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Abstract

We prove that the minimum number of Hamilton cycles

in a Hamiltonian threshold graph of order n is ⌊ ∕ ⌋2 n( −3) 2

and this minimum number is attained uniquely by the

graph with degree sequence n n n− 1, − 1, − 2,…,

⌈ ∕ ⌉ ⌈ ∕ ⌉n n2 , 2 ,…,3,2 of n − 2 distinct degrees. This graph

is also the unique graph of minimum size among all

Hamiltonian threshold graphs of order n.
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1 | INTRODUCTION

There are few results concerning the precise value of the minimum or maximum number of
Hamilton cycles of graphs in a special class with a prescribed order. For example, it is known that
the minimum number of Hamilton cycles in a simple Hamiltonian cubic graph of order n is 3, which
follows from Smith’s theorem [1, p. 493] and an easy construction [13, p. 479], but the maximum
number of Hamilton cycles is not known; even the conjectured upper bound ∕2n 3 [3, p. 312] has not
been proved. Another example is Sheehan’s conjecture that every simple Hamiltonian 4‐regular
graph has at least two Hamilton cycles [13] (see also [1, pp. 494 and 590]), which is still unsolved.

Upper and lower bounds on the maximum number of Hamilton cycles in a graph with
prescribed order and size are given in [14]. The number of Hamilton cycles in maximal planar
graphs is studied in [9].

In this paper we will determine the minimum number of Hamilton cycles in a Hamiltonian
threshold graph of order n, as well as determining the unique minimizing graph attaining this
minimum. Threshold graphs were introduced by Chvátal and Hammer [4] in 1973. Besides the
original definition, seven equivalent characterizations are given in [10].
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Definition 1. A finite simple graph G is called a threshold graph if there exists a
nonnegative real‐valued function f defined on the vertex set of G, →f V G: ( ) and a
nonnegative real number t such that for any two distinct vertices u and v u, and v are
adjacent if and only if f u f v t( ) + ( ) > .

It is known [10, p. 10] that a graph is a threshold graph if and only if it is P C K{ , , 2 }4 4 2 ‐free.
Threshold graphs play a special role for many reasons of which we list three in the following.

First, they have geometrical significance. Let Ωn be the convex hull of all degree sequences of
the simple graphs of order n. Then the extreme points of the polytopeΩn are exactly the degree
sequences of threshold graphs of order n [8] (for another proof see [12]). Second, a nonnegative
integer sequence is graphical if and only if it is majorized by the degree sequence of some
threshold graph [12]. Third, a graphical sequence has a unique labeled realization if and only if
it is the degree sequence of a threshold graph [10, p. 72].

For terminology and notations we follow the textbooks [10,15]. The order of a graph is its
number of vertices, and the size its number of edges. For graphs we will use equality up to
isomorphism, so G H= means that G and H are isomorphic. N v( ) and N v[ ] denote the
neighborhood and closed neighborhood of a vertex v, respectively. For a real number ⌊ ⌋r r,

denotes the largest integer less than or equal to r , and ⌈ ⌉r denotes the least integer larger than or
equal to r . The notation ∣ ∣S denotes the cardinality of a set S.

2 | MAIN RESULTS

Let G V E= ( , ) be a graph whose distinct positive vertex‐degrees are ⋯δ δ< < m1 and let
δ = 00 . Denote ∈ ∣D v V v δ= { deg( ) = }i i for i m= 0,1,…, . The sequence D D D, ,…, m0 1 is called
the degree partition of G. Each Di is called a degree set. Sometimes when D0 is empty it may be
omitted. These notations will be used throughout. We will need the following characterization
[10, p. 11], which describes the basic structure of a threshold graph.

Lemma 1. G is a threshold graph if and only if for each ∈v Dk,

⋃ ⌊ ∕ ⌋

⋃ ⌊ ∕ ⌋

N v D k m

N v D k m m

( ) = if = 1,…, 2 ,

[ ] = if = 2 + 1,…, .

j

k

m j

j

k

m j

=1
+1−

=1
+1−

In other words, for ∈x Di and ∈y D x,j is adjacent to y if and only if i j m+ > .

