ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE

PU QIAO ${ }^{(D)}$ and XINGZHI ZHAN ${ }^{\star}{ }^{\star}$

(Received 28 March 2021; accepted 17 April 2021; first published online 24 May 2021)

Abstract

We consider finite simple graphs. Given a graph H and a positive integer n, the Turán number of H for the order n, denoted ex (n, H), is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: 'For which graphs H is it true that every graph on n vertices and ex $(n, H)+1$ edges contains at least two H 's? Perhaps this is always true.' We solve this problem in the negative by proving that for every integer $k \geq 4$ there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size ex $(n, H)+1$ which contains exactly one copy of H. Denote by C_{4} the 4 -cycle. We also prove that for every integer n with $6 \leq n \leq 11$ there exists a graph of order n and size ex $\left(n, C_{4}\right)+1$ which contains exactly one copy of C_{4}, but, for $n=12$ or $n=13$, the minimum number of copies of C_{4} in a graph of order n and size ex $\left(n, C_{4}\right)+1$ is two.

2020 Mathematics subject classification: primary 05C35; secondary 05C30, 05C75.
Keywords and phrases: Turán number, extremal graph theory, Erdős problem, book, star, 4-cycle.

1. Introduction and statement of the main results

We consider finite simple graphs and use standard terminology and notation. The order of a graph is its number of vertices and the size its number of edges. Denote by $V(G)$ and $E(G)$ the vertex set and edge set of a graph G, respectively. For graphs we will use equality up to isomorphism, so $G_{1}=G_{2}$ means that G_{1} and G_{2} are isomorphic. Given graphs H and G, a copy of H in G is a subgraph of G that is isomorphic to H. We denote by K_{p} and C_{p} the complete graph of order p and cycle of length p, respectively, and $K_{s, t}$ denotes the complete bipartite graph on s and t vertices. In particular, $K_{1, p}$ is the star of order $p+1$. A triangle-free graph is one that contains no triangles.

In 1907, Mantel [10] proved that the maximum size of a triangle-free graph of order n is $\left\lfloor n^{2} / 4\right\rfloor$ and the balanced complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is the unique extremal graph. Later, in 1941, Turán [12] solved the corresponding problem with the triangle replaced by a general complete graph.

[^0]DEfinition 1.1. Given a graph H and a positive integer n, the Turán number of H for the order n, denoted ex (n, H), is the maximum size of a simple graph of order n not containing H as a subgraph.

Thus, Mantel's theorem says that ex $\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$ and Turán determined ex $\left(n, K_{p}\right)$. Determining the Turán number for various graphs H is one of the main topics in extremal graph theory [1]. Note that a triangle is both K_{3} and C_{3}. It is natural to extend Mantel's theorem to the case of larger cycles. This is difficult for even cycles. For example, the values ex $\left(n, C_{4}\right)$ have not been determined for a general order n. Precise values are known only for some orders of special forms (see [6, 7]). A conjecture of Erdős and Simonovits on ex $\left(n, C_{6}\right)$ was refuted in [8].

On the other hand, Rademacher (orally to Erdős who gave a simple proof in 1955 [4]) proved that every graph of order n and size ex $\left(n, K_{3}\right)+1$ contains at least $\lfloor n / 2\rfloor$ triangles. A similar result for a general K_{p} was proved by Moon [11].

Problem 1.2. In 1990, Erdős posed the following problem in [5, pages 472-473]: For which graphs H is it true that every graph on n vertices and ex $(n, H)+1$ edges contains at least two H's? Perhaps this is always true.

We solve this problem in the negative using the class of book graphs.
Definition 1.3. The book with p pages, denoted B_{p}, is the graph that consists of p triangles sharing a common edge.

Our main results are as follows.
THEOREM 1.4. Let p be an even integer and let n be an odd integer with $n \geq p+1 \geq 5$. Then there exists a graph of order n and size $\operatorname{ex}\left(n, K_{1, p}\right)+1$ which contains exactly one copy of $K_{1, p}$.

Note that in Theorem 1.4, for any fixed star $K_{1, p}$, there are infinitely many orders n such that the conclusion holds.

THEOREM 1.5. Let p be an even positive integer. Then there exists a unique graph of order $p+2$ and size ex $\left(p+2, B_{p}\right)+1$ which contains exactly one copy of B_{p} and there exists a unique graph of order $p+3$ and size $\operatorname{ex}\left(p+3, B_{p}\right)+1$ which contains exactly one copy of B_{p}.

