ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Pairs of a tree and a nontree graph with the same status sequence

Pu Qiao a, Xingzhi Zhan b,*

- ^a Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
- ^b Department of Mathematics, East China Normal University, Shanghai 200241, China

ARTICLE INFO

Article history:

Received 30 March 2019 Received in revised form 29 August 2019 Accepted 5 September 2019 Available online 23 September 2019

Keywords: Status Status unique Distance Tree Unicyclic graph

ABSTRACT

The status of a vertex x in a graph is the sum of the distances between x and all other vertices. Let G be a connected graph. The status sequence of G is the list of the statuses of all vertices arranged in nondecreasing order. G is called status injective if all the statuses of its vertices are distinct. Let G be a member of a family of graphs $\mathscr F$ and let the status sequence of G be s. G is said to be status unique in $\mathscr F$ if G is the unique graph in $\mathscr F$ whose status sequence is s. In 2011, J.L. Shang and C. Lin posed the following two conjectures. Conjecture 1: A tree and a nontree graph cannot have the same status sequence. Conjecture 2: Any status injective tree is status unique in all connected graphs. We settle these two conjectures negatively. For every integer $n \ge 10$, we construct a tree T_n and a unicyclic graph U_n , both of order n, with the following two properties: (1) T_n and U_n have the same status sequence; (2) for $n \ge 15$, if n is congruent to 3 modulo 4 then T_n is status injective and among any four consecutive even orders, there is at least one order n such that T_n is status injective.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple graphs. The *order* of a graph is the number of its vertices. A connected graph is said to be *unicyclic* if it has exactly one cycle. We denote by V(G) and E(G) the vertex set and edge set of a graph G respectively. The distance between two vertices X and Y in a graph is denoted by G(X). The *status* of a vertex X in a graph G, denoted by G(X), is the sum of the distances between G(X) and all other vertices; i.e.,

$$s(x) = \sum_{y \in V(G)} d(x, y).$$

The *status sequence* of *G* is the list of the statuses of all vertices of *G* arranged in nondecreasing order. *G* is called *status injective* if all the statuses of its vertices are distinct [2, p.185]. Harary [4] investigated the digraph version of the concept of status in a sociometric framework, while Entringer, Jackson and Snyder [3] studied basic properties of this concept for graphs.

A natural question is: Which graphs are determined by their status sequences? Slater [7] constructed infinitely many pairs of non-isomorphic trees with the same status sequence. Shang [5] gave a method for constructing general non-isomorphic graphs with the same status sequence. Let G be a member of a family of graphs $\mathscr F$ and let the status sequence of G be G be so G is said to be status unique in $\mathscr F$ if G is the unique graph in $\mathscr F$ whose status sequence is G. Here we view two

E-mail addresses: 235711gm@sina.com (P. Qiao), zhan@math.ecnu.edu.cn (X. Zhan).

^{*} Corresponding author.

isomorphic graphs as the same graph. It is known that [6] spiders are status unique in trees and that [1] status injective trees are status unique in trees.

Shang and Lin [6, p.791] posed the following two conjectures in 2011.

Conjecture 1. A tree and a nontree graph cannot have the same status sequence.

Conjecture 2. Any status injective tree is status unique in all connected graphs.

In this paper we settle these two conjectures negatively. For every integer $n \ge 10$, we construct a tree T_n and a unicyclic graph U_n , both of order n, with the same status sequence. There are infinitely many odd orders n and infinitely many even orders n such that T_n is status injective.

2. Main results

We will need the following lemmas. For a set S, the notation |S| denotes the cardinality of S.

Lemma 1 ([3, p. 284]). Suppose x and y are adjacent vertices of a connected graph. Let A be the set of vertices closer to x than y, and B the set of vertices closer to y than x. Then s(y) = s(x) + |A| - |B|.

