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a b s t r a c t

The status of a vertex x in a graph is the sum of the distances between x and all other
vertices. Let G be a connected graph. The status sequence of G is the list of the statuses
of all vertices arranged in nondecreasing order. G is called status injective if all the
statuses of its vertices are distinct. Let G be a member of a family of graphs F and
let the status sequence of G be s. G is said to be status unique in F if G is the unique
graph in F whose status sequence is s. In 2011, J.L. Shang and C. Lin posed the following
two conjectures. Conjecture 1: A tree and a nontree graph cannot have the same status
sequence. Conjecture 2: Any status injective tree is status unique in all connected graphs.
We settle these two conjectures negatively. For every integer n ≥ 10, we construct a
tree Tn and a unicyclic graph Un, both of order n, with the following two properties:
(1) Tn and Un have the same status sequence; (2) for n ≥ 15, if n is congruent to 3
modulo 4 then Tn is status injective and among any four consecutive even orders, there
is at least one order n such that Tn is status injective.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple graphs. The order of a graph is the number of its vertices. A connected graph is said to be
unicyclic if it has exactly one cycle. We denote by V (G) and E(G) the vertex set and edge set of a graph G respectively.
The distance between two vertices x and y in a graph is denoted by d(x, y). The status of a vertex x in a graph G, denoted
by s(x), is the sum of the distances between x and all other vertices; i.e.,

s(x) =

∑
y∈V (G)

d(x, y).

The status sequence of G is the list of the statuses of all vertices of G arranged in nondecreasing order. G is called status
injective if all the statuses of its vertices are distinct [2, p.185]. Harary [4] investigated the digraph version of the concept
of status in a sociometric framework, while Entringer, Jackson and Snyder [3] studied basic properties of this concept for
graphs.

A natural question is: Which graphs are determined by their status sequences? Slater [7] constructed infinitely many
pairs of non-isomorphic trees with the same status sequence. Shang [5] gave a method for constructing general non-
isomorphic graphs with the same status sequence. Let G be a member of a family of graphs F and let the status sequence
of G be s. G is said to be status unique in F if G is the unique graph in F whose status sequence is s. Here we view two

∗ Corresponding author.
E-mail addresses: 235711gm@sina.com (P. Qiao), zhan@math.ecnu.edu.cn (X. Zhan).

https://doi.org/10.1016/j.disc.2019.111662
0012-365X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2019.111662
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2019.111662&domain=pdf
mailto:235711gm@sina.com
mailto:zhan@math.ecnu.edu.cn
https://doi.org/10.1016/j.disc.2019.111662


2 P. Qiao and X. Zhan / Discrete Mathematics 343 (2020) 111662

isomorphic graphs as the same graph. It is known that [6] spiders are status unique in trees and that [1] status injective
trees are status unique in trees.

Shang and Lin [6, p.791] posed the following two conjectures in 2011.

Conjecture 1. A tree and a nontree graph cannot have the same status sequence.

Conjecture 2. Any status injective tree is status unique in all connected graphs.

In this paper we settle these two conjectures negatively. For every integer n ≥ 10, we construct a tree Tn and a unicyclic
graph Un, both of order n, with the same status sequence. There are infinitely many odd orders n and infinitely many even
orders n such that Tn is status injective.

2. Main results

We will need the following lemmas. For a set S, the notation |S| denotes the cardinality of S.

Lemma 1 ([3, p. 284]). Suppose x and y are adjacent vertices of a connected graph. Let A be the set of vertices closer to x than
y, and B the set of vertices closer to y than x. Then s(y) = s(x) + |A| − |B|.

Lemma 2. Let x0x1x2 . . . xk be a path in a tree and denote d = s(x1) − s(x0). Then s(xj+1) − s(xj) ≥ d + 2j for each
j = 1, 2, . . . , k − 1. Consequently if s(x0) ≤ s(x1) then s(xj+1) − s(xj) ≥ 2j for each j = 1, 2, . . . , k − 1 and in particular,
s(x1) < s(x2) < s(x3) < · · · < s(xk).