Combining Theorems 1.4 and 1.5 yields the following corollary.
Corollary 1.6. For every integer $k \geq 4$ there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size $\operatorname{ex}(n, H)+1$ which contains exactly one copy of H.

We remark that the conclusion in Theorem 1.4 is false for odd $p \geq 3$ and for the case when both p and n are even. In these two cases, the minimum number of copies of $K_{1, p}$ in a graph of order n and size ex $\left(n, K_{1, p}\right)+1$ is two. The following result shows that the statement for odd p on books corresponding to Theorem 1.5 is false.

THEOREM 1.7. Let $p \geq 3$ be an odd integer. Then the minimum number of copies of B_{p} in a graph of order $p+2$ and size ex $\left(p+2, B_{p}\right)+1$ is three and the minimum number of copies of B_{p} in a graph of order $p+3$ and size $\operatorname{ex}\left(p+3, B_{p}\right)+1$ is $3(p+1)$.

Recently, He, Ma and Yang [9, Conjecture 10.2] proposed the conjecture that ex $\left(q^{2}+q+2, C_{4}\right)=\left(q(q+1)^{2}\right) / 2+2$ for large $q=2^{k}$. In [9, Proposition 10.3], they proved that if this conjecture is true, then the 4 -cycle C_{4} would serve as a counterexample to Erdős' Problem 1.2 and that C_{4} for the order 22 is such an example [9, page 38]. Our next result shows that C_{4} is a counterexample to Problem 1.2 for several low orders.

THEOREM 1.8. For every integer n with $6 \leq n \leq 11$ there exists a graph of order n and size ex $\left(n, C_{4}\right)+1$ which contains exactly one copy of C_{4}, but, for $n=12$ or $n=13$, the minimum number of copies of C_{4} in a graph of order n and size ex $\left(n, C_{4}\right)+1$ is two.

In Section 2 we give proofs of the above results and in Section 3 we make some concluding remarks.

2. Proofs of the main results

We denote by $N(v), N[v]$ and $\operatorname{deg}(v)$ the neighbourhood, closed neighbourhood and degree of a vertex v, respectively. By definition, $N[v]=\{v\} \cup N(v)$. Given a graph G, $\Delta(G)$ and \bar{G} denote the maximum degree of G and the complement of G, respectively. For $S \subseteq V(G)$ we denote by $G[S]$ the subgraph of G induced by S. The join, $G \vee H$, of two graphs G and H is obtained from the disjoint union $G+H$ by adding edges joining every vertex of G to every vertex of H. Let P_{n} denote the path of order n; it has length $n-1$. As usual, $q K_{2}$ denotes the graph consisting of q pairwise vertex-disjoint edges.

Notation 2.1. For an even positive integer n the notation $K_{n}-P M$ denotes the graph obtained from the complete graph K_{n} by deleting all the edges in a perfect matching of K_{n}. That is, it is the complement of $(n / 2) K_{2}$.

The following lemma is well known [2, pages 12-13], but its hamiltonian part is usually not stated.

LEMMA 2.2. Let k and n be integers with $1 \leq k \leq n-1$. Then there exists a k-regular graph of order n if and only if $k n$ is even. If $k n$ is even and $k \geq 2$, then there exists a hamiltonian k-regular graph of order n.

LEMMA 2.3. Let d and n be integers with $1 \leq d \leq n-1$ and let $f(n, d)$ be the maximum size of a graph of order n with maximum degree $\leq d$. Then

$$
f(n, d)= \begin{cases}(n d-1) / 2 & \text { if both } n \text { and } d \text { are odd }, \\ n d / 2 & \text { otherwise } .\end{cases}
$$

Proof. If at least one of n and d is even, then by Lemma 2.2 there exists a d-regular graph of order n. Hence, the obvious upper bound $n d / 2$ can be attained.