Lemma 2. Let $x_0x_1x_2...x_k$ be a path in a tree and denote $d = s(x_1) - s(x_0)$. Then $s(x_{j+1}) - s(x_j) \ge d + 2j$ for each j = 1, 2, ..., k - 1. Consequently if $s(x_0) \le s(x_1)$ then $s(x_{j+1}) - s(x_j) \ge 2j$ for each j = 1, 2, ..., k - 1 and in particular, $s(x_1) < s(x_2) < s(x_3) < \cdots < s(x_k)$.

Proof. It suffices to prove the first assertion. We first show the following

Claim. If xyz is a path in a tree and denote c = s(y) - s(x), then s(z) - s(y) > c + 2.

Let *T* be the tree of order *n*. Let *A* and *B* be the two components of T - xy with $x \in V(A)$ and $y \in V(B)$, and let *G* and *H* be the two components of T - yz with $y \in V(G)$ and $z \in V(H)$. By Lemma 1, s(y) - s(x) = |V(A)| - |V(B)| = c. We also have |V(A)| + |V(B)| = n since every edge in a tree is a cut-edge. Hence 2|V(A)| = c + n. Since $V(A) \subset V(G)$ and $y \in V(G)$ but $y \notin V(A)$, we have $|V(G)| \ge |V(A)| + 1$. By Lemma 1 and the relation |V(G)| + |V(H)| = n we deduce

$$s(z) - s(y) = |V(G)| - |V(H)| = 2|V(G)| - n \ge 2|V(A)| + 2 - n = c + 2.$$

This proves the claim.

Applying the claim successively to the path $x_{i-1}x_ix_{i+1}$ for $i=1,2,\ldots,k-1$ we obtain the first assertion in Lemma 2. \Box

Lemma 2 is a generalization and strengthening of a result in [3, p.291], which states that if $x_0x_1...x_k$ is a path in a tree and x_0 has the minimum status of all vertices, then $s(x_1) < s(x_2) < \cdots < s(x_k)$.

Lemma 3. The quadratic polynomial equation

$$p^2 + 5p + 4 = q^2 + q - 6$$

in p and q has no nonnegative integer solution.

Proof. Suppose that p and q are nonnegative integers. If $q \le p+2$, then $q^2+q-6 \le (p+2)^2+(p+2)-6=p^2+5p < p^2+5p+4$. If $q \ge p+3$, then $q^2+q-6 \ge (p+3)^2+(p+3)-6=p^2+7p+6 > p^2+5p+4$. Hence the equation cannot have any nonnegative integer solution. \square

Remark. It is not hard to prove that the only integer solutions of the equation in Lemma 3 are (p, q) = (-4, -3), (-4, 2), (-1, -3), (-1, 2).

Denote by \mathbb{N} the set of positive integers.

Lemma 4. Let the two functions $f(p) = p^2 + 5p + 4$ and $h(q) = q^2 + q - 6$ be defined on the set \mathbb{N} . If $p \ge 7$ and $|f(p) - h(q)| \le 15$, then q = p + 2 and f(p) - h(q) = 4.

Proof. If $q \ge p + 3$, then

$$h(q) \ge h(p+3) = f(p) + 2p + 2 \ge f(p) + 16.$$

If
$$p-2 \le q \le p+1$$
, then

$$f(p) \ge f(q-1) = h(q) + 2q + 6 \ge h(q) + 2p + 2 \ge h(q) + 16.$$

If q , then

$$f(p) \ge f(q+3) = h(q) + 10q + 34 \ge h(q) + 44.$$

Hence we must have q = p + 2 and in this case, f(p) - h(q) = 4. \square

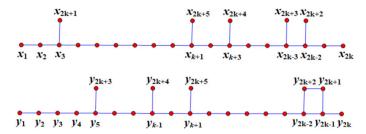


Fig. 1. T_n and U_n with n = 2k + 5 and $k \ge 7$.

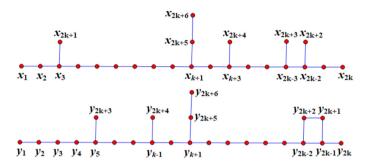


Fig. 2. T_n and U_n with n = 2k + 6 and $k \ge 7$.

Now we are ready to state and prove the main result.

