Article ID：1000－5641（2021）x－0001－04

Two－degree trees

QIAO Pu^{1} ，ZHAN Xingzhi ${ }^{2}$
（1．Department of Mathematics，East China University of Science and Technology，Shanghai 200237，China；
2．School of Mathematical Sciences，East China Normal University，Shanghai 200241，China）

Abstract

A graph is called a two－degree graph if its vertices have only two distinct degrees．A two－degree tree of order at least three have two degrees 1 and d for some $d \geqslant 2$ ；such a tree is called a $(1, d)$－tree． Given a positive integer n ，we determine（1）the possible values of d such that there exists a $(1, d)$－tree of order n ；（2）the values of d such that there exists a unique（ $1, d$ ）－tree of order n and（3）the maximum diameter of two－degree trees of order n ．The results provide a new example showing that sometimes the behavior of graphs is determined by number theoretic properties．

Keywords：two－degree tree；diameter；unique graph
CLC number：O157．5 Document code：A DOI：10．3969／j．issn．1000－5641．

具有两个度数的树

乔 璞 ${ }^{1}$ ，詹兴致 ${ }^{2}$
（1．华东理工大学 数学系，上海 200237；2．华东师范大学 数学科学学院，上海 200241）

Abstract

摘要：如果一个图只有两个不同的度数，这个图就称为二度图。阶数至少为 3 的二度树具有度数 1 和 d ，这里 d 是至少为 2 的整数；这样的树称为 $(1, d)$－树。给定一个正整数 n ，下面的信息被确定了：（1）存在一个 n 阶（ $1, d$ ）－树的可能的 d 的值；（2）存在唯一的 n 阶（ $1, d$ ）－树的可能的 d 的值；（3）n 阶 $(1, d)$－树的最大可能的直径。这些结果提供了一个新的例子，表明有时候图的行为是由数论性质决定的。

关键词：二度树；直径；唯一图

The order of a graph is its number of vertices，and the size is its number of edges．A tree is a connected graph that contains no cycle．Trees are the simplest connected graphs in the sense that they have the least possible size among connected graphs of a given order．A graph is called a two－ degree graph if its vertices have only two distinct degrees．A leaf of a graph is a vertex of degree 1. Every nontrivial tree has at least two leaves［1，p．100］．Thus a two－degree tree has two degrees 1 and d for some $d \geqslant 2$ ；such a tree is called a $(1, d)$－tree．$(1,3)$－trees are called cubic trees in［2，p．283］． One might think that we may omit＂ 1 ＂and simply call a（ $1, d$ ）－tree a d－tree．This cannot be done， since the term d－tree already has another well accepted meaning（see e．g．［3］）．

For a given positive integer n ，what are the possible values of d such that there exists a $(1, d)$－ tree of order n ？Let us consider two examples．There exists a $(1, d)$－tree of order 20 if and only if

[^0]$d=2,3,4,7,10$ ，or 19 ，while there exists a $(1, d)$－tree of order 39 if and only if $d=2$ ，or 38 ．Thus there are six possible values of d for the order 20，but there are only two possible values of d for the larger order 39 ．Why？

In this note，for a given positive integer n we determine（1）the possible values of d such that there exists a $(1, d)$－tree of order n ；（2）the values of d such that there exists a unique $(1, d)$－tree of order n and（3）the maximum diameter of two－degree trees of order n ．These results provide a new example showing that sometimes the behavior of graphs is determined by number theoretic properties．

A caterpillar is a tree in which a single path（the spine）is incident to or contains every edge；in other words，removal of its leaves yields a path．

Notation．Let d and n be positive integers such that $d-1$ divides $n-2$ ．We use $C P(n, d)$ to denote the unique caterpillar of order n which is a $(1, d)$－tree．

The caterpillar $C P(18,5)$ is depicted in Figure 1.

Fig． 1 The caterpillar $C P(18,5)$
Theorem 1．Let $n \geqslant 3$ be a positive integer．Then there exists a $(1, d)$－tree of order n if and only if $d-1$ divides $n-2$ ．

Proof．Suppose there exists a $(1, d)$－tree of order n ．The degree sum formula $[1$, p．7］proved by Leonhard Euler in 1736 states that if a graph has vertex set V and size e then

$$
\sum_{x \in V} \operatorname{deg}(x)=2 e
$$

where $\operatorname{deg}(x)$ denotes the degree of the vertex x ．Now suppose in a $(1, d)$－tree of order n ，there are k vertices of degree d and hence there are $n-k$ vertices of degree 1 ．Since a tree of order n has size $n-1$ ，by the degree sum formula we have $(n-k)+k d=2(n-1)$ ；i．e．，$(d-1) k=n-2$ ．Hence $d-1$ divides $n-2$ ．

Conversely，suppose $d-1$ divides $n-2$ ．Then the caterpillar $C P(n, d)$ is a $(1, d)$－tree of order n ．
We denote by P_{n} and S_{n} the path and star of order n respectively．
Corollary 2．The path P_{n} and the star S_{n} are the only two－degree trees of order $n \geqslant 4$ if and only if $n-2$ is a prime number．

Proof．If $n-2$ is a prime number， 1 and $n-2$ are the only divisors of $n-2$ ．By Theorem 1 ， there exists a $(1, d)$－tree of order n if and only if $d-1=1$ or $d-1=n-2$ ；i．e．，$d=2$ or $d=n-1$ ． The path P_{n} is the unique $(1,2)$－tree of order n and the star S_{n} is the unique $(1, n-1)$－tree of order n ．