If both n and d are odd, then such a graph has at most $n-1$ vertices with degree d, since the number of odd vertices in any graph is even. It follows that $f(n, d) \leq$ $((n-1) d+(d-1)) / 2=(n d-1) / 2$. Next we show that this upper bound can be attained. If $d=1$, the graph $((n-1) / 2) K_{2}+K_{1}$ attains the upper bound. Now suppose that $d \geq 2$. By Lemma 2.2, there exists a d-regular graph G of order $n-1$ containing a matching $M=\left\{x_{i} y_{i} \mid i=1, \ldots,(d-1) / 2\right\}$ of size $(d-1) / 2$. In G, delete all the edges in M, add a new vertex v and join the edges $v x_{i}, v y_{i}$ for $i=1, \ldots,(d-1) / 2$. This yields a graph with degree sequence $d, d, \ldots, d, d-1$ which has size $(n d-1) / 2$.

Proof of Theorem 1.4. A graph G contains no $K_{1, p}$ if and only if $\Delta(G) \leq p-1$. By Lemma 2.3, ex $\left(n, K_{1, p}\right)=(n(p-1)-1) / 2$. Note that a graph with degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ contains exactly one copy of $K_{1, p}$ if and only if $d_{1}=p$ and $d_{2} \leq$ $p-1$. Hence, a graph of order n and size ex $\left(n, K_{1, p}\right)+1$ contains exactly one copy of $K_{1, p}$ if and only if its degree sequence is $p, p-1, \ldots, p-1$.

Our assumption in Theorem 1.4 implies that $p-1 \geq 3$. By Lemma 2.2, there exists a hamiltonian ($p-1$)-regular graph R of order $n-1$. Obviously R contains a matching $M=\left\{x_{i} y_{i} \mid i=1, \ldots, p / 2\right\}$ of size $p / 2$. Deleting all the edges in M, adding a new vertex v and joining the edges $v x_{i}$ and $v y_{i}$ for $i=1, \ldots, p / 2$, we obtain a graph H with degree sequence $p, p-1, \ldots, p-1$. The graph H has order n, size ex $\left(n, K_{1, p}\right)+1$ and contains exactly one copy of $K_{1, p}$.

Lemma 2.4. If p is an even positive integer, then $\operatorname{ex}\left(p+2, B_{p}\right)=p(p+2) / 2$ and $\operatorname{ex}\left(p+3, B_{p}\right)=p(p+4) / 2$. If p is an odd positive integer, then $\operatorname{ex}\left(p+2, B_{p}\right)=$ $(p+1)^{2} / 2$ and $\operatorname{ex}\left(p+3, B_{p}\right)=(p+1)(p+3) / 2$.
Proof. The proofs for the four Turán numbers have the same pattern, but these results hold for different reasons. Let G be a graph of order n and size e with vertices v_{1}, \ldots, v_{n} such that $\operatorname{deg}\left(v_{i}\right)=d_{i}, i=1, \ldots, n$, and $d_{1} \geq \cdots \geq d_{n}$. This notation will be used throughout the proof. We assign different values to the order n and size e in different cases.
(1) ex $\left(p+2, B_{p}\right)$ for even p. Suppose that $n=p+2$ and $e \geq(p(p+2) / 2)+1$. Then $\sum_{i=1}^{n} d_{i}=2 e \geq p(p+2)+2$. If $d_{2} \leq p$, then

$$
\sum_{i=1}^{n} d_{i} \leq(p+1)+(p+1) p=(p+1)^{2}<p(p+2)+2
$$

which is a contradiction. Hence, $d_{2} \geq p+1$, implying that $d_{1}=d_{2}=p+1$. Then G has p triangles sharing the common edge $v_{1} v_{2}$. Thus, G contains B_{p}. This shows that $\operatorname{ex}\left(p+2, B_{p}\right) \leq p(p+2) / 2$.

On the other hand, the graph $G_{1}=K_{p+2}-P M$ has order $p+2$ and size $p(p+2) / 2$ and does not contain B_{p}. In fact, every edge of G_{1} lies in exactly $p-2$ triangles. To see this, let $u v$ be an edge of G_{1} and let $u x$ and $v y$ be the two edges in the perfect matching. Then $u v z u$ is a triangle of G_{1} if and only if $z \notin\{u, v, x, y\}$ and consequently there are $(p+2)-4=p-2$ choices for z. Thus, G_{1} yields $\operatorname{ex}\left(p+2, B_{p}\right) \geq p(p+2) / 2$.