Clearly, Lemma 1 not only implies another characterization that the vicinal preorder of a
threshold graph is a total preorder, but also indicates that every threshold graph is determined
uniquely by its degree sequence [10, p. 72].

The following lemma can be found in [10, pp. 11‐13].
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Lemma 2. For any threshold graph,

∣ ∣ ≠ ⌊ ∕ ⌋

∣ ∣ ⌊ ∕ ⌋

δ δ D k m k m

δ δ D k m

= + for = 0,1,…, , 2 ,

= + − 1 for = 2 .

k k m k

k k m k

+1 −

+1 −

For two subsets S and T of the vertex set of a graph G, the notation S T[ , ] denotes the set of
edges of G with one end in S and the other end in T . Here S and T need not be disjoint. In the
case T S S S= , [ , ] is just the edge set of the subgraph G S[ ] of G induced by S. Next we define a
new concept, which will be used in the proofs.

Definition 2. An edge of a threshold graph G with degree partition D D D, ,…, m0 1 is
called a key edge of G if it lies in D D[ , ]k m k+1− for some k with ≤ ≤ ⌈ ∕ ⌉k m1 2 .

Thus when m is even we have only one type of key edges, and when m is odd
( ≥m 3) we have two types of key edges. For example, if m = 4, then the set of key edges is

∪D D D D[ , ] [ , ]1 4 2 3 , whereas ifm = 5, then the set of key edges is ∪ ∪D D D D D D[ , ] [ , ] [ , ]1 5 2 4 3 3 .
In the second case there are key edges which have ends with different degrees as well as key
edges which have both ends of the same degree. We will need the following two lemmas
concerning properties of key edges.

Lemma 3. If e is a key edge of a threshold graph G, then G e− is a threshold graph.

Proof. DenoteG G e′ = − and letm′ be the number of distinct positive vertex‐degrees of
G′. Let e xy= . First suppose that ∈x Dj and ∈y Dm j+1− for some ≤ ≤ ⌊ ∕ ⌋j m1 2 . We
write TPO for the conditions in Lemma 1 (suggesting total preorder). To prove thatG′ is a
threshold graph, by Lemma 1 it suffices to show that the degree sets ofG′ satisfy TPO. The
structural change of the degree partitions depends on the sizes of the two sets Dj and
Dm j+1− . We distinguish four cases.

Case 1 ∣ ∣D = 1j and ∣ ∣D = 1m j+1− . The condition ∣ ∣D = 1j implies that ⌊ ∕ ⌋j m= 2 is

possible only if m is odd, since if m is even then ∣ ∣ ≥∕D 2m 2 . Hence m j j− > ,
implying that Dm j− and Dj are two distinct sets. By Lemma 2,

∣ ∣ ∣ ∣δ δ D δ δ δ D δ= + = + 1 and = + = + 1.j j m j j m j m j j m j−1 +1− −1 +1− − −

After deleting e, the two sets Dj and Dm j+1− become empty, and they disappear in G′. x
goes to Dj−1 and y goes to Dm j− . Nowm m′ = − 2 and the adjacency relations among the
vertices of G′ still satisfy TPO.
Case 2 ∣ ∣D = 1j and ∣ ∣ ≥D 2m j+1− . As in case 1, Dm j− and Dj are two distinct sets. By

Lemma 2, we have

∣ ∣ ≥ ∣ ∣δ δ D δ δ δ D δ= + + 2 and = + = + 1.j j m j j m j m j j m j−1 +1− −1 +1− − −

