p+1)(p+3) / 2$ which implies that $|E(\bar{G})|=$ $(p+3) / 2$. Since $\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=2|E(\bar{G})|=p+3$, we have $\delta(\bar{G}) \leq 1$. If $\delta(\bar{G})=0$, then by Lemma 1 we deduce that for each $i \geq 2, \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq 2$, which implies $\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq$ $0+(p+2) \times 2>p+3$, a contradiction. Hence $\delta(\bar{G})=1$, which, together with the fact that $\sum_{i=1}^{p+3} \operatorname{deg}_{\bar{G}}\left(v_{i}\right)=p+3$, yields that the degree sequence of \bar{G} is $1,1, \ldots, 1$. It follows that $\bar{G}=((p+3) / 2) K_{2}$; i.e., $G=K_{p+3}-P M$. This completes the proof.

In the next two results we determine the Turán number $\operatorname{ex}\left(p+4, B_{p}\right)$ and characterize the corresponding extremal graphs.

Theorem 6. If p is an integer with $p \geq 3$, then $\operatorname{ex}\left(p+4, B_{p}\right)=(p+2)(p+3) / 2$.
Proof. Let G be a graph of order $p+4$ and size e with vertices v_{1}, \ldots, v_{p+4} such that $\operatorname{deg}\left(v_{i}\right)=d_{i}, i=1, \ldots, p+4$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{p+4}$. Suppose $e \geq((p+2)(p+3) / 2)+1$. We will show that G contains B_{p}. We have $\sum_{i=1}^{p+4} d_{i}=2 e \geq p^{2}+5 p+8$. We distinguish two cases.

Case 1. $d_{1}=p+3$.
If $d_{2} \leq p$, then $\sum_{i=1}^{p+4} d_{i} \leq p+3+(p+3) p=p^{2}+4 p+3<p^{2}+5 p+8$, a contradiction. Hence $d_{2} \geq p+1$. Then G has p triangles sharing the common edge $v_{1} v_{2}$.

Case 2. $d_{1} \leq p+2$.
If $d_{3} \leq p+1$, then $\sum_{i=1}^{p+4} d_{i} \leq 2(p+2)+(p+2)(p+1)=p^{2}+5 p+6<p^{2}+5 p+8$, a contradiction. Hence $d_{1}=d_{2}=d_{3}=p+2$. Consequently v_{1} is adjacent to at least one of v_{2} and v_{3}, say v_{2}. Let $v_{s} \notin N\left(v_{1}\right)$ and $v_{t} \notin N\left(v_{2}\right)$. Then $\left\{v_{3}, v_{4}, \ldots, v_{p+4}\right\} \backslash\left\{v_{s}, v_{t}\right\}=$ $N\left(v_{1}\right) \cap N\left(v_{2}\right)$. We have $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \geq p$. Thus G has p triangles sharing the common edge $v_{1} v_{2}$. This shows $\operatorname{ex}\left(p+4, B_{p}\right) \leq(p+2)(p+3) / 2$.

On the other hand, the graph $G_{1}=\overline{K_{2}+C_{p+2}}$ has order $p+4$ and size $(p+2)(p+3) / 2$, and using the criterion in Lemma 1 we check that G_{1} does not contain B_{p}. Thus we conclude that $\operatorname{ex}\left(p+4, B_{p}\right)=(p+2)(p+3) / 2$.

Theorem 6 excludes the two small values $p=1,2$. We remark that $\operatorname{ex}\left(5, B_{1}\right)=6$ agrees with the formula in Theorem 6, but ex $\left(6, B_{2}\right)=9$ does not.

Theorem 7. Let p be an integer with $p \geq 3$ and let H be a graph of order $p+4$ not containing B_{p}. Then H has size $\operatorname{ex}\left(p+4, B_{p}\right)$ if and only if $H=\overline{K_{2}+C_{i_{1}}+C_{i_{2}}+\cdots+C_{i_{t}}}$ where $i_{j} \neq 4$ for each j and $i_{1}+i_{2}+\cdots+i_{t}=p+2$.

Proof. It is easy to check that every graph of the form in the theorem satisfies all the requirements; i.e., it is an extremal graph. We use the criterion in Lemma 1 to check that such a graph does not contain B_{p}.