Together with the reverse inequality proved above, we obtain the conclusion $\operatorname{ex}\left(p+2, B_{p}\right)=p(p+2) / 2$.
(2) ex $\left(p+3, B_{p}\right)$ for even p. Suppose that $n=p+3$ and $e \geq(p(p+4) / 2)+1$. Then $\sum_{i=1}^{n} d_{i}=2 e \geq p(p+4)+2$. We distinguish two cases.
Case 1. $d_{1}=p+2$. If $d_{2} \leq p$, then

$$
\sum_{i=1}^{n} d_{i} \leq(p+2)+(p+2) p=(p+1)(p+2)<p(p+4)+2
$$

which is a contradiction. Hence, $d_{2} \geq p+1$. Let $v_{1}, w_{1}, w_{2}, \ldots, w_{p}$ be $p+1$ distinct neighbours of v_{2}. Then G contains the p triangles $v_{1} v_{2} w_{i} v_{1}, i=1, \ldots, p$, sharing the common edge $v_{1} v_{2}$. Thus, G contains B_{p}.

Case 2. $d_{1} \leq p+1$. If $d_{n-1} \leq p$, then

$$
\sum_{i=1}^{n} d_{i} \leq(n-2)(p+1)+2 p=(p+1)^{2}+2 p<p(p+4)+2
$$

which is a contradiction. Hence, $d_{1}=d_{2}=\cdots=d_{n-1}=p+1$. If $d_{n} \leq p-1$, then again $\sum_{i=1}^{n} d_{i} \leq(p+2)(p+1)+p-1<p(p+4)+2$, which is a contradiction. Thus, $d_{n} \geq p$. But $d_{n} \neq p+1$, since otherwise G would be a $(p+1)$-regular graph of odd degree $p+1$ and odd order $p+3$, which is impossible by Lemma 2.2. We must have $d_{n}=p$. Without loss of generality, suppose that $N\left(v_{n}\right)=\left\{v_{1}, \ldots, v_{p}\right\}$. It follows that $N\left(v_{n-2}\right)=\left\{v_{1}, \ldots, v_{n-3}, v_{n-1}\right\}$ and $N\left(v_{n-1}\right)=\left\{v_{1}, \ldots, v_{n-2}\right\}$. Clearly, G has the p triangles $v_{n-1} v_{n-2} v_{i} v_{n-1}$ for $i=1,2, \ldots, p$ sharing the common edge $v_{n-1} v_{n-2}$. Hence, G contains B_{p}. This shows that ex $\left(p+3, B_{p}\right) \leq p(p+4) / 2$.

The graph $G_{2}=\bar{K}_{3} \vee\left(K_{p}-P M\right)$ has order $p+3$ and size $p(p+4) / 2$. Next we show that G_{2} does not contain B_{p}. Let V_{1} be the vertex set of the subgraph of G_{2} isomorphic to \bar{K}_{3} and let V_{2} be the vertex set of the subgraph of G_{2} isomorphic to $K_{p}-P M$. Let $x y$ be an edge of G_{2}. If $x, y \in V_{2}$, then $x y$ lies in exactly $(p-4)+3=$ $p-1$ triangles; if $x \in V_{1}$ and $y \in V_{2}$, then $x y$ lies in exactly $p-2$ triangles. Thus, G_{2} yields ex $\left(p+3, B_{p}\right) \geq p(p+4) / 2$, which, combined with the reverse inequality proved above, shows that $\operatorname{ex}\left(p+3, B_{p}\right)=p(p+4) / 2$.
(3) ex $\left(p+2, B_{p}\right)$ for odd p. Suppose that $n=p+2$ and $e \geq\left((p+1)^{2} / 2\right)+1$. Then $\sum_{i=1}^{n} d_{i}=2 e \geq(p+1)^{2}+2$. If $d_{2} \leq p$, then

$$
\sum_{i=1}^{n} d_{i} \leq(p+1)+(p+1) p=(p+1)^{2}<(p+1)^{2}+2
$$

which is a contradiction. Hence, $d_{1}=d_{2}=p+1$. Then G contains p triangles sharing the common edge $v_{1} v_{2}$, which form a B_{p}. This shows that ex $\left(p+2, B_{p}\right) \leq(p+1)^{2} / 2$.