When deleting e x, stays in Dj and y goes to Dm j− . Thus m m′ = and G′ satisfies TPO.
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Case 3 ∣ ∣ ≥D 2j and ∣ ∣D = 1m j+1− . We have ∣ ∣δ δ D δ= + = + 1j j m j j−1 +1− −1 . When

deleting e x, goes to Dj−1. If m is even, ∕j m= 2 and ∣ ∣D = 2j , then

∣ ∣∕ ∕δ δ D δ= + − 1 = + 1m j m m j+1− 2 2 . When deleting e y, goes to Dj and the

set Dm j+1− disappears. Thus m m′ = − 1. In all other cases, we have

≥δ δ + 2m j m j+1− − . In fact, if m is odd or m is even and ∕j m< 2, we have

∣ ∣ ≥δ δ D δ= + + 2m j m j j m j+1− − − , whereas ifm is even, ∕j m= 2 and ∣ ∣ ≥D 3j ,

we have ∣ ∣ ≥δ δ D δ= + − 1 + 2m j m j j m j+1− − − . When deleting e y, remains in

Dm j+1− . Thus m m′ = . In each case, G′ satisfies TPO.

Case 4 ∣ ∣ ≥D 2j and ∣ ∣ ≥D 2m j+1− . We have ∣ ∣ ≥δ δ D δ= + + 2j j m j j−1 +1− −1 . If m is

even, ∕j m= 2 and ∣ ∣D = 2j , then ∣ ∣δ δ δ D δ= = + − 1 = + 1m j j j j j+1− +1 .

When deleting e x, remains in Dj (but with degree δ − 1j ) and a new degree

set ∪ ⧹y D x{ } ( { })j appears. Now m m′ = + 1. In all other cases, two new degree
sets appear, one containing only x and the other containing only y, so that
m m′ = + 2. In either case, G′ satisfies TPO and hence it is a threshold graph.

Now suppose that m is odd and ∈x y D, t, where ⌊ ∕ ⌋ ⌈ ∕ ⌉t m m= 2 + 1 = 2 . Apply
Lemma 2. If ∣ ∣D = 2t , when deleting e, both x and y go to ⌊ ∕ ⌋D m 2 and the degree set Dt
disappears. Then m m′ = − 1 and G′ satisfies TPO. Otherwise ∣ ∣ ≥D 3t . When deleting
e, a new degree set x y{ , } appears, where x and y are nonadjacent. In this case
m m′ = + 1 and G′ again satisfies TPO. □

Lemma 4. Every key edge of a Hamiltonian threshold graph lies in at least one Hamilton
cycle.

Proof. Let G be a Hamiltonian threshold graph with degree partition D D,…, m1 . Let
e xy= be a key edge of G with ∈x Dj and ∈y Dm j+1− for some ≤ ≤ ⌈ ∕ ⌉j m1 2 . Choose
any Hamilton cycle C of G. If e lies in C, we are done. Otherwise let C x s y t= ( , ,…, , ,…).
Then s and x are adjacent, and t and y are adjacent. Applying Lemma 1 we deduce that s
and t are adjacent. Now the classical cycle exchange [1, p. 485] with x s=+ and y t=+

yields a new Hamilton cycle containing the edge e. □

Different necessary and sufficient conditions for a threshold graph to be Hamiltonian are
given by Golumbic [5], Harary and Peled [7], and Mahadev and Peled [11]. What we need is the
following one by Golumbic [5, p. 231] whose proof can be found in [10, p. 25].

Lemma 5. Let G be a threshold graph of order at least 3 with the degree partition
D D D, ,…, m0 1 . Then G is Hamiltonian if and only if D ϕ=0 ,

∑ ∑∣ ∣ ∣ ∣ ⌊ ∕ ⌋D D k m< , = 1,…, ( − 1) 2
j

k

j

j

k

m j

=1 =1

+1−

and if m is even, then∑ ∣ ∣ ≤ ∑ ∣ ∣
∕ ∕

D D
j

m
j j

m
m j=1

2

=1

2
+1− .
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Definition 3. For every integer ≥n 3, we denote byGn the graph with degree sequence
⌈ ∕ ⌉ ⌈ ∕ ⌉n n n n n− 1, − 1, − 2,…, 2 , 2 ,…,3,2 of n − 2 distinct degrees.