Conversely suppose that H is a graph of order $p+4$ not containing B_{p} and H has size $\operatorname{ex}\left(p+4, B_{p}\right)$. Denote $n=p+4$. Since $|E(H)|=(p+2)(p+3) / 2$ by Theorem 6 , $|E(\bar{H})|=n-1$. By Lemma 1, for any two non-adjacent vertices in \bar{H}, we have

$$
\begin{equation*}
\left|N_{\bar{H}}(x) \cup N_{\bar{H}}(y)\right| \geq p+4-p-1=3 . \tag{1}
\end{equation*}
$$

Claim 1. \bar{H} is disconnected.
To the contrary, suppose \bar{H} is connected. Since \bar{H} has order n and size $n-1$, it is a tree [4, p.68]. Then \bar{H} has two distinct nonadjacent leaves u and v, since $n \geq 7$. Now $\left|N_{\bar{H}}(u) \cup N_{\bar{H}}(v)\right|=2<3$, contradicting (1). This proves Claim 1.

Claim 2. Among the components of \bar{H}, there is exactly one which is a tree. The tree is K_{2}.

Since \bar{H} has order n and size $n-1$, it has at least one component which is a tree. We assert that \bar{H} has exactly one such component. To the contrary, suppose T_{1} and T_{2} are two distinct components which are trees. Then T_{1} has a vertex s and T_{2} has a vertex t such that both s and t have degree at most 1 . We have $\left|N_{\bar{H}}(s) \cup N_{\bar{H}}(t)\right| \leq 2$, contradicting (1). Let T be the unique component of \bar{H} which is a tree. If the order of T is at least 3 , then as in the above proof of Claim 1 we would obtain a contradiction. Hence T has order at most 2 . On the other hand, T cannot have order 1 . Otherwise T is an isolated vertex and \bar{H} has a vertex w other that T which has degree at most 2 , since the degree sum of \bar{H} is $2(n-1)$. Then we have $\left|N_{\bar{H}}(T) \cup N_{\bar{H}}(w)\right| \leq 2$, contradicting (1). It follows that $T=K_{2}$.

Claim 3. $\bar{H}=K_{2}+C_{i_{1}}+C_{i_{2}}+\cdots+C_{i_{t}}$ where $i_{j} \neq 4$ for each j.
By Claim 2, $\bar{H}=K_{2}+H_{1}+H_{2}+\cdots+H_{t}$ where H_{j} is a component of \bar{H} with order i_{j}. Let $x \in V\left(K_{2}\right)$ and let $y \in V\left(H_{j}\right)$. Then the inequality (1) implies that $\operatorname{deg}_{\bar{H}}(y) \geq 2$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of \bar{H} with $\operatorname{deg}_{\bar{H}}\left(v_{1}\right)=\operatorname{deg}_{\bar{H}}\left(v_{2}\right)=1$ and $2 \leq \operatorname{deg}_{\bar{H}}\left(v_{3}\right) \leq \cdots \leq$ $\operatorname{deg}_{\bar{H}}\left(v_{n}\right)$. We have $2(n-1)=\sum_{i=1}^{n} \operatorname{deg}_{\bar{H}}\left(v_{i}\right) \geq 2 \times 1+(n-2) \times 2=2(n-1)$, implying that $\operatorname{deg}_{\bar{H}}\left(v_{i}\right)=2$ for each $i=3, \ldots, n$. Hence H_{j} is a cycle for every $j=1,2, \ldots, t$. But none of these cycles can be C_{4}. To the contrary, suppose $H_{s}=C_{4}=a b c d$. Then $\left|N_{\bar{H}}(a) \cup N_{\bar{H}}(c)\right|=2$, contradicting (1). This shows Claim 3 and completes the proof.

We determine the Turán number $\operatorname{ex}\left(p+5, B_{p}\right)$ in the following result.
Theorem 8. Let p be a positive integer. Then

$$
\operatorname{ex}\left(p+5, B_{p}\right)=\left\{\begin{array}{lll}
\frac{(p+2)(p+5)}{2} & \text { if } & p \equiv 1(\bmod 3) \\
\frac{(p+1)(p+6)}{2} & \text { if } & p \equiv 0 \text { or } 2(\bmod 3)
\end{array}\right.
$$

Proof. Let G be a graph of order $p+5$ and size e with vertices v_{1}, \ldots, v_{p+5} such that $\operatorname{deg}\left(v_{i}\right)=d_{i}, i=1, \ldots, p+5$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{p+5}$.
(1) $p \equiv 1(\bmod 3)$. Suppose $e \geq((p+2)(p+5) / 2)+1$. We will show that G contains B_{p}. We have $\sum_{i=1}^{p+5} d_{i}=2 e \geq p^{2}+7 p+12$. We distinguish two cases.