The graph $G_{3}=K_{1} \vee\left(K_{p+1}-P M\right)$ has order $p+2$ and size $(p+1)^{2} / 2$. Let f be an edge of G_{3}. If f is incident with the vertex of K_{1}, then f lies in exactly $p-1$ triangles; if f is an edge of $K_{p+1}-P M$, then f lies in exactly $p-2$ triangles. Thus, G_{3} contains
no B_{p} and G_{3} shows that $\operatorname{ex}\left(p+2, B_{p}\right) \geq(p+1)^{2} / 2$. This inequality, together with the reverse inequality proved above, shows that $\operatorname{ex}\left(p+2, B_{p}\right)=(p+1)^{2} / 2$.
(4) ex $\left(p+3, B_{p}\right)$ for odd p. Suppose $n=p+3$ and $e \geq((p+1)(p+3) / 2)+1$. Then $\sum_{i=1}^{n} d_{i}=2 e \geq(p+1)(p+3)+2$. If $d_{2} \leq p+1$, then

$$
\sum_{i=1}^{n} d_{i} \leq(p+2)+(p+2)(p+1)=(p+2)^{2}<(p+1)(p+3)+2
$$

which is a contradiction. Hence, $d_{1}=d_{2}=p+2$. Then the edge $v_{1} v_{2}$ lies in $p+1$ triangles, implying that G contains a B_{p+1} and hence a B_{p}. Thus, it follows that $\operatorname{ex}\left(p+3, B_{p}\right) \leq(p+1)(p+3) / 2$.

The graph $G_{4}=K_{p+3}-P M$ has order $p+3$ and size $(p+1)(p+3) / 2$. Every edge of G_{4} lies in exactly $p-1$ triangles. Hence, G_{4} contains no B_{p} and G_{4} yields ex $\left(p+3, B_{p}\right) \geq(p+1)(p+3) / 2$. We thus conclude that ex $\left(p+3, B_{p}\right)=(p+1)$ $(p+3) / 2$.

Proof of Theorem 1.5. By Lemma 2.4, $\operatorname{ex}\left(p+2, B_{p}\right)=p(p+2) / 2$. Now let $G_{5}=$ $K_{2} \vee\left(K_{p}-P M\right)$; that is, G_{5} is the complement of the graph $(p / 2) K_{2}+\bar{K}_{2}$. Note that G_{5} is obtained from the graph G_{1} in the proof of Lemma 2.4 by adding one edge: $G_{5}=G_{1}+f$. Then G_{5} has order $p+2$ and size $(p(p+2) / 2)+1$ and f is the unique edge of G_{5} which lies in p triangles. Hence, G_{5} contains exactly one copy of B_{p}.

Conversely, let Y be a graph of order $p+2$ and size $(p(p+2) / 2)+1$ which contains exactly one copy of B_{p}. Let $u v$ be the unique edge of Y that lies in exactly p triangles. Then $\operatorname{deg}(u)=\operatorname{deg}(v)=p+1$. Since Y contains only one copy of B_{p}, every vertex of Y other than u and v has degree at most p. The degree sum of Y is $p(p+2)+2$, implying that the degree sequence of Y must be $p+1, p+1, p, p, \ldots, p$. It follows that Y is the complement of $(p / 2) K_{2}+\bar{K}_{2}$. Hence, $Y=G_{5}$.

Next we consider the order $p+3$. By Lemma 2.4, ex $\left(p+3, B_{p}\right)=p(p+4) / 2$. Let G_{6} be the complement of $(p / 2) K_{2}+P_{3}$, where P_{3} is the path of order three. Note that G_{6} is obtained from the graph G_{2} in the proof of Lemma 2.4 by adding one edge to the subgraph $\bar{K}_{3}: G_{6}=\left(K_{1}+K_{2}\right) \vee\left(K_{p}-P M\right)$. Thus, G_{6} has order $p+3$ and size $(p(p+4) / 2)+1$. Let h be the edge of G_{6} corresponding to K_{2}, that is, the edge added to G_{2}. It is easy to check that h is the unique edge of G_{6} that lies in p triangles. Hence, G_{6} contains exactly one copy of B_{p}.

Conversely, let Z be a graph of order $p+3$ and size $(p(p+4) / 2)+1$ which contains exactly one copy of B_{p}. Let v_{1}, \ldots, v_{p+3} be the vertices of Z such that v_{1} and v_{2} are adjacent, $N\left(v_{1}\right) \cap N\left(v_{2}\right)=\left\{v_{3}, v_{4}, \ldots, v_{p+2}\right\}$ and $v_{p+3} \notin N\left(v_{1}\right) \cap N\left(v_{2}\right)$. Thus, $v_{1} v_{2}$ is the unique edge of Z that lies in p triangles. If $\operatorname{deg}\left(v_{i}\right)=p+2$ for some i with $3 \leq$ $i \leq p+2$, then Z would contain at least three copies of B_{p}, which is a contradiction. Hence, $\operatorname{deg}\left(v_{i}\right) \leq p+1$ for $3 \leq i \leq p+2$. We also have $\operatorname{deg}\left(v_{p+3}\right) \leq p$, since otherwise Z would contain at least two copies of B_{p}.