Proof. It suffices to prove the first assertion. We first show the following
Claim. If xyz is a path in a tree and denote c = s(y) − s(x), then s(z) − s(y) ≥ c + 2.
Let T be the tree of order n. Let A and B be the two components of T − xy with x ∈ V (A) and y ∈ V (B), and let G and

H be the two components of T − yz with y ∈ V (G) and z ∈ V (H). By Lemma 1, s(y) − s(x) = |V (A)| − |V (B)| = c. We also
have |V (A)| + |V (B)| = n since every edge in a tree is a cut-edge. Hence 2|V (A)| = c + n. Since V (A) ⊂ V (G) and y ∈ V (G)
but y /∈ V (A), we have |V (G)| ≥ |V (A)| + 1. By Lemma 1 and the relation |V (G)| + |V (H)| = n we deduce

s(z) − s(y) = |V (G)| − |V (H)| = 2|V (G)| − n ≥ 2|V (A)| + 2 − n = c + 2.

This proves the claim.
Applying the claim successively to the path xi−1xixi+1 for i = 1, 2, . . . , k−1 we obtain the first assertion in Lemma 2. □

Lemma 2 is a generalization and strengthening of a result in [3, p.291], which states that if x0x1 . . . xk is a path in a
tree and x0 has the minimum status of all vertices, then s(x1) < s(x2) < · · · < s(xk).

Lemma 3. The quadratic polynomial equation

p2 + 5p + 4 = q2 + q − 6

in p and q has no nonnegative integer solution.

Proof. Suppose that p and q are nonnegative integers. If q ≤ p + 2, then q2 + q − 6 ≤ (p + 2)2 + (p + 2) − 6 = p2 + 5p <
p2 + 5p + 4. If q ≥ p + 3, then q2 + q − 6 ≥ (p + 3)2 + (p + 3) − 6 = p2 + 7p + 6 > p2 + 5p + 4. Hence the equation
cannot have any nonnegative integer solution. □

Remark. It is not hard to prove that the only integer solutions of the equation in Lemma 3 are (p, q) = (−4, −3), (−4, 2),
(−1, −3), (−1, 2).

Denote by N the set of positive integers.

Lemma 4. Let the two functions f (p) = p2+5p+4 and h(q) = q2+q−6 be defined on the set N. If p ≥ 7 and |f (p) − h(q)| ≤ 15,
then q = p + 2 and f (p) − h(q) = 4.

Proof. If q ≥ p + 3, then

h(q) ≥ h(p + 3) = f (p) + 2p + 2 ≥ f (p) + 16.

If p − 2 ≤ q ≤ p + 1, then

f (p) ≥ f (q − 1) = h(q) + 2q + 6 ≥ h(q) + 2p + 2 ≥ h(q) + 16.

If q ≤ p − 3, then

f (p) ≥ f (q + 3) = h(q) + 10q + 34 ≥ h(q) + 44.

Hence we must have q = p + 2 and in this case, f (p) − h(q) = 4. □
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Fig. 1. Tn and Un with n = 2k + 5 and k ≥ 7.

Fig. 2. Tn and Un with n = 2k + 6 and k ≥ 7.

Now we are ready to state and prove the main result.

Theorem 5. For every integer n ≥ 10, there exist a tree Tn and a unicyclic graph Un, both of order n, with the following two
properties:

(1) Tn and Un have the same status sequence;
(2) for n ≥ 15, if n ≡ 3 (mod 4) then Tn is status injective and among any four consecutive even orders, there is at least

one order n such that Tn is status injective.

Proof. For the orders n ≥ 19 we have a uniform construction of Tn and Un, and we treat this case first. For the orders
10 ≤ n ≤ 18, the graphs will be constructed individually and they appear at the end of this proof.

Now suppose n ≥ 19. We distinguish the odd orders and the even orders. Let n = 2k + 5 with k ≥ 7. We define Tn
and Un as follows. V (Tn) = {xi| i = 1, 2, . . . , 2k + 5} and E(Tn) =

{xixi+1| i = 1, 2, . . . , 2k − 1} ∪ {x3x2k+1, xk+1x2k+5, xk+3x2k+4, x2k−3x2k+3, x2k−2x2k+2}.

V (Un) = {yi| i = 1, 2, . . . , 2k + 5} and E(Un) = {yiyi+1| i = 1, 2, . . . , 2k − 1} ∪ {y5y2k+3, yk−1y2k+4, yk+1y2k+5, y2k−2y2k+2,

y2k−1y2k+1, y2k+1y2k+2}. Note that Tn is a caterpillar of maximum degree 3 and Un is a unicyclic graph. Tn and Un are
illustrated in Fig. 1.