We remark that the graph Gn is well defined and it is a Hamiltonian threshold graph. First,
the existence of a graph with this sequence as its degree sequence is shown in the proof of
Theorem 6 below. Second, by Condition 7 in [10, p. 11] we easily verify that a graph with this
degree sequence is a threshold graph, and consequently [10, p. 72]Gn is uniquely determined by
the degree sequence. Third, by [10, p. 26] we deduce that Gn is Hamiltonian.

G8 is depicted in Figure 1.
Now we are ready to prove the main results.

Theorem 6. The minimum number of Hamilton cycles in a Hamiltonian threshold graph
of order n is ⌊ ∕ ⌋2 n( −3) 2 and this minimum number is attained uniquely by the graph Gn.

Proof. We first determine the minimizing graph and then count its number of Hamilton
cycles. Let G be a Hamiltonian threshold graph of order n having the minimum number
of Hamilton cycles. Let D D,…, m1 be the degree partition of G. Note that for any threshold
graph with ≥m 1, we have ∣ ∣ ≥⌈ ∕ ⌉D 2m 2 . This follows from

≤ ∣ ∣⌊ ∕ ⌋ ⌊ ∕ ⌋ ⌈ ∕ ⌉δ δ D1 − = − 1m m m2 +1 2 2

by Lemma 2.
The theorem holds trivially for the case n = 3. Next suppose ≥n 4.m = 1 means that

G is a complete graph, which is impossible. Thus ≥m 2. We claim that ∣ ∣D = 2m .
Lemma 5 with k = 1 implies ∣ ∣ ≥D 2m . Hence it suffices to prove ∣ ∣ ≤D 2m . To the
contrary suppose ∣ ∣ ≥D 3m . Let e be any edge in D D[ , ]m1 . Then e is a key edge by
definition. By Lemma 3, G e− is a threshold graph. Since G is a Hamiltonian threshold

FIGURE 1 The minimizer G8 [Color figure can be viewed at wileyonlinelibrary.com]
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graph, its degree sets D D,…, m1 satisfy the inequalities in Lemma 5. Analyzing the change
of degree partitions from G to G e− as in the proof of Lemma 3, we see that the degree
sets of G e− also satisfy the inequalities in Lemma 5. Hence by Lemma 5, G e− is
Hamiltonian. Deleting any edge cannot increase the number of Hamilton cycles. By
Lemma 4, the key edge e lies in at least one Hamilton cycle ofG. It follows thatG e− has
fewer Hamilton cycles than G, contradicting the minimum property of G. This proves
∣ ∣D = 2m .

If m = 2, then by Lemma 5 we have ∣ ∣ ≤D 21 . Since ≥n 4, we must have n = 4 and
∣ ∣D = 21 . Then applying Lemma 1 we deduce thatG has the degree sequence 3,3, 2,2, so
thatG G= 4. Next suppose ≥m 3. By Lemma 5, ∣ ∣ ∣ ∣D D< = 2m1 . Hence ∣ ∣D = 11 . We
first consider the case ≥m 4. (The case m = 3 will be treated later.) We claim that
∣ ∣D = 1m−1 . Otherwise, as argued above, deleting any key edge f in D D[ , ]m2 −1 would
reduce the number of Hamilton cycles such that G f− is still a Hamiltonian threshold
graph, a contradiction. Then using the fact that ∣ ∣D = 11 and ∣ ∣D = 2m and applying
Lemma 5 we deduce that if m is odd or if m is even and ≥m 6 then ∣ ∣D = 12 , and if
m = 4 then ∣ ∣D = 22 . Continuing in this way, by successively deleting a key edge in
D D[ , ]j m j+1− for ⌊ ∕ ⌋j m= 2,…, 2 if ∣ ∣ ≥D 2m j+1− we conclude that ∣ ∣D = 1m j+1− for each

⌊ ∕ ⌋j m= 2,…, 2 . Then using the fact that ∣ ∣D = 11 and ∣ ∣D = 2m and applying Lemma 5,
we conclude that ∣ ∣D = 1i for each ⌊ ∕ ⌋i m= 2,…, 2 − 1 and that if m is odd then
∣ ∣⌊ ∕ ⌋D = 1m 2 and if m is even then ∣ ∣∕D = 2m 2 . Thus, if m is even then n m= + 2 is
even, G has the degree sequence ∕ ∕n n n n− 1, − 1,…, 2, 2,…,3,2 and hence G G= n.