Theorem 5. For every integer $n \ge 10$, there exist a tree T_n and a unicyclic graph U_n , both of order n, with the following two properties:

- (1) T_n and U_n have the same status sequence;
- (2) for $n \ge 15$, if $n \equiv 3 \pmod{4}$ then T_n is status injective and among any four consecutive even orders, there is at least one order n such that T_n is status injective.

Proof. For the orders $n \ge 19$ we have a uniform construction of T_n and U_n , and we treat this case first. For the orders $10 \le n \le 18$, the graphs will be constructed individually and they appear at the end of this proof.

Now suppose $n \ge 19$. We distinguish the odd orders and the even orders. Let n = 2k + 5 with $k \ge 7$. We define T_n and U_n as follows. $V(T_n) = \{x_i | i = 1, 2, ..., 2k + 5\}$ and $E(T_n) =$

$${x_i x_{i+1} | i = 1, 2, ..., 2k-1} \cup {x_3 x_{2k+1}, x_{k+1} x_{2k+5}, x_{k+3} x_{2k+4}, x_{2k-3} x_{2k+3}, x_{2k-2} x_{2k+2}}.$$

 $V(U_n) = \{y_i | i = 1, 2, ..., 2k + 5\}$ and $E(U_n) = \{y_i y_{i+1} | i = 1, 2, ..., 2k - 1\} \cup \{y_5 y_{2k+3}, y_{k-1} y_{2k+4}, y_{k+1} y_{2k+5}, y_{2k-2} y_{2k+2}, y_{2k-1} y_{2k+1}, y_{2k+1} y_{2k+2}\}$. Note that T_n is a caterpillar of maximum degree 3 and U_n is a unicyclic graph. T_n and U_n are illustrated in Fig. 1.

It can be checked directly that $s(x_i) = s(y_i)$ for $i = 1, 2, 3, k + 1, 2k - 1, 2k, \dots, 2k + 5$ and $s(x_i) = s(y_{2k+2-i})$ for $4 \le i \le 2k - 2$. Hence, T_n and T_n have the same status sequence. For the even orders $T_n = 2k + 6$ with $T_n = 2k + 6$ with T

We check easily that $s(x_i) = s(y_i)$ for i = 1, 2, 3, k + 1, 2k - 1, 2k, ..., 2k + 6 and $s(x_i) = s(y_{2k+2-i})$ for $4 \le i \le 2k - 2$. Thus T_n and U_n also have the same status sequence.

Next we prove that the trees T_n satisfy condition (2) in Theorem 5. In fact, we will determine precisely for which orders n, T_n is status injective.

First consider the case when n is odd and let n = 2k + 5 with $k \ge 7$. Denote $a = s(x_{k+1}) = k^2 + 3k - 2$. We have

$$s(x_{k-p}) = \begin{cases} a + (p+2)^2 - 1 & \text{if } 0 \le p \le k-3, \\ a + k^2 + 1 & \text{if } p = k-2, \\ a + (k+1)^2 + 3 & \text{if } p = k-1; \end{cases}$$

$$s(x_{k+q}) = \begin{cases} a + 1 & \text{if } q = 2, \\ a + q^2 - 5 & \text{if } 3 \le q \le k-3, \\ a + (q+2)^2 - 4k + 1 & \text{if } k-2 \le q \le k; \end{cases}$$

$$s(x_{2k+r}) = \begin{cases} a + (k+1-r)^2 + 3 & \text{if } 1 \le r \le 3, \\ a + 2k + 7 & \text{if } r = 4, \\ a + 2k + 3 & \text{if } r = 5. \end{cases}$$