Case 1. $d_{1}=p+4$.
If $d_{2} \leq p$, then $\sum_{i=1}^{p+5} d_{i} \leq p+4+(p+4) p=p^{2}+5 p+4<p^{2}+7 p+12$, a contradiction. Hence $d_{2} \geq p+1$ and consequently G contains p triangles sharing the common edge $v_{1} v_{2}$.

Case 2. $d_{1} \leq p+3$.
If $d_{2} \leq p+2$, then $\sum_{i=1}^{p+5} d_{i} \leq p+3+(p+4)(p+2)=p^{2}+7 p+11<p^{2}+7 p+12$, a contradiction. Thus $d_{1}=d_{2}=p+3$. If $d_{3} \leq p+1$, then $\sum_{i=1}^{p+5} d_{i} \leq 2(p+3)+(p+3)(p+1)=$ $p^{2}+6 p+9<p^{2}+7 p+12$, a contradiction. Hence $d_{3} \geq p+2$. If v_{1} and v_{2} are adjacent, then G contains at least $p+1$ triangles sharing the common edge $v_{1} v_{2}$. If v_{1} and v_{2} are nonadjacent, then G contains at least p triangles sharing the common edge $v_{1} v_{3}$. This shows that ex $\left(p+5, B_{p}\right) \leq(p+2)(p+5) / 2$.

On the other hand, the graph $G_{2}=\overline{((p+5) / 3) K_{3}}$ has order $p+5$ and size $(p+$ $2)(p+5) / 2$, and using Lemma 1 it is easy to verify that G_{2} does not contain B_{p}. Thus, $\operatorname{ex}\left(p+5, B_{p}\right)=(p+2)(p+5) / 2$.
(2) $p \equiv 0$ or $2(\bmod 3)$. Suppose $e \geq((p+1)(p+6) / 2)+1$. We will show that G contains
B_{p}. We have $\sum_{i=1}^{p+5} d_{i}=2 e \geq p^{2}+7 p+8$. We distinguish three cases.
Case 1. $d_{1}=p+4$.
The proof for this case is similar to Case 1 of (1) above.
Case 2. $d_{1}=p+3$.
If $d_{3} \leq p+1$, then $\sum_{i=1}^{p+5} d_{i} \leq 2(p+3)+(p+3)(p+1)=p^{2}+6 p+9<p^{2}+7 p+8$, a contradiction. Hence $d_{3} \geq p+2$. There are two possible values of d_{2}. If $d_{2}=p+3$, as in Case 2 of (1) above we can show that G contains B_{p}. If $d_{2}=p+2$, we have $d_{2}=d_{3}=p+2$. Since $d_{1}=p+3, v_{1}$ is adjacent to at least one of v_{2} and v_{3}. Without loss of generality, suppose v_{1} is adjacent to v_{2}. Now G contains p triangles sharing the common edge $v_{1} v_{2}$.

Case 3. $d_{1} \leq p+2$.
If $d_{p+3} \leq p+1$, then $\sum_{i=1}^{p+5} d_{i} \leq(p+2)(p+2)+3(p+1)=p^{2}+7 p+7<p^{2}+7 p+8$, a contradiction. Hence $d_{1}=d_{2}=\cdots=d_{p+3}=p+2$.

Subcase 3.1. $d_{p+5}=p+2$. Now $\operatorname{deg}_{\bar{G}}\left(v_{1}\right)=\cdots=\operatorname{deg}_{\bar{G}}\left(v_{p+5}\right)=2$. Thus \bar{G} is a cycle or a union of vertex-disjoint cycles. The condition $p \equiv 0$ or $2(\bmod 3)$ implies that the order $p+5$ is not divisible by 3 . It follows that \bar{G} has a component which is a cycle of length at least 4. By Lemma $2, G$ contains B_{p}.

Subcase 3.2. $d_{p+5} \leq p+1$. The condition $\sum_{i=1}^{p+5} d_{i} \geq p^{2}+7 p+8$ yields that $d_{p+4} \geq p+1$ and that if $d_{p+4}=p+1$ then $d_{p+5}=p+1$. First suppose in G, every non-neighbor of v_{p+5} has degree $p+2$. Since $\operatorname{deg}_{\bar{G}}\left(v_{p+5}\right) \geq 3$, we deduce that v_{p+5} has two adjacent nonneighbors, say v_{1} and v_{2}, in G. Then $\left|N_{\bar{G}}\left(v_{1}\right) \cup N_{\bar{G}}\left(v_{2}\right)\right| \leq 3<4$. By Lemma $1, G$ contains B_{p}.