It can be checked directly that s(xi) = s(yi) for i = 1, 2, 3, k + 1, 2k − 1, 2k, . . . , 2k + 5 and s(xi) = s(y2k+2−i) for
4 ≤ i ≤ 2k − 2. Hence, Tn and Un have the same status sequence. For the even orders n = 2k + 6 with k ≥ 7, Tn is
obtained from Tn−1 defined above by adding the edge x2k+5x2k+6, and Un is obtained from Un−1 defined above by adding
the edge y2k+5y2k+6. Tn and Un are illustrated in Fig. 2.

We check easily that s(xi) = s(yi) for i = 1, 2, 3, k + 1, 2k − 1, 2k, . . . , 2k + 6 and s(xi) = s(y2k+2−i) for 4 ≤ i ≤ 2k − 2.
Thus Tn and Un also have the same status sequence.

Next we prove that the trees Tn satisfy condition (2) in Theorem 5. In fact, we will determine precisely for which orders
n, Tn is status injective.

First consider the case when n is odd and let n = 2k + 5 with k ≥ 7. Denote a = s(xk+1) = k2 + 3k − 2. We have

s(xk−p) =

⎧⎨⎩
a + (p + 2)2 − 1 if 0 ≤ p ≤ k − 3,
a + k2 + 1 if p = k − 2,
a + (k + 1)2 + 3 if p = k − 1;

s(xk+q) =

⎧⎨⎩
a + 1 if q = 2,
a + q2 − 5 if 3 ≤ q ≤ k − 3,
a + (q + 2)2 − 4k + 1 if k − 2 ≤ q ≤ k;
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s(x2k+r ) =

⎧⎨⎩
a + (k + 1 − r)2 + 3 if 1 ≤ r ≤ 3,
a + 2k + 7 if r = 4,
a + 2k + 3 if r = 5.

In calculating the values s(xi) for 1 ≤ i ≤ 2k we have used the fact that if P = z1z2 . . . zm is a path, then

s(zi) = i(i − m − 1) + m(m + 1)/2

in P , while in calculating the values s(xj) for j = 2k + 1, . . . , 2k + 5 we have used Lemma 1. From the above expressions
it follows that xk+1 is the unique vertex with the minimum status, x1, x2, x3, x2k−1, x2k, x2k+1, x2k+2, x2k+3 are the vertices
with the eight largest statuses, since

s(x1) > s(x2k) > s(x2k+1) > s(x2) > s(x2k+2) > s(x2k−1) > s(x3) > s(x2k+3) > s(xi) (1)

for any i ̸= 1, 2, 3, 2k − 1, 2k, 2k + 1, 2k + 2, 2k + 3 and

s(x2k+1) > s(x2k+2) > s(x2k+3) > s(x2k+4) > s(x2k+5). (2)

Partition the vertex set of Tn into three sets:

L = {xi| 1 ≤ i ≤ k}, R = {xi| k + 1 ≤ i ≤ 2k} and W = {xi| 2k + 1 ≤ i ≤ 2k + 5}.

The inequalities in (2) show that any two distinct vertices in W have different statuses. Applying Lemma 2 to the two
paths xk+1xkxk−1 . . . x2x1 and xk+1xk+2 . . . x2k−1x2k we see that any two distinct vertices in L or in R have different statuses.
Next we show that for any x ∈ L and y ∈ R, s(x) ̸= s(y). By the inequalities in (1) it suffices to prove that s(xi) ̸= s(xj)
for 4 ≤ i ≤ k and k + 2 ≤ j ≤ 2k − 2, which is equivalent to s(xk−p) ̸= s(xk+q) for 0 ≤ p ≤ k − 4 and 2 ≤ q ≤ k − 2.
We have the expressions s(xk−p) = a + (p + 2)2 − 1 for 0 ≤ p ≤ k − 4, s(xk+2) = a + 1, s(x2k−2) = a + k2 − 4k + 1 and
s(xk+q) = a + q2 − 5 for 3 ≤ q ≤ k − 3. First, s(xk−p) ≥ s(xk) = a + 3 > a + 1 = s(xk+2). The equality s(xk−p) = s(xk+q) for
3 ≤ q ≤ k − 3 is equivalent to 4 = (q + p + 2)(q − p − 2), which is impossible, since q + p + 2 ≥ 5 and q − p − 2 is an
integer. Also, s(xk−p) = s(x2k−2) is equivalent to 2 = (k+ p)(k− p− 4), which is impossible, since k+ p ≥ 7 and k− p− 4
is an integer. Hence s(x) ̸= s(y) for x ∈ L and y ∈ R.