In calculating the values $s(x_i)$ for $1 \le i \le 2k$ we have used the fact that if $P = z_1 z_2 \dots z_m$ is a path, then

$$s(z_i) = i(i - m - 1) + m(m + 1)/2$$

in P, while in calculating the values $s(x_j)$ for $j=2k+1,\ldots,2k+5$ we have used Lemma 1. From the above expressions it follows that x_{k+1} is the unique vertex with the minimum status, $x_1, x_2, x_3, x_{2k-1}, x_{2k}, x_{2k+1}, x_{2k+2}, x_{2k+3}$ are the vertices with the eight largest statuses, since

$$s(x_1) > s(x_{2k}) > s(x_{2k+1}) > s(x_2) > s(x_{2k+2}) > s(x_{2k+1}) > s(x_3) > s(x_{2k+3}) > s(x_i)$$
 (1)

for any $i \neq 1, 2, 3, 2k - 1, 2k, 2k + 1, 2k + 2, 2k + 3$ and

$$s(x_{2k+1}) > s(x_{2k+2}) > s(x_{2k+3}) > s(x_{2k+4}) > s(x_{2k+5}).$$
 (2)

Partition the vertex set of T_n into three sets:

$$L = \{x_i | 1 \le i \le k\}, R = \{x_i | k+1 \le i \le 2k\} \text{ and } W = \{x_i | 2k+1 \le i \le 2k+5\}.$$

The inequalities in (2) show that any two distinct vertices in W have different statuses. Applying Lemma 2 to the two paths $x_{k+1}x_kx_{k-1}\dots x_2x_1$ and $x_{k+1}x_{k+2}\dots x_{2k-1}x_{2k}$ we see that any two distinct vertices in L or in R have different statuses. Next we show that for any $x\in L$ and $y\in R$, $s(x)\neq s(y)$. By the inequalities in (1) it suffices to prove that $s(x_i)\neq s(x_j)$ for $1\leq i\leq k$ and $1\leq$

By the above analysis, it is clear that the only possibilities for two distinct vertices to have the same status are $s(x_{2k+5}) = s(x_i)$ and $s(x_{2k+4}) = s(x_i)$ for $4 \le i \le k$ or $k+2 \le i \le 2k-2$. By the expressions for their status values, it is easy to verify that $s(x_{2k+5}) = s(x_i)$ for some i with $4 \le i \le k$ if and only if $k = 2c^2 - 2$ for some integer c; $s(x_{2k+2}) < s(x_{2k+5}) < s(x_{2k+2})$ and $s(x_{2k+5}) = s(x_i)$ for some i with $k+3 \le i \le 2k-3$ if and only if $k = 2c^2-4$ for some integer c; $s(x_{2k+4}) = s(x_i)$ for some i with $k+3 \le i \le 2k-3$ if and only if $k = 2c^2-6$ for some integer $k \le 2k-3$ if and only if $k \ge 2c^2-6$ for some integer $k \ge 2k-3$ if and only if $k \ge 2k-3$ if and only if

Thus, T_n with n = 2k + 5 is not status injective if and only if $k = 2c^2 - 2$, $2c^2 - 4$ or $2c^2 - 6$ for some integer c. Since all these values of k are even, it follows that for every odd k, T_n is status injective; i.e., if $n \equiv 3 \pmod{4}$ then T_n is status injective.

Next we treat the case when the order n is even. Let n = 2k + 6 with $k \ge 7$. With $d = s(x_{k+1}) = k^2 + 3k$ we have

Next we treat the case when the order
$$n$$
 is even. Let $n = s(x_{k-p}) = \begin{cases} d+p^2+5p+4 & \text{if } 0 \leq p \leq k-3, \\ d+k^2+k & \text{if } p=k-2, \\ d+k^2+3k+4 & \text{if } p=k-1; \end{cases}$

$$s(x_{k+q}) = \begin{cases} d+2 & \text{if } q=2, \\ d+q^2+q-6 & \text{if } 3 \leq q \leq k-3, \\ d+q^2+5q-4k+4 & \text{if } k-2 \leq q \leq k; \end{cases}$$

$$s(x_{2k+r}) = \begin{cases} d+k^2+k+2 & \text{if } r=1, \\ d+k^2-k+2 & \text{if } r=2, \\ d+k^2-3k+4 & \text{if } r=3, \\ d+2k+10 & \text{if } r=4, \\ d+2k+2 & \text{if } r=5, \\ d+4k+6 & \text{if } r=6. \end{cases}$$