It remains to consider the case when in G, v_{p+5} has at least one non-neighbor whose degree is not $p+2$. Such a non-neighbor can only be v_{p+4}, since $d_{1}=d_{2}=\cdots=d_{p+3}=$ $p+2$. Then the degree sum condition implies that $d_{p+4}=d_{p+5}=p+1$. It is easy to deduce that \bar{G} contains a component F of order 6 depicted in Figure 2 where the two cut-vertices are v_{p+4} and v_{p+5}.

Fig. 2. The component F
The graph $\bar{G}-V(F)$ is a regular graph of degree 2 and has order $p-1$ which is not
divisible by 3 . It follows that $\bar{G}-V(F)$ and hence \bar{G} contains a component which is a cycle of length at least 4 . By Lemma 2 we deduce that G contains B_{p}.

So far we have proved that $\operatorname{ex}\left(p+5, B_{p}\right) \leq(p+1)(p+6) / 2$. Next we show that this upper bound can be attained.

First suppose $p \equiv 0(\bmod 3)$. Let W denote the graph of order 8 in Figure 3.

Fig. 3. The graph W
Denote $G_{3}=\overline{((p-3) / 3) K_{3}+W}$. Then G_{3} has order $p+5$ and size $(p+1)(p+6) / 2$, and by using Lemma 1 we can verify that G_{3} does not contain B_{p}.

Next suppose $p \equiv 2(\bmod 3)$. Denote $G_{4}=\overline{((p+1) / 3) K_{3}+K_{4}}$. Then G_{4} has order $p+5$ and size $(p+1)(p+6) / 2$, and G_{4} does not contain B_{p}. This completes the proof.

We will need the following three lemmas to characterize the extremal graphs for the Turán number ex $\left(p+5, B_{p}\right)$.

Lemma 9. Let G be a graph of order $p+5$ not containing B_{p}. If x and y are two distinct vertices with $\operatorname{deg}_{\bar{G}}(x)=\operatorname{deg}_{\bar{G}}(y)=2$ and the distance between them in \bar{G} is at most 2 , then x and y are adjacent in \bar{G}.

Proof. To the contrary, suppose that x and y are nonadjacent in \bar{G}. Then by Lemma $1,\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right| \geq(p+5)-p-1=4$. Also, the condition that the distance between x and y in \bar{G} is at most 2 implies that $N_{\bar{G}}(x) \cap N_{\bar{G}}(y) \neq \phi$. We have

$$
\left|N_{\bar{G}}(x) \cup N_{\bar{G}}(y)\right|=\left|N_{\bar{G}}(x)\right|+\left|N_{\bar{G}}(y)\right|-\left|N_{\bar{G}}(x) \cap N_{\bar{G}}(y)\right| \leq 2+2-1=3,
$$

a contradiction.
Lemma 10. Let G be a graph of order $p+5$ not containing B_{p}. If P is a path in \bar{G} and every internal vertex of P has degree 2 in \bar{G}, then the length of P is at most 3 .

Proof. To the contrary, suppose that $P=v_{1} v_{2} \ldots v_{k}$ where $k \geq 5$ and in \bar{G}, each v_{i} has degree 2 for $i=2,3, \ldots, k-1$. But then

$$
\left|N_{\bar{G}}\left(v_{2}\right) \cup N_{\bar{G}}\left(v_{4}\right)\right|=3<4=(p+5)-p-1,
$$

contradicting Lemma 1.

Lemma 11. Let G be a graph of order $p+5$ and size $\operatorname{ex}\left(p+5, B_{p}\right)$ not containing B_{p} where $p \geq 4$.
(1) If $p \equiv 1(\bmod 3)$, then \bar{G} is 2 -regular;
(2) if $p \equiv 0$ or $2(\bmod 3)$, then the degree sequence of \bar{G} is $3,3,3,3,2, \ldots, 2$.