We assert that $v_{p+3} \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$. To the contrary, without loss of generality suppose that v_{p+3} is adjacent to v_{1}. First consider the case $p=2$. Then $v_{p+3}=v_{5}$ cannot
be adjacent to either of v_{3} and v_{4}. Also, v_{3} and v_{4} are not adjacent, since otherwise Z would contain at least two copies of B_{2}. But then Z has size $6<7=(2(2+4) / 2)+1$, which is a contradiction. Next assume that $p \geq 4$. If $\operatorname{deg}\left(v_{p+3}\right) \leq p-2$, then the degree sum of Z is at most $(p+2)+(p+1)(p+1)+(p-2)=p^{2}+4 p+1<p(p+4)+2$, which is the degree sum of Z, which is a contradiction. Thus, $\operatorname{deg}\left(v_{p+3}\right) \geq p-1$, implying that v_{p+3} has at least $p-2$ neighbours among the vertices v_{3}, \ldots, v_{p+2}. At least one, say v_{j}, of these $p-2$ neighbours of v_{p+3} has degree $\geq p+1$, since otherwise the degree sum of Z is at most

$$
(p+2)+3(p+1)+(p-2) p+p=p^{2}+3 p+5<p(p+4)+2
$$

which is a contradiction. But now the edge $v_{1} v_{j}$ lies in p triangles, yielding another copy of B_{p}, which is a contradiction. This proves that $v_{p+3} \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$. It follows that $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=p+1$.

Summarising the above analysis, we have obtained $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=p+1$, $\operatorname{deg}\left(v_{i}\right) \leq p+1$ for $3 \leq i \leq p+2$ and $\operatorname{deg}\left(v_{p+3}\right) \leq p$. These restrictions on the degrees, together with the condition that the degree sum of Z is $p(p+4)+2$, imply that the degree sequence of Z must be $p+1, p+1, \ldots, p+1, p$. It remains to show that G_{6} is the only graph with such a degree sequence, implying that $Z=G_{6}$. The complement of such a graph has degree sequence $2,1, \ldots, 1$. Clearly, $(p / 2) K_{2}+P_{3}$ is the only graph with degree sequence $2,1, \ldots, 1$. This completes the proof.

Proof of Corollary 1.6. Theorem 1.5 covers the case when k is even and Theorem 1.4 covers the case when k is odd.

Proof of Theorem 1.7. Let G be a graph of order n and size ex $\left(n, B_{p}\right)+1$ with vertices v_{1}, \ldots, v_{n} such that $\operatorname{deg}\left(v_{i}\right)=d_{i}, i=1, \ldots, n$, and $d_{1} \geq \cdots \geq d_{n}$.

First we suppose that $n=p+2$. By Lemma 2.4, ex $\left(n, B_{p}\right)=(p+1)^{2} / 2$. Then the degree sum of G is $\sum_{i=1}^{n} d_{i}=(p+1)^{2}+2$. If $d_{3} \leq p$, then $\sum_{i=1}^{n} d_{i} \leq 2(p+1)+p \times p<$ $(p+1)^{2}+2$, which is a contradiction. Thus, we have $d_{1}=d_{2}=d_{3}=p+1$. Each of the three edges $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{1}$ lies in p triangles. Hence, G contains at least three copies of B_{p}. The number 3 is attained by the graph $K_{3} \vee\left(K_{p-1}-P M\right)$, which has order $p+2$ and size $\left((p+1)^{2} / 2\right)+1$, and contains exactly three copies of B_{p}.