If ≥m 3 andm is odd, we assert that ∣ ∣⌈ ∕ ⌉D = 2m 2 . As remarked at the beginning, we
always have ∣ ∣ ≥⌈ ∕ ⌉D 2m 2 . Thus it suffices to show ∣ ∣ ≤⌈ ∕ ⌉D 2m 2 . To the contrary
suppose ∣ ∣ ≥⌈ ∕ ⌉D 3m 2 . By Lemma 4, any key edge h in ⌈ ∕ ⌉G D[ ]m 2 lies in at least one
Hamilton cycle. With the assumption that ∣ ∣ ≥⌈ ∕ ⌉D 3m 2 , applying Lemma 3 and Lemma
5 we see that G h− is also a Hamiltonian threshold graph with fewer Hamilton cycles
than G, a contradiction. This shows ∣ ∣⌈ ∕ ⌉D = 2m 2 . Now n m= + 2 is odd. Combining all
the above information about G we deduce that G has the degree sequence

∕ ∕n n n n− 1, − 1,…,( + 1) 2, ( + 1) 2,…,3,2 and hence G G= n.
Denote the number of Hamilton cycles of Gn by f n( ). Since f f(3) = (4) = 1, to prove

⌊ ∕ ⌋f n( ) = 2 n( −3) 2 it suffices to show the following:
Claim. For every integer ≥k 2,

f k f k f k f k(2 − 1) = (2 ) and (2 + 1) = 2 (2 ).

In G k2 , let D x y= { , }k and D z= { }k+1 . By Lemma 5, neither G xz−k2 nor G yz−k2 is
Hamiltonian. Thus the path xzy must lie in every Hamilton cycle of G k2 . Deleting the
vertex z and adding the edge xy we obtain a graph which is isomorphic to G k2 −1 and has
the same number of Hamilton cycles as G k2 . Hence f k f k(2 − 1) = (2 ).

In G k2 +1, let D u v= { , }k+1 . Then the edge uv lies in every Hamilton cycle of G k2 +1.
Denote G G v′ = − . Clearly G′ is isomorphic to G k2 and hence G′ has f k(2 ) Hamilton
cycles. Since ⧹ ⧹N u v N v u( ) { } = ( ) { } in G, from each Hamilton cycle of G′ we can obtain
two distinct Hamilton cycles ofG k2 +1 by replacing the vertex u by the edge uv in two ways.
More precisely, a Hamilton cycle s u t(…, , , ,…) of G′ yields two Hamilton cycles

s u v t(…, , , , ,…) and s v u t(…, , , , ,…) of G. Conversely every Hamilton cycle of G k2 +1 can
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be obtained in such a vertex‐to‐edge expansion from a Hamilton cycle of G′. Hence
f k f k(2 + 1) = 2 (2 ). This shows the claim and completes the proof. □

The above proof of Theorem 6 also proves thatGn is the unique graph that has the minimum
size among all Hamiltonian threshold graphs of order n. To see this, just replace the assumption
that G has the minimum number of Hamilton cycles by the one that G has the minimum size.
Also note that the size of a threshold graph is easy to count, since it is a split graph with the
clique⋃ ⌊ ∕ ⌋ Dj m

m
j= 2 +1 and the independent set⋃⌊ ∕ ⌋ Dj

m
j=1

2 . Thus we have the following result.

Theorem 7. The minimum size of a Hamiltonian threshold graph of order n is

⎧⎨⎩
∕

∕

n n n

n n n

( + 2 − 3) 4 if is odd,

( + 2 − 4) 4 if is even,

2

2

and this minimum size is attained uniquely by the graph Gn.
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