Proof. Let v_{1}, \ldots, v_{p+5} be the vertices of G with $\operatorname{deg}_{\bar{G}}\left(v_{i}\right)=d_{i}, i=1, \ldots, p+5$ such that $d_{1} \geq d_{2} \geq \cdots \geq d_{p+5}$.
(1) $p \equiv 1(\bmod 3)$. By Theorem $8,|E(G)|=(p+2)(p+5) / 2$, implying that \bar{G} has size $p+5$. If \bar{G} has an isolated vertex x, then by Lemma 1 we deduce that for any vertex $u \in V(G) \backslash\{x\}, \operatorname{deg}_{\bar{G}}(u) \geq 4$. Hence $2 p+10=2|E(\bar{G})|=\sum_{i=1}^{p+5} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq$ $0+(p+4) \times 4=4 p+16$, a contradiction. If \bar{G} has a leaf y, let v be the neighbor of y in \bar{G}. Then by Lemma 1 , for any vertex $w \in V(G) \backslash\{y, v\}, \operatorname{deg}_{\bar{G}}(w) \geq 3$. We have $2 p+10=2|E(\bar{G})|=\sum_{i=1}^{p+5} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq 1+1+(p+3) \times 3=3 p+11$, a contradiction. Thus $\delta(\bar{G}) \geq 2$. Now the inequality $2 p+10=2|E(\bar{G})|=\sum_{i=1}^{p+5} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq(p+5) \times 2=2 p+10$ forces $\operatorname{deg}_{\bar{G}}\left(v_{i}\right)=2$ for each $i=1, \ldots, p+5$; i.e., \bar{G} is 2-regular.
(2) $p \equiv 0$ or $2(\bmod 3)$. By Theorem $8, \bar{G}$ has size $p+7$. As in the above proof of part (1), we deduce that $\delta(\bar{G}) \geq 2$. If $\delta(\bar{G}) \geq 3$, then $2 p+14=2|E(\bar{G})|=\sum_{i=1}^{p+5} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq$ $(p+5) \times 3=3 p+15$, a contradiction. Hence $\delta(\bar{G})=2$. From $2 p+14=2|E(\bar{G})|=$ $\sum_{i=1}^{p+5} \operatorname{deg}_{\bar{G}}\left(v_{i}\right) \geq(p+4) \times 2+\Delta(\bar{G})$ we obtain $\Delta(\bar{G}) \leq 6$.

If $\Delta(\bar{G})=6$, then the degree sequence of \bar{G} is $6,2, \ldots, 2$; if $\Delta(\bar{G})=5$, then the degree sequence of \bar{G} is $5,3,2, \ldots, 2$; if $\Delta(\bar{G})=4$, then the degree sequence of \bar{G} is $4,4,2, \ldots, 2$ or $4,3,3,2, \ldots, 2$. In the first three cases, i.e., \bar{G} has degree sequence $6,2, \ldots, 2$, or $5,3,2, \ldots, 2$, or $4,4,2, \ldots, 2, v_{1}$ has at least three neighbors of degree 2 in \bar{G} which are pairwise adjacent by Lemma 9, a contradiction. Now suppose \bar{G} has degree sequence $4,3,3,2, \ldots, 2$. We will show that this cannot occur.

By the above argument, v_{1} has at most two neighbors of degree 2 in \bar{G}. Hence $v_{2}, v_{3} \in$ $N_{\bar{G}}\left(v_{1}\right)$. Without loss of generality, suppose $N_{\bar{G}}\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. By Lemma $9, v_{4}$ and v_{5} are adjacent in \bar{G}. We distinguish two cases.

Case 1. v_{2} and v_{3} are adjacent in \bar{G}.
Subcase 1.1. $\left|N_{\bar{G}}\left(v_{2}\right) \cap N_{\bar{G}}\left(v_{3}\right)\right| \geq 2$. Since $d_{2}=d_{3}=3$, we have $\left|N_{\bar{G}}\left(v_{2}\right) \cap N_{\bar{G}}\left(v_{3}\right)\right|=2$. Without loss of generality, suppose $N_{\bar{G}}\left(v_{2}\right) \cap N_{\bar{G}}\left(v_{3}\right)=\left\{v_{1}, v_{6}\right\}$. Then $H=\bar{G}\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right]$ is a component of \bar{G} and $\bar{G}-V(H)$ is a 2 -regular graph of order $p-1$. Since 3 does not divide $p-1, \bar{G}$ contains a component which is a cycle of length at least 4. By Lemma 2,
G contains B_{p}, a contradiction.
Subcase 1.2. $\left|N_{\bar{G}}\left(v_{2}\right) \cap N_{\bar{G}}\left(v_{3}\right)\right|=1$. Without loss of generality, suppose $N_{\bar{G}}\left(v_{2}\right)=$ $\left\{v_{1}, v_{3}, v_{6}\right\}$ and $N_{\bar{G}}\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{7}\right\}$. By Lemma $10, v_{6}$ and v_{7} are adjacent in \bar{G}. Now v_{3} and v_{6} are adjacent in G, and $\left|N_{\bar{G}}\left(v_{3}\right) \cup N_{\bar{G}}\left(v_{6}\right)\right|=3<4=(p+5)-p-1$. By Lemma 1, G contains B_{p}, a contradiction.