From the above expressions we deduce that x_{k+1} is the unique vertex with the minimum status d. The case k = 7 corresponds to n = 20 and we check directly that T_{20} is status injective. Next suppose $k \ge 8$. Then $x_1, x_2, x_3, x_{2k-1}, x_{2k}, x_{2k+1}, x_{2k+2}, x_{2k+3}$ are the vertices with the eight largest statuses, since

$$s(x_1) > s(x_{2k}) > s(x_{2k+1}) > s(x_2) > s(x_{2k+2}) > s(x_{2k-1}) > s(x_3) > s(x_{2k+3}) > s(x_i)$$

$$(3)$$

for any $i \neq 1, 2, 3, 2k - 1, 2k, 2k + 1, 2k + 2, 2k + 3$. Also

$$s(x_{2k+1}) > s(x_{2k+2}) > s(x_{2k+3}) > s(x_{2k+6}) > s(x_{2k+4}) > s(x_{2k+5}).$$
 (4)

In considering two vertices with equal status, we can exclude the eight vertices with the eight largest statuses by (3) and the unique vertex x_{k+1} with the minimum status. Denote

$$L' = \{x_i | 4 < i < k\}, R' = \{x_i | k + 2 < i < 2k - 2\} \text{ and } W' = \{x_i | 2k + 1 < i < 2k + 6\}.$$

Let x and y be two distinct vertices with s(x) = s(y). By the inequalities in (4), it is impossible that $x, y \in W'$. By Lemma 2 we cannot have $x, y \in L'$ or $x, y \in R'$. Suppose $x \in L'$ and $y \in R'$. We have $s(x) > s(x_{k+2}), s(x_4) > s(x_{2k-2})$ and $s(x_i) < s(x_{2k-2})$ for $1 \le i \le k$. Thus, $1 \le i$

Now, by (3) and the above analysis it is clear that s(x) = s(y) can occur only if $x \in \{x_{2k+4}, x_{2k+5}, x_{2k+6}\}$ and $y \in L' \cup R'$ or the roles of x and y are interchanged. The case k=8 corresponds to n=22, and we check directly that T_{22} is not status injective. Next we suppose $k \ge 9$. Then $s(x_{2k-2}) > s(x_{2k+6}) > s(x_{2k+4}) > s(x_{2k+5})$, and hence x_{2k-2} can be excluded from R'. Similarly, since $s(x_{k+2}) < s(x_k) < s(x_{2k+5}) < s(x_{2k+4}) < s(x_{2k+6})$, x_k can be excluded from L' and x_{k+2} can be excluded from R'. Note that the statuses of the vertices in $L' \setminus \{x_k\}$ have the uniform expression $d+p^2+5p+4$ with $1 \le p \le k-4$ and the statuses of the vertices in $R' \setminus \{x_{k+2}, x_{2k-2}\}$ have the uniform expression $d+q^2+q-6$ with $3 \le q \le k-3$.

Denote the empty set by ϕ , and denote $\Omega_k = \{2k+2, 2k+10, 4k+6\}$, $\Gamma_k = A_k \cup B_k$ where $A_k = \{p^2+5p+4 | 1 \le p \le k-4, p \in \mathbb{N}\}$ and $B_k = \{q^2+q-6 | 3 \le q \le k-3, q \in \mathbb{N}\}$. It follows that when $k \ge 9$, T_n has two distinct vertices with the same status if and only if $\Omega_k \cap \Gamma_k \ne \phi$. Denote $\Gamma = A \cup B$ where $A = \{p^2+5p+4 | p \in \mathbb{N}\}$ and $B = \{q^2+q-6 | q \in \mathbb{N}\}$. Since $\Omega_k \cap \Gamma_k = \Omega_k \cap \Gamma$, we obtain the following criterion for $k \ge 9$:

 T_n is status injective if and only if $\Omega_k \cap \Gamma = \phi$.