If $n-2$ is a composite number，let q be a divisor of $n-2$ with $2 \leqslant q \leqslant n-3$ ．By Theorem 1 ， there exists a $(1, q+1)$－tree of order n ，which is neither the path P_{n} or the star S_{n} since $3 \leqslant q+1 \leqslant n-2$ ．

Theorem 3．There exists a unique（1，d）－tree of order $n \geqslant 3$ if and only if $d-1$ divides $n-2$ and furthermore $d=2$ or $3 d \geqslant n+1$ ．

Proof．Suppose there exists a $(1, d)$－tree T of order n ．By Theorem 1 and its proof，$d-1$ divides $n-2$ and $(n-2) /(d-1)$ is the number of vertices of degree d ．First note that the only $(1,2)$－tree is the path P_{n} ．Next assume $d \geqslant 3$ ．

Suppose $3 d \geqslant n+1$ ．Then $(n-2) /(d-1) \leqslant 3$ ．There are three possibilities．If $(n-2) /(d-1)=$ 1，i．e．，$d=n-1$ ，then the star S_{n} is the unique $(1, n-1)$－tree of order n ．If $(n-2) /(d-1)=2$ ，i．e．， $d=n / 2$ ，then the caterpillar $C P(n, n / 2$ ）（a double－broom）is the unique（ $1, n / 2$ ）－tree of order n ．If $(n-2) /(d-1)=3$ ，let x, y, z be the three vertices of degree d which equals $(n+1) / 3$ ．If any two of the vertices x, y and z do not have a common neighbor，then the tree T would have order at least $3 d=n+1$ ，a contradiction．Without loss of generality，suppose x and y have a common neighbor， which must be z ．Now x and y are nonadjacent since T contains no cycles．It follows that $T=C P(n, d)$ and the uniqueness is proved．

Now suppose $3 d \leqslant n$ ．We will show that there exist at least two non－isomorphic $(1, d)$－trees of order n ．First，the caterpillar $C P(n, d)$ is such a tree．The condition that $d-1$ divides $n-2$ implies $d-1$ divides $(n-d+1)-2$ ．Hence by Theorem 1 ，the caterpillar $C P(n-d+1, d)$ ，which we denote by G ，exists．Let $v_{1}, v_{2}, \cdots, v_{k}$ be the vertices of degree d on the spine of G in order where $k=((n-d+1)-2) /(d-1)$ ．Since k is an integer，the assumption that $3 d \leqslant n$ implies $k \geqslant 3$ ．Let $H(n, d)$ be the graph obtained from G by attaching $d-1$ edges to one of the leaf neighbors of v_{2} ． The graphs $C P(17,4)$ and $H(17,4)$ are depicted in Figure 2.

Fig． $2 \quad \mathrm{CP}(17,4)$ and $\mathrm{H}(17,4)$
Both $C P(n, d)$ and $H(n, d)$ are $(1, d)$－trees of order n ，but they are non－isomorphic，since the former has diameter $(n-2) /(d-1)+1$ while the latter has diameter $(n-2) /(d-1)$ ．The proof is complete．

Finally we consider the maximum possible diameter of non－path two－degree trees of a given order．
Theorem 4．Let $n \geqslant 4$ be a positive integer and suppose p is the smallest prime divisor of $n-2$ ． Then the maximum possible diameter of a non－path two－degree tree of order n is $(n-2) / p+1$ ．

Proof．First note that a $(1, d)$－tree of order at least three is a path if and only if $d=2$ ．Let T be a $(1, d)$－tree of order n with $d \geqslant 3$ ．Suppose T has diameter k and let $P: x_{0}, x_{1}, \cdots, x_{k}$ be a diametral path of T ；i．e，the distance between x_{0} and x_{k} is k ．Since each internal vertex x_{i} of P with $1 \leqslant i \leqslant k-1$ has degree d and any two of them do not have a common neighbor，we have $n \geqslant(k+1)+(k-1)(d-2)$ ．Hence $k \leqslant(n-2) /(d-1)+1$ ．On the other hand，the caterpillar $C P(n, d)$ has the diameter $(n-2) /(d-1)+1$ ．This proves that the maximum diameter of a $(1, d)-$ tree of order n is $(n-2) /(d-1)+1$ ．It follows that the maximum possible diameter of a non－path two－degree tree of order n is

$$
\max \left\{\left.\frac{n-2}{d-1}+1 \right\rvert\, d \geqslant 3, d-1 \text { divides } n-2\right\}=\frac{n-2}{p}+1
$$

where p is the smallest prime divisor of $n-2$ ．

The following corollary is an immediate consequence of Theorem 4.
Corollary 5．If $n \geqslant 4$ is an even positive integer，then the maximum possible diameter of a non－ path two－degree tree of order n is $n / 2$ ．

［References］

［1］BONDY J A，MURTY U S R．Graph Theory［M］．GTM 244，New York：Springer， 2008.
［2］BLASS A，HARARY F，MILLER Z．Which trees are link graphs？［J］．J Combin．Theory（Ser B），1980，29：277－292．
［3］BROERSMA H，XIONG L，YOSHIMOTO K．Toughness and hamiltonicity in K－trees［J］．Discrete Math，2007，307：832－838．

[^0]: 收稿日期：2021－05－07
 基金项目：国家自然科学基金（ 11671148,11771148 ），上海市科学技术委员会项目（18dz2271000）
 第一作者：乔 璞，女，讲师，博士，研究方向为图论．E－mail：pq＠ecust．edu．cn
 通信作者：詹兴致，男，教授，研究方向为图论，矩阵论．E－mail：zhan＠math．ecnu．edu．cn