By the above analysis, it is clear that the only possibilities for two distinct vertices to have the same status are
s(x2k+5) = s(xi) and s(x2k+4) = s(xi) for 4 ≤ i ≤ k or k + 2 ≤ i ≤ 2k − 2. By the expressions for their status values,
it is easy to verify that s(x2k+5) = s(xi) for some i with 4 ≤ i ≤ k if and only if k = 2c2 − 2 for some integer c;
s(xk+2) < s(x2k+5) < s(x2k−2) and s(x2k+5) = s(xi) for some iwith k+3 ≤ i ≤ 2k−3 if and only if k = 2c2−4 for some integer
c; s(x2k+4) = s(xi) for some i with 4 ≤ i ≤ k if and only if k = 2c2 − 4 for some integer c; s(xk+2) < s(x2k+4) < s(x2k−2)
and s(x2k+4) = s(xi) for some i with k + 3 ≤ i ≤ 2k − 3 if and only if k = 2c2 − 6 for some integer c .

Thus, Tn with n = 2k + 5 is not status injective if and only if k = 2c2 − 2, 2c2 − 4 or 2c2 − 6 for some integer c. Since
all these values of k are even, it follows that for every odd k, Tn is status injective; i.e., if n ≡ 3 (mod 4) then Tn is status
injective.

Next we treat the case when the order n is even. Let n = 2k + 6 with k ≥ 7. With d = s(xk+1) = k2 + 3k we have

s(xk−p) =

⎧⎨⎩
d + p2 + 5p + 4 if 0 ≤ p ≤ k − 3,
d + k2 + k if p = k − 2,
d + k2 + 3k + 4 if p = k − 1;

s(xk+q) =

⎧⎨⎩
d + 2 if q = 2,
d + q2 + q − 6 if 3 ≤ q ≤ k − 3,
d + q2 + 5q − 4k + 4 if k − 2 ≤ q ≤ k;

s(x2k+r ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d + k2 + k + 2 if r = 1,
d + k2 − k + 2 if r = 2,
d + k2 − 3k + 4 if r = 3,
d + 2k + 10 if r = 4,
d + 2k + 2 if r = 5,
d + 4k + 6 if r = 6.

From the above expressions we deduce that xk+1 is the unique vertex with the minimum status d. The case k = 7 corre-
sponds to n = 20 and we check directly that T20 is status injective. Next suppose k ≥ 8. Then x1, x2, x3, x2k−1, x2k, x2k+1,
x2k+2, x2k+3 are the vertices with the eight largest statuses, since

s(x1) > s(x2k) > s(x2k+1) > s(x2) > s(x2k+2) > s(x2k−1) > s(x3) > s(x2k+3) > s(xi) (3)

for any i ̸= 1, 2, 3, 2k − 1, 2k, 2k + 1, 2k + 2, 2k + 3. Also

s(x2k+1) > s(x2k+2) > s(x2k+3) > s(x2k+6) > s(x2k+4) > s(x2k+5). (4)
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In considering two vertices with equal status, we can exclude the eight vertices with the eight largest statuses by (3) and
the unique vertex xk+1 with the minimum status. Denote

L′
= {xi| 4 ≤ i ≤ k}, R′

= {xi| k + 2 ≤ i ≤ 2k − 2} and W ′
= {xi| 2k + 1 ≤ i ≤ 2k + 6}.

Let x and y be two distinct vertices with s(x) = s(y). By the inequalities in (4), it is impossible that x, y ∈ W ′. By Lemma 2
we cannot have x, y ∈ L′ or x, y ∈ R′. Suppose x ∈ L′ and y ∈ R′. We have s(x) > s(xk+2), s(x4) > s(x2k−2) and s(xi) < s(x2k−2)
for 5 ≤ i ≤ k. Thus, y ̸= xk+2, x2k−2. We have x = xi for some i with 4 ≤ i ≤ k and y = xj for some j with k+3 ≤ j ≤ 2k−3.
Hence s(x) = d + p2 + 5p + 4 with 0 ≤ p ≤ k − 4 and s(y) = d + q2 + q − 6 with 3 ≤ q ≤ k − 3. Then s(x) = s(y) yields
p2 + 5p + 4 = q2 + q − 6, which is impossible by Lemma 3.