The graphs T_n with 15 $\leq n \leq$ 18 constructed below are all status injective. Using the above criterion we can check that T_n is status injective for

$$k = 10, 14, 18, 21, 23, 25, 27, 29, 33, 35, 38, 40, 42.$$

Thus the assertion in Theorem 5 on T_n for even n with $k \le 42$ is true.

Next we suppose $k \ge 43$. We will prove that among the four numbers k, k + 1, k + 2, k + 3 there is at least one for which T_n is status injective. To do so, consider

$$\Omega_k = \{2k+2, 2k+10, 4k+6\}$$

$$\Omega_{k+1} = \{2k+4, 2k+12, 4k+10\}$$

$$\Omega_{k+2} = \{2k+6, 2k+14, 4k+14\}$$

$$\Omega_{k+3} = \{2k+8, 2k+16, 4k+18\}.$$

The numbers in these four sets can be partitioned into two classes:

$$X = \{2k + i | i = 2, 4, 6, 8, 10, 12, 14, 16\}$$
 and $Y = \{4k + j | j = 6, 10, 14, 18\}$.

We claim that

$$|X \cap A| \le 1, |X \cap B| \le 1, |Y \cap A| \le 1, |Y \cap B| \le 1.$$
 (5)

Define two polynomials $f(p) = p^2 + 5p + 4$ and $h(q) = q^2 + q - 6$. Then $A = \{f(p) | p \in \mathbb{N}\}$ and $B = \{h(q) | q \in \mathbb{N}\}$. In the sequel the symbol \Rightarrow means "implies". We first prove $|X \cap A| \le 1$. To the contrary, suppose there exist i, j, p_1, p_2 with $2 \le i < j \le 16$ and $p_1 < p_2$ such that $f(p_1) = 2k + i$ and $f(p_2) = 2k + j$. $k \ge 43$ and $i \ge 2 \Rightarrow f(p_1) = 2k + i \ge 88 \Rightarrow p_1 \ge 7$. We have $f(p_2) - f(p_1) = j - i \le 14$. But on the other hand, $f(p_2) - f(p_1) \ge f(p_1 + 1) - f(p_1) = 2p_1 + 6 \ge 20$, a contradiction. The inequality $|X \cap B| \le 1$ is similarly proved by using the fact that $h(q) \in X \Rightarrow h(q) \ge 88 \Rightarrow q \ge 10$. The inequalities $|Y \cap A| \le 1$ and $|Y \cap B| \le 1$ can also be similarly proved by using the facts that $f(p) \in Y \Rightarrow f(p) \ge 178 \Rightarrow p \ge 11$ and $h(q) \in Y \Rightarrow h(q) \ge 178 \Rightarrow q \ge 14$.

Note that the assumption $k \ge 43$ implies that $\min X \ge 88$ and $\min Y \ge 178$. Hence if $f(p) \in X \cup Y$ we have $p \ge 7$ and Lemma 4 can be applied.

Suppose $\Omega_i \cap \Gamma \neq \phi$ for i = k, k + 1, k + 2. We will show that $\Omega_{k+3} \cap \Gamma = \phi$. Since $\Omega_k \cap \Gamma \neq \phi$, at least one of the two cases $\{2k+2, 2k+10\} \cap \Gamma \neq \phi$ and $4k+6 \in \Gamma$ must occur. Recall that $\Gamma = A \cup B$.

Case 1. $\{2k+2, 2k+10\} \cap \Gamma \neq \phi$. We first consider the case when $\{2k+2, 2k+10\} \cap A \neq \phi$. Denote $\Psi = \{2k+4, 2k+12, 2k+8, 2k+16\}$. By (5), $\Psi \cap A = \phi$. By Lemma 4, $\Psi \cap B = \phi$. It follows that $\Psi \cap \Gamma = \phi$. Since $\Omega_{k+1} \cap \Gamma \neq \phi$ and $\{2k+4, 2k+12\} \cap \Gamma = \phi$, we deduce that $4k+10 \in \Gamma$. By (5), 4k+10 and 4k+18 cannot be both in A or both in B. Since $4 \neq 8 = (4k+18) - (4k+10) \leq 15$, by Lemma 4 it is also impossible that one of 4k+10 and 4k+18 is in A and the other in B. But $4k+10 \in \Gamma = A \cup B$. Hence $4k+18 \notin \Gamma$ and we obtain $\Omega_{k+3} \cap \Gamma = \phi$. The case when $\{2k+2, 2k+10\} \cap B \neq \phi$ is similar. Again we use (5), Lemma 4 and $\Omega_{k+1} \cap \Gamma \neq \phi$ to deduce $\Omega_{k+3} \cap \Gamma = \phi$.