Case 2. v_{2} and v_{3} are nonadjacent in \bar{G}.
Without loss of generality, suppose $N_{\bar{G}}\left(v_{2}\right)=\left\{v_{1}, v_{6}, v_{7}\right\}$ and $N_{\bar{G}}\left(v_{3}\right)=\left\{v_{1}, v_{8}, v_{9}\right\}$. By Lemma $9, v_{6}$ and v_{7} are adjacent in \bar{G}, and v_{8} and v_{9} are adjacent in \bar{G}. Thus, $R=\bar{G}\left[v_{1}, v_{2}, \ldots, v_{9}\right]$ is a component of \bar{G}, and $\bar{G}-V(R)$ is a 2-regular graph of order $p-4$. Since $p-4$ is not divisible by $3, \bar{G}$ has a component which is a cycle of length at least 4. By Lemma 2, G contains B_{p}, a contradiction.

We have proved that $\Delta(\bar{G}) \leq 3$. Since $\delta(\bar{G})=2$ and \bar{G} has size $p+7$, we deduce that the degree sequence of \bar{G} is $3,3,3,3,2, \ldots, 2$.

We denote by Q the graph of order 10 in Figure 4.

Fig. 4. The graph Q

We characterize the extremal graphs for the Turán number ex $\left(p+5, B_{p}\right)$ in the following result.

Theorem 12. Let p be an integer with $p \geq 4$ and let G be a graph of order $p+5$ not containing B_{p}. Then G has size $\operatorname{ex}\left(p+5, B_{p}\right)$ if and only if
(1) $G=\overline{((p-3) / 3) K_{3}+W}$ where W is the graph depicted in Figure 3 if $p \equiv$ $0(\bmod 3)$;
(2) $G=\overline{((p+5) / 3) K_{3}}$ if $p \equiv 1(\bmod 3)$;
(3) $G=\overline{((p+1) / 3) K_{3}+K_{4}}$ or $G=\overline{((p-5) / 3) K_{3}+Q}$ where Q is the graph depicted in Figure 4 if $p \equiv 2(\bmod 3)$.

Proof. The sufficiency can be easily verified by using Lemma 1. Now we prove the necessity. Suppose G has size $\operatorname{ex}\left(p+5, B_{p}\right)$. We will consider the complement graph \bar{G}.

We first prove part (2) where $p \equiv 1(\bmod 3)$. By Lemma $11, \bar{G}$ is 2-regular, or equivalently \bar{G} is a union of vertex-disjoint cycles. By Lemma 2 , every cycle must be a triangle. Thus $\bar{G}=((p+5) / 3) K_{3}$.

Next we treat parts (1) and (3). Suppose $p \equiv 0$ or $2(\bmod 3)$. By Lemma 11, the degree sequence of \bar{G} is $3,3,3,3,2, \ldots, 2$. By Lemma 9 , in \bar{G} each vertex of degree 3 must have at least one neighbor of degree 3 .

Claim. The four vertices of degree 3 lie in one component of \bar{G} and there is a vertex of degree 3 with at least two neighbors of degree 3 .

To the contrary, suppose the four vertices of degree 3 do not lie in one component of \bar{G}. Then they lie in two components and by Lemma 9 we deduce that each of these two components is the graph F of order 6 in Figure 2. Every component of \bar{G} other than these two components is a cycle and at least one of these cycles has length at least 4, since the order $p+5$ of \bar{G} is not divisible by 3. But this contradicts Lemma 2. Hence the first conclusion in the Claim is proved. The second one can be proved similarly.

Denote by Z the component of \bar{G} in which the four vertices of degree 3 lie. By the above properties, Z contains either a claw or a path of order 4 each of whose vertices has degree 3. In both cases, by using Lemmas 9,10 and 2 it can be verified that Z has order at most 10. By Lemma 2, the graph $\bar{G}-V(Z)$ is a union of vertex-disjoint triangles. Hence $p+5=|\bar{G}| \equiv|Z|(\bmod 3)$.

If $p \equiv 0(\bmod 3),|Z| \in\{5,8\}$; if $p \equiv 2(\bmod 3),|Z| \in\{4,7,10\}$.
Suppose $p \equiv 0(\bmod 3)$. By Lemma $1,|Z| \neq 5$. If $|Z|=8$, then Z is the graph W in Figure 3. It follows that $\bar{G}=((p-3) / 3) K_{3}+W$. This proves part (1).