Now, by (3) and the above analysis it is clear that s(x) = s(y) can occur only if x ∈ {x2k+4, x2k+5, x2k+6} and y ∈ L′
∪R′ or

the roles of x and y are interchanged. The case k = 8 corresponds to n = 22, and we check directly that T22 is not status
injective. Next we suppose k ≥ 9. Then s(x2k−2) > s(x2k+6) > s(x2k+4) > s(x2k+5), and hence x2k−2 can be excluded from
R′. Similarly, since s(xk+2) < s(xk) < s(x2k+5) < s(x2k+4) < s(x2k+6), xk can be excluded from L′ and xk+2 can be excluded
from R′. Note that the statuses of the vertices in L′

\ {xk} have the uniform expression d+ p2 + 5p+ 4 with 1 ≤ p ≤ k− 4
and the statuses of the vertices in R′

\ {xk+2, x2k−2} have the uniform expression d + q2 + q − 6 with 3 ≤ q ≤ k − 3.
Denote the empty set by φ, and denote Ωk = {2k+2, 2k+10, 4k+6}, Γk = Ak ∪Bk where Ak = {p2 +5p+4| 1 ≤ p ≤

k − 4, p ∈ N} and Bk = {q2 + q − 6| 3 ≤ q ≤ k − 3, q ∈ N}. It follows that when k ≥ 9, Tn has two distinct vertices with
the same status if and only if Ωk ∩Γk ̸= φ. Denote Γ = A∪B where A = {p2 +5p+4| p ∈ N} and B = {q2 + q−6| q ∈ N}.
Since Ωk ∩ Γk = Ωk ∩ Γ , we obtain the following criterion for k ≥ 9 :

Tn is status injective if and only if Ωk ∩ Γ = φ.
The graphs Tn with 15 ≤ n ≤ 18 constructed below are all status injective. Using the above criterion we can check

that Tn is status injective for

k = 10, 14, 18, 21, 23, 25, 27, 29, 33, 35, 38, 40, 42.

Thus the assertion in Theorem 5 on Tn for even n with k ≤ 42 is true.
Next we suppose k ≥ 43. We will prove that among the four numbers k, k + 1, k + 2, k + 3 there is at least one for

which Tn is status injective. To do so, consider

Ωk = {2k + 2, 2k + 10, 4k + 6}
Ωk+1 = {2k + 4, 2k + 12, 4k + 10}
Ωk+2 = {2k + 6, 2k + 14, 4k + 14}
Ωk+3 = {2k + 8, 2k + 16, 4k + 18}.

The numbers in these four sets can be partitioned into two classes:

X = {2k + i| i = 2, 4, 6, 8, 10, 12, 14, 16} and Y = {4k + j| j = 6, 10, 14, 18}.

We claim that

|X ∩ A| ≤ 1, |X ∩ B| ≤ 1, |Y ∩ A| ≤ 1, |Y ∩ B| ≤ 1. (5)

Define two polynomials f (p) = p2 + 5p + 4 and h(q) = q2 + q − 6. Then A = {f (p)| p ∈ N} and B = {h(q)| q ∈ N}. In the
sequel the symbol ⇒ means ‘‘implies". We first prove |X ∩ A| ≤ 1. To the contrary, suppose there exist i, j, p1, p2 with
2 ≤ i < j ≤ 16 and p1 < p2 such that f (p1) = 2k + i and f (p2) = 2k + j. k ≥ 43 and i ≥ 2 ⇒ f (p1) = 2k + i ≥ 88 ⇒

p1 ≥ 7. We have f (p2) − f (p1) = j − i ≤ 14. But on the other hand, f (p2) − f (p1) ≥ f (p1 + 1) − f (p1) = 2p1 + 6 ≥ 20, a
contradiction. The inequality |X ∩ B| ≤ 1 is similarly proved by using the fact that h(q) ∈ X ⇒ h(q) ≥ 88 ⇒ q ≥ 10. The
inequalities |Y ∩ A| ≤ 1 and |Y ∩ B| ≤ 1 can also be similarly proved by using the facts that f (p) ∈ Y ⇒ f (p) ≥ 178 ⇒

p ≥ 11 and h(q) ∈ Y ⇒ h(q) ≥ 178 ⇒ q ≥ 14.
Note that the assumption k ≥ 43 implies that min X ≥ 88 and min Y ≥ 178. Hence if f (p) ∈ X ∪ Y we have p ≥ 7 and