Case 2. $4k+6 \in \Gamma$. Using (5) and Lemma 4 we deduce that $\{4k+14, \ 4k+18\} \cap \Gamma = \phi$. Then the condition $\Omega_{k+2} \cap \Gamma \neq \phi$ implies $\{2k+6, \ 2k+14\} \cap \Gamma \neq \phi$. Applying (5) and Lemma 4 once more we have $\{2k+8, \ 2k+16\} \cap \Gamma = \phi$. Hence $\Omega_{k+3} \cap \Gamma = \phi$.

This completes the proof of the case $n \ge 19$ of Theorem 5. The graph pairs T_n and U_n with $10 \le n \le 18$ are depicted in Figs. 3–11. They satisfy the condition $s(T_n) = s(U_n)$ and for $15 \le n \le 18$, T_n is status injective. In these graphs, the number beside a vertex is the status of that vertex.

This completes the proof of Theorem 5. \square

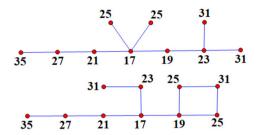


Fig. 3. T_{10} and U_{10} .

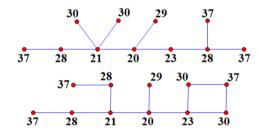


Fig. 4. T_{11} and U_{11} .

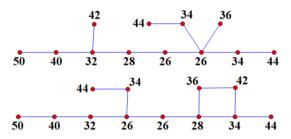


Fig. 5. T_{12} and U_{12} .

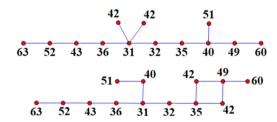


Fig. 6. T_{13} and U_{13} .

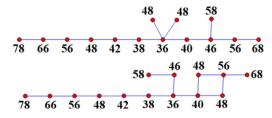


Fig. 7. T_{14} and U_{14} .

Remark. A computer search shows that 10 is the smallest order for the existence of a tree and a nontree graph with the same status sequence.

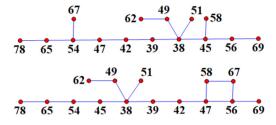
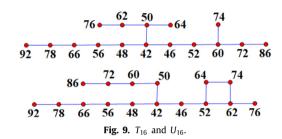
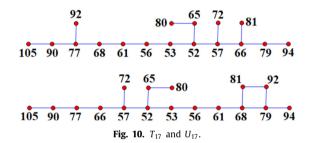
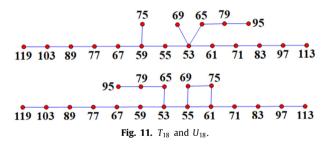


Fig. 8. T_{15} and U_{15} .







Declaration of competing interest

The authors declare that there is no conflict of interest in this paper.

Acknowledgments

This research was supported by the NSFC grants 11671148 and 11771148 and Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.

References

- [1] A. Abiad, B. Brimkov, A. Chan, A. Grigoriev, On the status sequences of trees, December 10, 2018, arXiv:1812.03765v1.
- [2] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, 1990.
- [3] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (2) (1976) 283–296.
- [4] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23-43.
- [5] J.L. Shang, On constructing graphs with the same status sequence, Ars Combin. 113 (2014) 429-433.
- [6] J.L. Shang, C. Lin, Spiders are status unique in trees, Discrete Math. 311 (2011) 785-791.
- [7] P.J. Slater, Counterexamples to Randić's conjecture on distance degree sequences for trees, J. Graph Theory 6 (1982) 89–92.