Suppose $p \equiv 2(\bmod 3)$. By Lemma $1,|Z| \neq 7$. If $|Z|=4$, then $Z=K_{4}$ and if $|Z|=10$, then $Z=Q$. This proves part (3). The proof is complete.

Theorem 12 does not include the small values $p=1,2,3$. The information about them is as follows. $K_{3,3}$ is the unique extremal graph for $\operatorname{ex}\left(6, B_{1}\right)=9 . K_{3,4}$ is the unique extremal graph for $\operatorname{ex}\left(7, B_{2}\right)=12$. There are two extremal graphs for $\operatorname{ex}\left(8, B_{3}\right)=18$ which are depicted in Figure 5.

Fig. 5. The two extremal graphs for $\mathrm{ex}\left(8, \mathrm{~B}_{3}\right)=18$
We determine the Turán number $\operatorname{ex}\left(p+6, B_{p}\right)$ in the following result.
Theorem 13. Let p be a positive integer.
(1) If p is odd and $p \geq 5$, then $\operatorname{ex}\left(p+6, B_{p}\right)=(p+3)(p+5) / 2$;
(2) if p is even and $p \neq 2,6,10$, then $\operatorname{ex}\left(p+6, B_{p}\right)=1+(p+2)(p+6) / 2$.

Proof. Let G be a graph of order $p+6$ and size e with vertices v_{1}, \ldots, v_{p+6} such that $\operatorname{deg}\left(v_{i}\right)=d_{i}, i=1, \ldots, p+6$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{p+6}$.
(1) p is odd and $p \geq 5$. Suppose $e \geq((p+3)(p+5) / 2)+1$. We will show that G contains B_{p}. We have $\sum_{i=1}^{p+6} d_{i}=2 e \geq p^{2}+8 p+17$. We distinguish three cases.

Case 1. $d_{1}=p+5$.
If $d_{2} \leq p$, then $\sum_{i=1}^{p+6} d_{i} \leq p+5+(p+5) \times p=p^{2}+6 p+5<p^{2}+8 p+17$, a contradiction. Hence $d_{2} \geq p+1$ and G contains p triangles sharing the common edge $v_{1} v_{2}$.

Case 2. $d_{1}=p+4$.
If $d_{3} \leq p+2$, then $\sum_{i=1}^{p+6} d_{i} \leq 2(p+4)+(p+4)(p+2)=p^{2}+8 p+16<p^{2}+8 p+17$, a contradiction. Hence $d_{3} \geq p+3$. v_{1} has at least one neighbor in $\left\{v_{2}, v_{3}\right\}$. If v_{1} is adjacent to v_{2}, then $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \geq p+1$ and thus G contains $p+1$ triangles sharing the common edge $v_{1} v_{2}$; if v_{1} is adjacent to v_{3}, then similarly we see that G contains p triangles sharing the common edge $v_{1} v_{3}$.

Case 3. $d_{1} \leq p+3$.
If $d_{4} \leq p+2$, then $\sum_{i=1}^{p+6} d_{i} \leq 3(p+3)+(p+3)(p+2)=p^{2}+8 p+15<p^{2}+8 p+17$, a contradiction. Hence $d_{4} \geq p+3$ and $d_{1}=d_{2}=d_{3}=d_{4}=p+3 . v_{1}$ has at least one neighbor in $\left\{v_{2}, v_{3}, v_{4}\right\}$. Without loss of generality, suppose v_{1} and v_{2} are adjacent. Then $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \geq p$ and G contains p triangles sharing the common edge $v_{1} v_{2}$.

We have proved that $\operatorname{ex}\left(p+6, B_{p}\right) \leq(p+3)(p+5) / 2$. Next we construct graphs to show that this upper bound can be attained. First suppose $p \equiv 1$ (mod) 4 . The graph $G_{5}=\overline{K_{3}+((p+3) / 4) K_{4}}$ has order $p+6$, size $(p+3)(p+5) / 2$ and by using Lemma 1
we can verify that G_{5} does not contain B_{p}. Now suppose $p \equiv 3(\bmod) 4$. Denote by Y the graph of order 10 in Figure 6.