Next we suppose that $n=p+3$. By Lemma 2.4, ex $\left(n, B_{p}\right)=(p+1)(p+3) / 2$. We have $\sum_{i=1}^{n} d_{i}=(p+1)(p+3)+2$. If $d_{2} \leq p+1$, then

$$
\sum_{i=1}^{n} d_{i} \leq(p+2)+(p+2)(p+1)=(p+2)^{2}<(p+1)(p+3)+2
$$

which is a contradiction. Hence, $d_{1}=d_{2}=p+2$. We distinguish two cases.
Case 1. $d_{3}=p+2$. Then each of the three edges $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{1}$ lies in $p+1$ triangles, implying that G contains three copies of B_{p+1}. Since one copy of B_{p+1} contains $p+1$ copies of B_{p}, G contains at least $3(p+1)$ copies of B_{p}.
Case 2. $d_{3} \leq p+1$. The degree sum $(p+1)(p+3)+2$ of G requires that $d_{i}=p+1$ for each $i=3,4, \ldots, n$. Now, in G, the edge $v_{1} v_{2}$ lies in $p+1$ triangles, yielding $p+1$

Figure 1. Graphs for the orders $n=6,7,8$.

Figure 2. The graph for order $n=9$.
copies of B_{p}. For $i=3, \ldots, p+3$, each of the two edges $v_{i} v_{1}$ and $v_{i} v_{2}$ lies in p triangles, yielding $2(p+1)$ copies of B_{p}. Altogether, G contains at least $3(p+1)$ copies of B_{p}.

The number $3(p+1)$ is attained by the graph $K_{2} \vee\left(K_{p+1}-P M\right)$, which has order $p+3$ and size $((p+1)(p+3) / 2)+1$ and contains exactly $3(p+1)$ copies of B_{p}. This completes the proof.

PRoof of Theorem 1.8. We omit some details of the proof of Theorem 1.8, but give several key facts. Clapham et al. [3, page 36] determined the values ex $\left(n, C_{4}\right)$ for all n up to 21 . The eight values we need are $\operatorname{ex}\left(6, C_{4}\right)=7, \operatorname{ex}\left(7, C_{4}\right)=9$, ex $\left(8, C_{4}\right)=11$, $\operatorname{ex}\left(9, C_{4}\right)=13, \operatorname{ex}\left(10, C_{4}\right)=16, \operatorname{ex}\left(11, C_{4}\right)=18, \operatorname{ex}\left(12, C_{4}\right)=21$ and $\operatorname{ex}\left(13, C_{4}\right)=24$.

The graph in Figure 1(a) has order six and size $8=\operatorname{ex}\left(6, C_{4}\right)+1$ and contains exactly one copy of C_{4}; the graph in Figure 1(b) has order seven and size $10=$ ex $\left(7, C_{4}\right)+1$ and contains exactly one copy of C_{4}; the graph in Figure 1(c) has order eight and size $12=\operatorname{ex}\left(8, C_{4}\right)+1$ and contains exactly one copy of C_{4}.

The graph in Figure 2 has order nine and size $14=\operatorname{ex}\left(9, C_{4}\right)+1$ and contains exactly one copy of C_{4}, the cycle $1,3,2,9,1$.

The graph in Figure 3 has order 10 and size $17=\mathrm{ex}\left(10, C_{4}\right)+1$ and contains exactly one copy of C_{4}, the cycle $1,2,6,10,1$.

The graph in Figure 4 has order 11 and size $19=\operatorname{ex}\left(11, C_{4}\right)+1$ and contains exactly one copy of C_{4}, the cycle $1,7,9,11,1$.

Figure 3. The graph for order $n=10$.

Figure 4. The graph for order $n=11$.

Figure 5. A graph of order 12 and size 22 containing two copies of C_{4}.

Next we treat the case of order $n=12$. Let G be a graph of order 12 and size $22=$ ex $\left(12, C_{4}\right)+1$. It can be shown, say, using case by case analysis, that G contains at least two copies of C_{4}. The graph in Figure 5 has order 12 and size 22 and contains exactly two 4 -cycles: $3,4,5,9,3$ and $3,8,10,9,3$. Thus, the minimum number of copies of C_{4} in a graph of order 12 and size 22 is two.

FIGURE 6. A graph of order 13 and size 25 containing two copies of C_{4}.

Finally, we consider the case of order $n=13$. A graph of order 13 and size $25=$ $\operatorname{ex}\left(13, C_{4}\right)+1$ has average degree $50 / 13<4$. Hence, it has a vertex of degree ≤ 3. Deleting that vertex, we obtain a graph of order 12 and size at least 22 which contains at least two 4 -cycles by the result proved for the order $n=12$. On the other hand, the graph in Figure 6 has order 13 and size 25 and contains exactly two 4 -cycles: $1,2,10,12,1$ and $3,5,11,4,3$. Thus, the minimum number of copies of C_{4} in a graph of order 13 and size 25 is two. This completes the proof.