Lemma 4 can be applied.
Suppose Ωi ∩ Γ ̸= φ for i = k, k + 1, k + 2. We will show that Ωk+3 ∩ Γ = φ. Since Ωk ∩ Γ ̸= φ, at least one of the

two cases {2k + 2, 2k + 10} ∩ Γ ̸= φ and 4k + 6 ∈ Γ must occur. Recall that Γ = A ∪ B.
Case 1. {2k + 2, 2k + 10} ∩ Γ ̸= φ. We first consider the case when {2k + 2, 2k + 10} ∩ A ̸= φ. Denote

Ψ = {2k + 4, 2k + 12, 2k + 8, 2k + 16}. By (5), Ψ ∩ A = φ. By Lemma 4, Ψ ∩ B = φ. It follows that Ψ ∩ Γ = φ.
Since Ωk+1 ∩ Γ ̸= φ and {2k+ 4, 2k+ 12} ∩ Γ = φ, we deduce that 4k+ 10 ∈ Γ . By (5), 4k+ 10 and 4k+ 18 cannot be
both in A or both in B. Since 4 ̸= 8 = (4k + 18) − (4k + 10) ≤ 15, by Lemma 4 it is also impossible that one of 4k + 10
and 4k + 18 is in A and the other in B. But 4k + 10 ∈ Γ = A ∪ B. Hence 4k + 18 /∈ Γ and we obtain Ωk+3 ∩ Γ = φ. The
case when {2k+ 2, 2k+ 10} ∩ B ̸= φ is similar. Again we use (5), Lemma 4 and Ωk+1 ∩ Γ ̸= φ to deduce Ωk+3 ∩ Γ = φ.

Case 2. 4k+6 ∈ Γ . Using (5) and Lemma 4 we deduce that {4k+14, 4k+18}∩Γ = φ. Then the condition Ωk+2∩Γ ̸= φ
implies {2k + 6, 2k + 14} ∩ Γ ̸= φ. Applying (5) and Lemma 4 once more we have {2k + 8, 2k + 16} ∩ Γ = φ. Hence
Ωk+3 ∩ Γ = φ.

This completes the proof of the case n ≥ 19 of Theorem 5. The graph pairs Tn and Un with 10 ≤ n ≤ 18 are depicted
in Figs. 3–11. They satisfy the condition s(Tn) = s(Un) and for 15 ≤ n ≤ 18, Tn is status injective. In these graphs, the
number beside a vertex is the status of that vertex.

This completes the proof of Theorem 5. □
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Fig. 3. T10 and U10 .

Fig. 4. T11 and U11 .

Fig. 5. T12 and U12 .

Fig. 6. T13 and U13 .

Fig. 7. T14 and U14 .

Remark. A computer search shows that 10 is the smallest order for the existence of a tree and a nontree graph with the

same status sequence.
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Fig. 8. T15 and U15 .

Fig. 9. T16 and U16 .

Fig. 10. T17 and U17 .

Fig. 11. T18 and U18 .

Declaration of competing interest

The authors declare that there is no conflict of interest in this paper.

Acknowledgments

This research was supported by the NSFC grants 11671148 and 11771148 and Science and Technology Commission of
Shanghai Municipality (STCSM) grant 18dz2271000.

References

[1] A. Abiad, B. Brimkov, A. Chan, A. Grigoriev, On the status sequences of trees, December 10, 2018, arXiv:1812.03765v1.
[2] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, 1990.
[3] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (2) (1976) 283–296.
[4] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23–43.
[5] J.L. Shang, On constructing graphs with the same status sequence, Ars Combin. 113 (2014) 429–433.
[6] J.L. Shang, C. Lin, Spiders are status unique in trees, Discrete Math. 311 (2011) 785–791.
[7] P.J. Slater, Counterexamples to Randić’s conjecture on distance degree sequences for trees, J. Graph Theory 6 (1982) 89–92.

http://arxiv.org/abs/1812.03765v1
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb2
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb3
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb4
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb5
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb6
http://refhub.elsevier.com/S0012-365X(19)30340-1/sb7

	Pairs of a tree and a nontree graph with the same status sequence
	Introduction
	Main results
	Declaration of competing interest
	Acknowledgments
	References