Fig. 6. The graph Y
Then the graph $G_{6}=\overline{K_{3}+((p-7) / 4) K_{4}+Y}$ has order $p+6$ and size $(p+3)(p+5) / 2$, and G_{6} does not contain B_{p}. This proves $\operatorname{ex}\left(p+6, B_{p}\right)=(p+3)(p+5) / 2$.
(2) p is even and $p \neq 2,6,10$. Suppose $e \geq 1+((p+2)(p+6) / 2)+1$. We will show that G contains B_{p}. We have $\sum_{i=1}^{p+6} d_{i}=2 e \geq p^{2}+8 p+16$. We distinguish three cases.

Case 1. $d_{1}=p+5$.
If $d_{2} \leq p$, then $\sum_{i=1}^{p+6} d_{i} \leq p+5+(p+5) p=p^{2}+6 p+5<p^{2}+8 p+16$, a contradiction. Thus $d_{2} \geq p+1$ and G contains p triangles sharing the common edge $v_{1} v_{2}$.

Case 2. $d_{1}=p+4$.
If $d_{3} \leq p+1$, then $\sum_{i=1}^{p+6} d_{i} \leq 2(p+4)+(p+4)(p+1)=p^{2}+7 p+12<p^{2}+8 p+16$, a contradiction. Hence $d_{2} \geq d_{3} \geq p+2 . v_{1}$ has at least one neighbor in $\left\{v_{2}, v_{3}\right\}$ and consequently G contains p triangles sharing the common edge $v_{1} v_{2}$ or $v_{1} v_{3}$.

Case 3. $d_{1} \leq p+3$.
If $d_{4} \leq p+2$, then $\sum_{i=1}^{p+6} d_{i} \leq 3(p+3)+(p+3)(p+2)=p^{2}+8 p+15<p^{2}+8 p+16$, a contradiction. Hence $d_{4} \geq p+3$. In fact, $d_{1}=d_{2}=d_{3}=d_{4}=p+3$. It follows that G contains B_{p}.

We have proved that $\operatorname{ex}\left(p+6, B_{p}\right) \leq 1+(p+2)(p+6) / 2$. Next we show that this upper bound can be attained.

First suppose $p \equiv 0(\bmod 4)$. Denote by S the graph of order 7 in Figure 7.

Fig. 7. The graph S
Then the graph $G_{7}=\overline{K_{3}+((p-4) / 4) K_{4}+S}$ has order $p+6$ and size $1+(p+2)(p+6) / 2$, and by using Lemma 1 we can verify that G_{7} does not contain B_{p}.

Now suppose $p \equiv 2(\bmod 4)$. We have $p \geq 14$. The graph

$$
G_{8}=\overline{K_{3}+((p-14) / 4) K_{4}+S+Y}
$$

has order $p+6$ and size $1+(p+2)(p+6) / 2$, and G_{8} does not contain B_{p}. This completes the proof.

Theorem 13 does not include the small values $p=2,3,6,10$. The information about them is as follows. $\operatorname{ex}\left(8, B_{2}\right)=16, \operatorname{ex}\left(9, B_{3}\right)=21, \operatorname{ex}\left(12, B_{6}\right)=48$ and $\operatorname{ex}\left(16, B_{10}\right)=96$.

It seems difficult to characterize the extremal graphs for $\operatorname{ex}\left(p+6, B_{p}\right)$. A computer search shows that there are 16 extremal graphs for $\operatorname{ex}\left(9, B_{3}\right)=21$ and there are 20 extremal graphs for $\operatorname{ex}\left(12, B_{6}\right)=48$.

The results in this paper suggest that perhaps there is no uniform formula for the Turán number ex $\left(n, B_{p}\right)$ for all pairs (n, p).

Acknowledgement. This research was supported by the NSFC grants 11671148 and 11771148 and Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London-New York, 1978.
[2] B. Bollobás and P. Erdős, Unsolved problems, in Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pp.678-696, Utilitas Math., Winnipeg, Man., 1976.
[3] C.S. Edwards, A lower bound for the largest number of triangles with a common edge (unpublished manuscript), 1977.
[4] N.G. Hadžiivanov and S.V. Nikiforov, Solution of a problem of P. Erdős about the maximum number of triangles with a common edge in a graph (in Russian), C.R. Acad. Bulgare Sci., 32(1979), no.10, 1315-1318.
[5] W. Mantel, Problem 28, Wiskundige Opgaven, 10(1907), 60-61.
[6] P. Qiao and X. Zhan, On a problem of Erdős about graphs whose size is the Turán number plus one, arXiv:2001.11723v1, 31 January 2020.
[7] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., 1996.

[^0]: *E-mail addresses: mathyjr@163.com(J.Yan), zhan@math.ecnu.edu.cn(X.Zhan).
 ${ }^{\dagger}$ Corresponding author.