3. Concluding remarks

We believe that Erdős' intuition which is expressed in Problem 1.2 is almost true; that is, for most graphs H and most positive integers n, every graph of order n and size ex $(n, H)+1$ contains at least two copies of H. We pose the following problem.

Problem 3.1. Determine all the pairs (H, n), where H is a graph and n is a positive integer, such that there exists a graph of order n and size ex $(n, H)+1$ which contains exactly one copy of H.

It is natural to ask whether Theorem 1.5 on the books B_{p} can be extended to orders larger than $p+3$. The answer is no in general. A computer search gives the following information: (1) ex $\left(6, B_{2}\right)=9$ and the minimum number of copies of B_{2} in a graph of order six and size 10 is two; (2) ex $\left(7, B_{2}\right)=12$ and the minimum number of copies of B_{2} in a graph of order seven and size 13 is three; $(3) \operatorname{ex}\left(8, B_{4}\right)=21$ and the minimum number of copies of B_{4} in a graph of order eight and size 22 is six; (4) ex $\left(9, B_{4}\right)=27$ and the minimum number of copies of B_{4} in a graph of order nine and size 28 is 21 .

Finally, we pose the following problem.
Problem 3.2. Given positive integers p and n with $n \geq p+2$, determine the Turán number ex $\left(n, B_{p}\right)$.

Lemma 2.4 solves the cases $n=p+2, p+3$ of Problem 3.2. Yan and Zhan [13] determined the Turán numbers ex $\left(p+4, B_{p}\right)$, ex $\left(p+5, B_{p}\right)$ and $\operatorname{ex}\left(p+6, B_{p}\right)$
and characterised the corresponding extremal graphs for the numbers ex $\left(n, B_{p}\right)$ with $n=p+2, p+3, p+4, p+5$.

Acknowledgement

The authors are grateful to Professor Jie Ma from whose talk at ECNU based on the paper [9] they first learned of Problem 1.2.

References

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London-New York, 1978).
[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th edn (CRC Press, Boca Raton, FL, 2016).
[3] C. R. J. Clapham, A. Flockhart and J. Sheehan, 'Graphs without four-cycles', J. Graph Theory 13(1) (1989), 29-47.
[4] P. Erdôs, 'Some theorems on graphs', Riveon Lematematika 9 (1955), 13-17.
[5] P. Erdős, 'Some of my favourite unsolved problems', in: A Tribute to Paul Erdős (eds. A. Baker, B. Bollabás and A. Hajnal) (Cambridge University Press, Cambridge, 1990).
[6] F. A. Firke, P. M. Kosek, E. D. Nash and J. Williford, 'Extremal graphs without 4-cycles', J. Combin. Theory Ser. B 103(3) (2013), 327-336.
[7] Z. Füredi, ‘Graphs without quadrilaterals', J. Combin. Theory Ser. B 34(2) (1983), 187-190.
[8] Z. Füredi, A. Naor and J. Verstraëte, 'On the Turán number for the hexagon', Adv. Math. 203(6) (2006), 476-496.
[9] J. He, J. Ma and T. Yang, 'Stability and supersaturation of 4-cycles', Preprint, 2021, arXiv:1912.00986v3.
[10] W. Mantel, 'Problem 28', Wisk. Opgaven 10 (1907), 60-61.
[11] J. W. Moon, 'On the number of complete subgraphs of a graph', Canad. Math. Bull. 8 (1965), 831-834.
[12] P. Turán, 'Eine Extremalaufgabe aus der Graphentheorie', Mat. Fiz. Lapok 48 (1941), 436-452.
[13] J. Yan and X. Zhan, 'The Turán number of book graphs', Preprint, 2021, arXiv:2010.09973v1.

PU QIAO, Department of Mathematics,
East China University of Science and Technology, Shanghai 200237, China
e-mail: pq@ecust.edu.cn
XINGZHI ZHAN, Department of Mathematics, East China Normal University, Shanghai 200241, China
e-mail: zhan@math.ecnu.edu.cn

[^0]: This research was supported by the NSFC grants 11671148 and 11771148 and Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.
 © 2021 Australian Mathematical Publishing Association Inc.

